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Abstract. The rise of Performance Based Design methodologies for fire safety engi-

neering has increased the interest of the fire safety community in the concepts of risk
and reliability. Practical applications have however been severely hampered by the
lack of an efficient unbiased calculation methodology. This is because on the one

hand, the distribution types of model output variables in fire safety engineering are
not known and traditional distribution types as for example the normal and lognor-
mal distribution may result in unsafe approximations. Therefore unbiased methods
must be applied which make no (implicit) assumptions on the PDF type. Tradition-

ally these unbiased methods are based on Monte Carlo simulations. On the other
hand, Monte Carlo simulations require a large number of model evaluations and are
therefore too computationally expensive when large and nonlinear calculation models

are applied, as is common in fire safety engineering. The methodology presented in
this paper avoids this deadlock by making an unbiased estimate of the PDF based on
only a very limited number of model evaluations. The methodology is known as the

Maximum Entropy Multiplicative Dimensional Reduction Method (ME-MDRM)
and results in a mathematical formula for the probability density function (PDF)
describing the uncertain output variable. The method can be applied with existing
models and calculation tools and allows for a parallelization of model evaluations.

The example applications given in the paper stem from the field of structural fire
safety and illustrate the excellent performance of the method for probabilistic struc-
tural fire safety engineering. The ME-MDRM can however be considered applicable

to other types of engineering models as well.
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List of symbols

E[.] Expected value operator

Fx Cumulative density function for the variable X

F �1
X Inverse cumulative density function for the variable X

fxl Probability density function describing the lth stochastic input variable

fy Probability density function describing Y

f̂y ME-MDRM estimate for fy
h(.) Model response indicator

hl(.) Unidimensional cut function for h(.) where all stochastic input variables expect the lth

are evaluated by their median value

h0 Model response y when all stochastic variables are given by their median values

L Number of Gauss integration points for the Gaussian interpolation

Mai
Y ai

th sample moment of Y

m Order of the Maximum Entropy estimate

n Number of stochastic variables

Pf Probability of failure

Pf,fi Probability of failure conditional on the occurrence of a ‘significant’ fire

wj Gauss weight for the jth Gauss integration point

x Vector of stochastic input variables xl
Y The stochastic model output

y Realization of the model output

yj,l Model realization where the lth stochastic variable is defined by the jth Gauss

integration point, and all other variables are evaluated by their median value

zj jth Gauss integration point

ai Exponent i for the ME-MDRM estimate of the PDF

ki Coefficient i for the ME-MDRM estimate of the PDF

k0 Normalization coefficient for the ME-MDRM estimate of the PDF

lX Mean value of stochastic variable X

l̂X Estimated mean value of stochastic variable X

l_X Median value of stochastic variable X

rX Standard deviation of stochastic variable X

U Standard normal cumulative distribution function

u Standard normal probability density function

LHS Latin Hypercube Sampling

MCS Monte Carlo simulations

ME-MDRM Maximum Entropy Multiplicative Dimensional Reduction Method

MDRM–G Parameter estimation based on Multiplicative Dimensional Reduction Method and

Gaussian interpolation

PDF Probability density function

1. Introduction

Fire safety engineering in general and structural fire safety engineering in particular
are closely linked to the concepts of risk and reliability. Although this is not always
fully acknowledged, making decisions on (structural) fire safety requirements inher-
ently entails balancing the improbability of a severe fire with the damage this fire
may induce if it does occur. While in the past fire safety requirements were generally
prescriptive in nature, the advent of Performance Based Design (PBD) for fire safety
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engineering has highlighted questions related to cost-optimization and the definition
of performance targets. Consequently, it comes as no surprise that a growing inter-
est exists within the fire safety community for topics of risk and reliability.

Applying reliability concepts to fire safety requires evaluating the uncertain
response of the design in case of fire. Traditionally this is done using Monte Carlo
simulations (MCS). Applications in the area of structural fire safety can be found
amongst others in [16] and [12]. In the field of evacuation modelling MCS have been
applied by [35], while [7] applied MCS for evaluating fire spread in forest fires, and
[17] used MCS for assessing the implicit reliability requirements incorporated in cur-
rent UK standards. These publications in different fields of fire safety engineering
illustrate the interest of the fire safety community in the application of probabilistic
methods. However, the Monte Carlo methodology applied in the references above
requires a very large number of model realizations and therefore becomes impracti-
cal when computationally expensive models are used or when evaluating small
occurrence probabilities. More computationally efficient methods exist, see for
example [2, 11, 15, 28, 32],—but these can be difficult to implement, and/or require
prior knowledge on the type of probability density function describing the uncertain
response. This knowledge on the distribution of the response is generally not avail-
able for fire safety problems, which is why it is important to use unbiased methods
(i.e. methods without distributional assumptions on the model output). Monte
Carlo simulations are unbiased, but as mentioned above the application of MCS
becomes impractical for computationally expensive models. In conclusion, the appli-
cation of risk- and reliability-based concepts to (structural) fire safety engineering is
currently severely hampered by the lack of a computationally efficient and unbiased
methodology for evaluating the stochastic response of systems exposed to fire.

In this paper a computationally efficient methodology is adapted and for the
first time applied to structural fire safety. The methodology makes an unbiased
estimation of the probability density function (PDF) which describes the uncertain
response of a fire exposed structure or structural member, while requiring only a
very limited number of model evaluations. Although the example applications
illustrating the efficiency of the proposed method stem from the field of structural
fire safety engineering, the method can be considered generally applicable to any
engineering models.

2. Why Evaluate the Probability Density Function (PDF)?

2.1. Concepts of Failure and Failure Probabilities

For general engineering models, any model output Y can be considered as a func-
tion of a number of input variables Xi. Evaluating for example the maximum tem-
perature Tmax in a fire engulfed compartment, Tmax will be a function of amongst
others the fire load density, the compartment dimensions, the lining thermal prop-
erties, and the ventilation characteristics. Some variables may be well known and
can consequently be modelled by a single deterministic value. In the model for
Tmax, this will in general be the case for the compartment dimensions. Other vari-
ables may be less clearly defined and should be modelled as stochastic variables.
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In the example above, for example the fire load density falls in the latter category.
By considering the uncertainty on the input variables Xi, the model output Y will
be uncertain as well. Denoting with x the vector of stochastic variables and h the
modelled relationship, this yields:

Y ¼ h xð Þ ð1Þ

Considering a failure criterion for the output variable Y, for example failure if
Y > ylimit, the probability of failure Pf can be calculated from the PDF fy describ-
ing Y, through:

Pf ¼
Z1

ylimit

fy yð Þdy ð2Þ

The calculated probability of failure should subsequently be compared with an
acceptability limit. For example, for structural failure in ambient design condi-
tions, EN 1990 [6] specifies an acceptability limit for Pf,50 of U(-
3.8) = 7.23 9 10-5 for structures with normal failure consequences when consid-
ering a 50 year reference period, where U denotes the standard cumulative normal
distribution function. When considering a 1 year reference period, the acceptabil-
ity limit reduces to Pf,1 of U(-4.7) = 1.30 9 10-6. These target safety levels are
commonly applied at the level of structural elements through the design rules in
the material specific Eurocodes. As summarily acknowledged in EN 1990, the
application on an element level can generally be expected to result in a safety level
of the global structure exceeding this target safety level. This is however not
always the case, and for example a series system of not fully correlated members
will have a higher failure probability than the failure probability of its constituent
members. For a further discussion on reliability concepts and their application in
the Eurocode design format reference is made to [14].

In fire safety engineering failures are conditional on the (uncertain) occurrence
of fire. This is for example the case when considering a fire-induced structural fail-
ure or the failure of a smoke control system to maintain tenable conditions in a
(single) staircase. Therefore, in fire safety engineering a conditional failure proba-
bility Pf,fi is evaluated (i.e. failure given the occurrence of fire). When a failure cri-
terion is known, the conditional probability Pf,fi can be calculated from (2). If an
acceptability limit has been defined with respect to the conditional failure proba-
bility, the acceptability of the design can subsequently be determined.

Often no explicit acceptability limit exists, but the current legislation in many
countries allows for performance-based design solutions when it can be shown
that the design is at least as safe as prescriptive accepted designs. In those situa-
tions a comparison of the conditional failure probabilities Pf,fi allows the determi-
nation of the acceptability of the proposed design.

However, on its own the conditional failure probability does not provide any
information on the appropriateness of the level of safety investment associated
with the (accepted) design solution. When evaluating optimum levels of invest-
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ment—as discussed in the next section of this paper—an absolute (annual) failure
probability is required in order to determine the risk associated with fire-induced
failures. This annual probability of failure Pf,1 can be calculated from the condi-
tional failure probability Pf,fi through (3), where pfi,1 is the annual probability of a
significant fire. The qualitative reference to a ‘‘significant fire’’ acknowledges that
a fire threatening the good performance of a smoke control system may be differ-
ent from a fire threatening structural stability. If an acceptability limit for the
annual failure probability is known, the acceptability of the design can be deter-
mined.

Pf ;1 ¼ Pf ;fipfi;1 ð3Þ

Evaluation of (3) is illustrated by the fault tree of Figure 1, for a situation where
the ‘‘significant fire’’ is defined as a fully-developed (post-flashover) fire, as is com-
mon in the area of structural fire safety. The conditional probability of failure of
the system given a post-flashover fire is given by Pf,fi and will need to be evaluated
using a specialized and possibly computationally expensive model. To calculate
the overall annual probability of failure Pf,1, this conditional probability Pf,fi is
multiplied with the annual probability of fire ignition pig,1, the probability pf,u that
the users fail to suppress the fire, the probability pf,fb of no early suppression by
the fire brigade, and the probability pf,s that the suppression system fails to sup-
press the fire (pf,s = 1 when no suppression system is present). Values for these
suppression parameters are for example listed in [9], and fire ignition frequencies
can be found in e.g. [5].

Note that probabilistic calculations and an explicit evaluation of the failure
probability are often avoided by considering characteristic values for the uncertain
input variables, for example considering a 90% quantile for the fire load density.
While this procedure seems very similar to the use of characteristic values and
partial safety factors in traditional prescriptive design calculations, their applica-
tion is fundamentally different as a system of prescribed characteristic values and
partial safety factors is (or should be) based on underlying full-probabilistic calcu-
lations of Pf and a comparison with an (implicit) acceptability limit. In other
words: when applying prescriptive design rules the achievement of an acceptably
low probability of failure can be assumed to result from the combination of char-
acteristic values, safety factors and conservative assumptions, but this does not

Figure 1. Example fault tree for fire-induced structural failure.
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hold for innovative performance-based design solutions. For true reliability-based
design solutions an explicit evaluation of Pf is required, and therefore the PDF fy
has to be determined.

2.2. A Note on Acceptability Limits

Evaluating the acceptability of a design solution after evaluating Equation (2) or
(3) presupposes the existence of acceptability limits. Unfortunately, these limits are
not always clearly defined. Implicitly referring to Equation (3), it is sometimes
even questioned in fire safety engineering whether any requirement is necessary in
case of a low probability of occurrence pfi,1 of a significant fire.

In the area of smoke control systems for example, it is sometimes argued that
the system can be designed considering a sprinklered design fire. Only considering
a sprinklered fire for design purposes implies assuming that the combined proba-
bility of fire ignition and sprinkler failure is so low that the consequences resulting
from a smoke control failure in case of a non-sprinklered fire can be deemed
acceptable from a risk perspective.

Similarly, for structural fire safety it is sometimes questioned whether a signifi-
cant fire rating of the structural elements makes sense economically, considering
the low probability of a fully developed fire to occur and considering a low expec-
ted fire load and beneficial ventilation characteristics expected to limit the fire
severity. Note that the amount of fire rating which is considered as ‘significant’
will depend on the specific characteristics of the design, among which the occu-
pancy classification and the height of the structure, see [17] for structural fire rat-
ing requirements according to the UK legislation. As for the smoke control
example above, not requiring structural fire resistance implies assuming that the
probability of a significant fire is sufficiently low to make a structural failure
acceptable from a risk perspective. One well-known methodology which limits
structural fire resistance requirements in function of the probability of fire occur-
rence is the Natural Fire Safety Concept [9]. When applying the Natural Fire
Safety Concept (NFSC) the annual failure probability calculated by (3) is com-
pared to the EN 1990 target failure probability (1 year reference period) discussed
earlier. The implementation of the NFSC has however encountered resistance and
the NFSC is currently for example not accepted in the UK. Considering the dis-
cussion above, it is important to fully understand the implied loss acceptance
when using the NFSC to argue that no fire resistance is required, see also the dis-
cussion note in [30].

Although the limited qualitative justification paraphrased above cannot be con-
sidered sufficient grounds in itself for limiting investments in fire safety, it must be
acknowledged that the occurrence rate of significant fires is low. This justifies a
lower safety investment as compared to other events with equally severe conse-
quences but with a higher occurrence rate. A scientifically and mathematically
sound methodology for incorporating the uncertain occurrence of future extreme
events when optimizing investments in safety has been presented by [23]. This
methodology is known as Lifetime Cost Optimization (LCO) and balances addi-
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tional safety investments with reductions in uncertain future losses when determin-
ing the optimum design solution. In its basic form this optimum safety investment
is determined by maximizing the utility function Z in Equation (4), with B(p) the
utility derived from the structure’s existence, C(p) the initial cost of construction,
D(p) the costs due to failure, and p the vector of design parameters pi considered
for optimization. This is conceptually illustrated in Figure 2. All the contributions
to the total utility Z have to be evaluated at a single reference point in time (for
example: evaluation of present value), through the application of a discount rate,
see the discussion in [20] for the concepts of discounting the utility of safety
investments.

Z pð Þ ¼ B pð Þ � C pð Þ � D pð Þ ð4Þ

For the discussion here, it is mainly the failure cost D which is of interest as it
is assumed that the benefit B derived from the structure’s existence can often be
considered independent from the level of safety investment, see [24]. The failure
cost D is amongst others dependent on the costs CF incurred at the time of failure
for a single failure event, the discount rate, and on the probability density func-
tion of future failure occurrences. The costs CF can for example be evaluated
through the framework presented in [19]. The discount rate is an economic
parameter required to appreciate future costs, see [24] and [20]. As derived in [29],
probability density function of future failure occurrences can be calculated from
the conditional failure probability Pf,fi. Consequently, also the derivation of opti-
mum levels of safety investment requires an evaluation of Equation (2). For a
more detailed discussion and an introduction to concepts of Lifetime Cost Opti-
mization for fire safety engineering, see [29] and [30].

Figure 2. Conceptual visualization of Lifetime Cost Optimization.
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It is noted without detailed discussion that not only the definition of acceptabil-
ity limits is challenging, but also the definition of failure criteria is a difficult task
at best. For example in the area of structural safety, straightforward strength cri-
teria can be defined for statically determinate members, but for structural systems
no such criteria exist. This leads to a number of difficult questions, e.g. whether
local failure of secondary beams is considered acceptable, and whether the local
collapse of the ceiling of a fire compartment should be considered as structural
failure when the overall stability of the building is maintained.

On a conceptual note, the above difficulties can in principle be avoided as it is
not the (conditional) probability of a specific type of ‘‘failure’’ per se that is of
interest, but the (conditional) probabilities of all possible states of the system in
response to a fire. Each possible state of the system corresponds with a different
total cost, taking into account the level of material damages, losses to human life
and limb, and immaterial losses. Integrating the total costs over all possible dam-
age states for a given design solution gives an assessment of the expected costs in
case of the occurrence of a specific type of fire. Integrating over all possible fires
allows to compare the failure costs associated with different proposed design solu-
tions, without requiring—in principle—an explicit definition of failure criteria. The
above may allow the combination of discussions on acceptability limits and failure
criteria in a single methodology. This is not further investigated here, but again
evaluating the uncertain response of the system is identified as a necessity. Conse-
quently, also for proposing failure limits and acceptability criteria, and for cost-
optimization, knowledge of the PDF is highly beneficial.

2.3. Traditional (Implicit) PDF Evaluation

Evaluating the PDF of an uncertain model output Y is traditionally done through
Monte Carlo simulations (MCS), see [3]. Monte Carlo methods are based on gen-
erating a large number of random input vectors x and evaluating the correspond-
ing model output. By doing so, a histogram of the output variable Y is obtained.
However, when interested in extreme values of the model output Y—as is gener-
ally the case when considering the failure of a safety system—a very large number
of Monte Carlo simulations is required in order to obtain a sufficient precision.

Due to the requirement for a large number of simulations, the computational
time can easily become infeasible when applying MCS in combination with com-
putationally expensive models. More efficient adaptations from MCS do exist—for
example Importance Sampling [8] and Markov Chain Monte Carlo [13]. However,
while reducing the number of required model evaluations these methods do not
fundamentally alter the concept of running a large number of model evaluations
to investigate the uncertainty of the model output. Alternatively, methods can be
used which make a (relatively) efficient estimation of the moments (distribution
parameters) of the output variable Y, see for example Latin Hypercube Sampling
[22]. An estimation of the PDF describing Y is subsequently made by assuming
the type of PDF describing Y and implementing the calculated moments. Assum-
ing a PDF type can however prove inappropriate in fire safety engineering, as dis-
cussed in the introduction.
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3. An Unbiased and Computationally Efficient Method

3.1. The ME-MDRM

Recently, a computationally very efficient method has been developed by [34]. The
method is known as the (Fractional-Moment) Maximum Entropy Multiplicative
Dimensional Reduction Method (ME-MDRM) and has been successfully applied
to computationally very demanding structural Finite-Element calculations by [4].
The method makes an unbiased estimation of the PDF describing the uncertain
model output Y by using the criterion of maximum entropy on a set of calculated
model outputs or observed test results. The calculation concept for the maximum-
entropy estimation is considered to be the mathematically correct procedure for
avoiding biases with respect to the unknown PDF type or shape [18]. Further-
more, [21] and [34] propose the use of fractional moments for the maximum-en-
tropy calculation, since these fractional moments are found to result in more
stable estimates.

The computational requirements of the method are reduced by considering
Gaussian interpolation—instead of crude Monte Carlo simulations—for calculat-
ing the aforementioned fractional moments. A further reduction of computational
requirements is obtained by considering multiplicative dimensional reduction.

For a standard application of the method as proposed by [34], the total number
of model evaluations required for application of the method equals nL + 1, with
n the number of stochastic parameters and L the number of Gauss integration
points. Consequently, in case of 5 stochastic parameters and 5 Gauss integration
points, only 26 model evaluations are required, compared to thousands of model
evaluations required for the application of traditional Monte Carlo methods.
However, the required number of ME-MDRM model evaluations can be further
reduced to n (L - 1) + 1, as shown below.

Furthermore, the method can very easily be applied together with existing pro-
grams and models.

3.2. Computational Efficiency

If the model evaluation is computationally very expensive, the total time required
for the probabilistic evaluation is governed by the number of model evaluations.
Under this assumption the computational efficiency of the ME-MDRM compared
to alternative methods is fully determined by the number of model realizations
required by this alternative method. In order to make a indicative comparison
with other commonly used methods, a distinction must be made between biased
and unbiased estimates.

Only Monte Carlo based methods and Maximum Entropy applications are
open to the user to make an unbiased estimate of the PDF. Note that here the
denomination ‘Monte Carlo based methods’ refers to all types of methods whose
PDF estimation is based on performing a large number of model evaluations.
This includes methods based on deterministic sampling schemes. The relative effi-
ciency gain obtained by the ME-MDRM is then defined by the ratio NMC/
(4n + 1), with NMC the number of evaluations required for application of the
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Monte Carlo based method and considering 5 Gauss integration points for the
ME-MDRM as discussed further. As long as the number of stochastic variables is
small (say 10 stochastic variables), the ME-MDRM will easily be an order of
magnitude faster than the Monte Carlo based method. For the crude MCS results
presented further (10000 MCS), the ME-MDRM evaluation was between 150 and
500 times faster than the MCS.

For biased estimates where the distribution for the model output Y has been
chosen a priori, only the moments of this chosen distribution are assessed. The
Maximum Entropy estimation presented further is based on the evaluation of the
distributional moments, and thus a modified (reduced) version of the ME-MDRM
methodology can directly be applied for this type of biased assessment. This
reduced methodology will be denoted as MDRM–G and is presented in ‘Basic
application example 2’. MDRM–G is based on the same model evaluations as the
full ME-MDRM methodology and thus requires the same 4n + 1 model evalua-
tions when considering 5 Gauss integration points. Again assuming that the num-
ber of model evaluations governs the total calculation time, the efficiency gain by
the MDRM–G compared to the alternative biased method is given by NBM/
(4n + 1), with NBM the number of model evaluations for the alternative biased
method. This ratio will be smaller than the ratio obtained for the unbiased appli-
cation above and may be in the range of unity in specific cases and when applying
efficient alternative methodologies.

This paper however strongly promotes the use of unbiased estimates for appli-
cations in fire safety engineering considering the lack of knowledge on standard
distribution types for model outputs. For this unbiased assessment, the ME-
MDRM is considered to result in a very significant gain in efficiency as discussed
above.

3.3. The Calculation Methodology

The methodology estimates the PDF describing the stochastic output variable Y
through the principle of maximum entropy. As shown by [21], this principle
results in an estimated PDF given by Equation (5), with m the estimation order, ki
estimated coefficients and ai estimated exponents. The coefficient k0 normalizes the
PDF—i.e. ensures that the integral of the estimated PDF across the entire domain
of Y equals 1—and is given by Equation (6). The optimum values for the expo-
nents ai and coefficients ki are determined by minimizing the Kullback–Leibler
divergence between the true PDF and the estimated PDF [34]. Elaborating this

mathematically results in the minimization criterion of Equation (7), with Mai
Y the

ai
th sample moment of Y. For a (random) set of N realizations yj this sample

moment is given by Equation (8).

f̂Y yð Þ ¼ exp �k0 �
Xm
i¼1

kiyai
 !

ð5Þ
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k0 ¼ ln

Z

Y

exp �
Xm
i¼1

kiyai
 !

dy

2
4

3
5 ð6Þ

Minimize : k0 þ
Xm
i¼1

kiM
ai
Y ð7Þ

Mai
Y ¼

PN
j¼1 y

ai
j

N
ð8Þ

Determining the set of exponents and coefficients which minimizes (7) can be real-
ized through readily available optimization algorithms and results in a mathemati-
cal formulation for the estimated PDF in Equation (5). For many optimization
algorithms (e.g. simplex algorithm used in this paper) the solution may however
be highly sensitive to the algorithm starting solution. As confirmed by Tagliani in
personal correspondence to the author, it is recommendable to perform a large
number of independent optimizations by considering a Monte Carlo simulation
for this starting solution. Alternatively, Latin Hypercube Sampling (LHS) can be
applied for the starting solution in order to increase efficiency—for a discussion
on LHS see [22]. These repeated (randomized) optimizations increase the compu-
tational requirements compared to the original methodology presented in [34] but
have the advantage of increased reliability of the final optimization result. As the
computational requirements are centred around the evaluation of the (computa-
tionally expensive) model describing Y, this reliance on multiple evaluations for
the optimization procedure does not constitute a problem and is computationally
relatively inexpensive. The detailed methodology used in this paper for the mini-
mization calculations is presented in the step by step calculation of ‘basic applica-
tion 1’.

In principle the estimation order m can be freely chosen, but while a higher esti-
mation order will result in a better agreement with the input data, a too high esti-
mation order may introduce spurious relationships for (unavoidably) limited sets
of input data yj. Novi Inverardi and Tagliani [21] propose to evaluate the ME
optimization of (5)–(7) for different m, and choose the result for which the value
of (7) is minimal while taking into account a penalty factor for increased m. For
the applications further in this paper, this procedure however does not result in a
clear preference for m as the resulting minimized values are very close to each
other, resulting in a preference which may at times depend on the starting solu-
tion or optimization algorithm. This will be further investigated in follow-up
research. In general, the use of a third or fourth order (m = 3 or 4) has been pro-
ven sufficient for the estimation of the PDF [34] and [4]. In the application exam-
ples further, m = 4 will be maintained unless stated otherwise, as different
analyses have shown that m = 4 is better capable of capturing non-traditional
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PDF shapes. In order to increase efficiency, the exponents ai can be limited to real
numbers in the range [-2; 2].

In the discussion above, the evaluation of the sample moment Mai
Y has not been

elaborated in detail. As indicated by Equation (8), the sample moment can in
principle be determined through a crude Monte Carlo simulation, but this would
severely undermine the goal of avoiding the need to perform many computation-
ally expensive evaluations of the model describing Y. This problem is alleviated by
considering multiplicative dimensional reduction in conjunction with Gaussian
interpolation. The derivations below assume that the probability density functions
describing the stochastic input variables are known.

Applying multiplicative dimensional reduction, Equation (1) is conceptually
approximated by Equation (9), with h0 the model response when all n stochastic

input variables are set equal to their median values l
_
, and hl the unidimensional

cut functions defined by Equation (10). The unidimensional cut functions effec-
tively isolate the effect of the different stochastic input variables, and thus result in
an approximation when combined to consider the overall model response h(x).

Y ¼ h xð Þ � h1�n
0

Yn
l¼1

hl xlð Þ ð9Þ

hl xlð Þ ¼ h l_1; . . . ; l
_

l�1; xl; l
_

lþ1; . . . ; l
_

n

� �
: ð10Þ

Considering multiplicative dimensional reduction and considering the different
stochastic variables xl to be independent, the kth moment of the stochastic model
response Y is given by (11), with E[.] the expectance operator and fxl the probabil-
ity density function of xl.

E Y k
� �

¼ E h xð Þð Þk
h i

� hkð1�nÞ
0

Yn
l¼1

E hl xlð Þð Þk
h i

¼ hkð1�nÞ
0

Yn
l¼1

Z

xl

hl xlð Þð Þkfxl xlð Þdxl

ð11Þ

The evaluation of the kth moment for the lth cut function is approximated with
great accuracy by considering Gaussian quadrature. In its most basic form, Gaus-
sian quadrature approximates the integration of a function g(z) over the entire
domain of a standard normally distributed variable Z by a weighted sum of a lim-
ited number of well-chosen evaluation points zj, as mathematically given by Equa-
tion (12) with / the standard normal PDF, L the number of Gauss integration
points (for most cases 5 integration points is sufficiently accurate), and wj the
associated Gauss weights [34]. For L = 5 the Gauss points zj and associated
weights wj are given in Table 1.
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Z1

�1

g zð Þ/ zð Þdz �
XL
j¼1

wjg zj
� �

ð12Þ

Equation (12) can be generalized to (13) for non-standard normal distributed

variables X, with F �1
x the inverse cumulative density function of X. This is a mod-

ification to the method used in [34] where different integration methodologies are
suggested in function of the distribution type describing the stochastic variable.
The additional approximation proposed here (i.e. the generalized Gauss integra-
tion) has the advantage of easier application of the methodology to any type of
distribution and allows to further reduce the number of model evaluations, as dis-
cussed further. However, when the distribution function describing X is ‘non-tra-
ditional’ (for example a truncated distribution or a non-continuous distribution),
this additional approximation should not be applied.

Z

x

g xð Þfx xð Þdx ¼
Z1

�1

g F �1
x U zð Þð Þ

� �
/ zð Þdz �

XL
j¼1

wjg F �1
x U zj

� �� �� �
ð13Þ

Considering the kth power of the cut function hl and the probability density func-
tions fxl as specific situations of Equation (13), the application of Gaussian
quadrature for the evaluation of Equation (11) is straightforward, resulting in an

approximation for the moment Mai
Y by:

Mai
Y � h1�n

0

� �aiYn
l¼1

XL
j¼1

wj hl F �1
xl U zj

� �� �� �h iai
¼ h1�n

0

� �aiYn
l¼1

XL
j¼1

wjy
ai
j;l ð14Þ

with yj,l the model realization for the jth Gauss point in the lth cut function, as
mathematically given by:

yj;l ¼ hl F �1
xl U zj

� �� �� �
ð15Þ

Table 1
Gauss Integration Points and Associated Gauss Weights for L = 5

j zj wj

1 -2.85697 0.011257

2 -1.35563 0.222076

3 0 0.533333

4 1.35563 0.222076

5 2.85697 0.011257
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and h0 the model result when all stochastic variables are given by their median
value.

In summary, Equation (14) replaces Equation (8). Consequently, the estimation
of the full PDF describing Y is obtained by considering 1 model evaluation for h0
and nL model evaluations for the cut functions. Note that calculating a different
power ai in the minimization procedure of Equation (7) does not require new
model evaluations.

Furthermore, if the number of Gauss integration points L is uneven, one of the
Gauss points zj equals 0, resulting in one of the Gauss points equal to the median.
This further reduces the number of required model calculations to 1 + nÆ(L - 1).
Consequently, when considering 5 Gauss integration points, the total number of
model evaluations required for approximating the PDF describing the output vari-
able Y is 1 + 4n. This further reduction of the required number of simulations is
made possible through the generalized Gauss integration scheme of (13) and is a
modification of the original methodology presented in [34].

Note that for the remainder of this paper, the full methodology derived above
will be denoted with ME-MDRM, applying the same name as introduced in [34].

3.4. Basic Application Example 1

3.4.1. Application Example The application of the methodology is illustrated here
by a mathematical example which can be recalculated easily. Consider Equa-
tion (16) with X1, X2 and X3 three independent lognormal variables. Given mean
values equal to 3, 4 and 2, and coefficients of variation of 0.3, 0.5 and 0.2 for X1,
X2 and X3 respectively, basic probability theory learns that the stochastic output
variable Y is given by a lognormal distribution as well, with a mean value of
12.48 and a coefficient of variation of 0.646.

Y ¼ 2
X1X2

X3
ð16Þ

While the PDF describing Y is known exactly, the ME-MDRM methodology can
be applied as well, considering only the required 1 + 3Æ(5 - 1) = 13 model evalu-
ations (for L = 5). These evaluations and the underlying values for zj are given in
Table 2, with zj,l the considered Gauss integration point, xj,l the corresponding
realization for Xl, and yj,l the model evaluation calculated through Equation (16).
Further details on the evaluation of yj,l and the calculation of the ME-MDRM
estimate are given below in a step by step overview of the calculation.

The row with all zj,l = 0 for all 3 stochastic variables is evaluated only once in
the first row of Table 2. Having evaluated the model for each of the Gauss point

combinations, any moment Mai
Y of Y is readily approximated through Equa-

tion (14). Consequently, the optimization of Equation (7) can be applied, resulting
in values for the coefficients ki and exponents ai.

The Maximum Entropy result for m = 3 is given in Table 3, defining the math-
ematical formulation of the estimated PDF through Equation (5).
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A comparison of the analytical expression of the lognormal PDF and CDF
with 10000 crude Monte Carlo simulations on the one hand, and the result of the
ME-MDRM calculation on the other hand is given in Figures 3 and 4—note that
the horizontal axis in Figure 2 has been chosen in an extended range in order to
accentuate the differences. The ME-MDRM estimation almost perfectly matches
the analytical expression for this simple mathematical example, making it very dif-
ficult to visually discern the differences between the curves.

Note: the basic application example above shows that the ME-MDRM results
in a very precise estimate for fY when Y is described by a lognormal distribution.
Similar results have been obtained in test calculations with Y described by a nor-
mal distribution and a Gumbel distribution. Furthermore, [34] reports an excellent
estimation performance of the Maximum Entropy principle for Y described by a
Weibull distribution and a Pareto distribution. As the ME-MDRM results in a
continuous estimate, the methodology is not capable of capturing discontinuous
PDF’s. Similarly, as the ME-MDRM is based on a limited number of model eval-
uations and since also the estimation order m is necessarily limited, the method is
incapable of accurately capturing a hypothetical PDF which has many intensity
fluctuations [e.g. wave-like intensity fy(Y)].

Table 2
Gaussian Points and Corresponding Evaluations of Equation (16)

Name zj,1 zj,2 zj,3 xj,1 xj,2 xj,3 yj,l

h0, y3,1, y3,2, y3,3 0 0 0 2.873 3.578 1.961 10.484

y1,1 -2.857 0 0 1.242 3.578 1.961 4.532

y2,1 -1.356 0 0 1.930 3.578 1.961 7.042

y4,1 1.356 0 0 4.278 3.578 1.961 15.609

y5,1 -2.857 0 0 6.647 3.578 1.961 24.253

y1,2 0 -2.857 0 2.874 0.928 1.961 2.719

y2,2 0 -1.356 0 2.874 1.886 1.961 5.526

y4,2 0 1.356 0 2.874 6.788 1.961 19.890

y5,2 0 -2.857 0 2.874 13.795 1.961 40.424

y1,3 0 0 -2.857 2.874 3.578 1.114 18.460

y2,3 0 0 -1.356 2.874 3.578 1.499 13.712

y4,3 0 0 1.356 2.874 3.578 2.565 8.015

y5,3 0 0 -2.857 2.874 3.578 3.453 5.954

Table 3
Estimated PDF Distribution Parameters ki and ai, for m = 3, Based on
1000 Monte Carlo Simulations for the Optimization Algorithm Start-
ing Solution

i ki ai

0 -16.722 0

1 21.732 -0.355

2 -3.427 0.626

3 6.866 0.549
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3.5. Step by Step Overview of the Calculation

3.5.1. Introduction A first application of the ME-MDRM methodology may be
quite challenging. Therefore, step by step calculation results for the example above
are presented here. This Section is intended to support an independent application
of the ME-MDRM. As discussed earlier, the Maximum Entropy evaluation is
based on an optimization calculation (the minimization of the Kullback–Leibler
divergence). The optimization procedure described further is the specific method-
ology applied in this paper. Any other optimization methodology can be used and
more efficient methodologies may exist. This currently remains a topic of future
research.

Figure 3. PDF for Y: Analytical result and ME-MDRM result. Compar-
ison with histogram of 10000 MCS.

Figure 4. CDF for Y: Analytical result and ME-MDRM result. Compar-
ison with observed cumulative frequency of 10000 MCS.
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As discussed, the Maximum Entropy evaluation is defined by the minimization

of Equation (7), with Mai
Y the fractional moment defined by (14). For clarity, these

equations are reprinted below as (17) and (18).

Minimize : Z ¼ k0 þ
Xm
i¼1

kiM
ai
Y ð17Þ

Mai
Y � h1�n

0

� �aiYn
l¼1

XL
j¼1

wjy
ai
j;l ð18Þ

Equation (18) is dependent on:

� h0, the model result when all stochastic variables are given by their median
value

� wj, the Gaussian weight for integration point j (given in Table 1 for L = 5 inte-
gration points)

� yj,l, the model result for the jth Gauss point in the lth cut function. In other
words, this is the model result for which the value of the lth stochastic variable
is defined by the jth Gauss point and all other variables are evaluated at their
median values.

� ai, the exponent. This exponent is optimized further as part of the Maximum
Entropy assessment.

For a given coefficient ai, (18) is readily evaluated considering the weights wj of
Table 1 and the model evaluations yj,l in Table 2.

The actual Maximum Entropy evaluation is obtained through Equation (17).
This equation is in principle minimized by changing the values of both the coeffi-
cient ki and the exponents ai. As discussed, the minimization of (17) has been
found to depend on the starting solution of the optimization. In principle any
methodology which circumvents this issue can be applied. In the development of
the current study, a number of different concepts have been evaluated.

One pragmatic concept which has proven reliable for the evaluations is to con-
sider a large set (i.e. Monte Carlo simulation) of coefficients for ai in the range
[-2; 2] and to determine the associated ki which minimize (17). Subsequently, the
minimum result across the set of ai values is considered. This effectively separates
the minimization of (17) in 2 separate steps: a first step minimization across ki for
given ai, and a subsequent evaluation of the minimum result across the ai. In
order to ensure that the ai are distributed across the range of possible values and
to improve the sampling efficiency a Latin Hypercube simulation has been used
instead of a traditional Monte Carlo simulation. This methodology has been
applied for the calculations presented throughout this paper.

Considering the above, the ‘step by step’ evaluation of basic example 1 is given
below:

An Unbiased Method for Probabilistic Fire Safety Engineering 1721



3.5.2. Step 1 As a first step in the application of the ME-MDRM the model real-
izations h0 and yj,l have to be evaluated.

It is important to note that evaluating the median value of a stochastic variable
is in meaning identical to evaluating the realization corresponding with the Gauss
point z = 0. Mathematically, this is written as:

F �1
Xl

0:5ð Þ ¼ F �1
Xl

U z ¼ 0ð Þð Þ ð19Þ

with F �1
X the inverse cumulative distribution function for the stochastic variable

Xl.
Equation (19) is generally applicable. Consequently, for the example of Equa-

tion (16) above, h0 can be evaluated as (20). The result of (20), the Gauss point
values (all 0) and associated realizations xl were given earlier in the first row of
Table 2.

h0 ¼ 2
F �1
X1 0:5ð ÞF �1

X2 0:5ð Þ
F �1
X3 0:5ð Þ ¼ 2

2:873 � 3:578
1:961

¼ 10:484

¼ 2
F �1
X1 U z ¼ 0ð Þð ÞF �1

X2 U z ¼ 0ð Þð Þ
F �1
X3 U z ¼ 0ð Þð Þ :

ð20Þ

As the realizations xl in (20) correspond both with the median value realization of
the stochastic input variable Xl and the realization of Xl for a Gauss point z = 0,
(20) is also the result for all of the cut functions evaluated at the 3rd Gauss point
z3 = 0, see Table 1 for the list of Gauss points (for L = 5). Consequently, the
result of (20) is used in each of the cut functions, but only a single model evalua-
tion is needed. This is why the total number of model evaluations in the proposed
ME-MDRM is given by n (5 - 1) and not 5n. This also explains why the first row
in Table 2 refers not only to h0, but also to y3,1, y3,2 and y3,3.

All other model realizations yj,l are evaluated by considering the Gauss point zj
for evaluating the stochastic variable Xl, and median values (i.e. Gauss point
z = 0) for all other variables. Consequently y1,1 is given by (21). The input values
of (21) and the associated result y1,1 were given above in the second row of
Table 2. All other model evaluations yj,l required for evaluating (14) are calculated
using similar equations and have been listed in Table 2.

h0 ¼ 2
F �1
X1 U z ¼ �2:857ð Þð ÞF �1

X2 0:5ð Þ
F �1
X3 0:5ð Þ ¼ 2

1:242� 3:578

1:961
¼ 4:532

¼ 2
F �1
X1 U z ¼ �2:857ð Þð ÞF �1

X2 U z ¼ 0ð Þð Þ
F �1
X3 U z ¼ 0ð Þð Þ :

ð21Þ

3.5.3. Step 2 Step 2 is the generation of a Monte Carlo or Latin Hypercube set
for the coefficients ai, as discussed above. For an estimation order m = 3, every
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realization consists of 3 alpha values. In total 1000 simulations have been consid-
ered. A selection of realizations are given in Table 4.

3.5.4. Step 3 Step 3 consists of the minimization of (17) for each of the input
combination ai. Note that the parameter k0 is a normalization constant defined by
(6) and is therefore fully determined by the other parameters. The minimization is
done using the simplex algorithm.

Optimum values for ki for the coefficients ai defined in Step 2 are listed in
Table 4, together with the associated value Z for the minimized function as
defined in (17).

3.5.5. Step 4 Step 4 entails choosing the combination of ai and ki from step 3
which result in the minimum value for Z, as defined in (17). This implies choosing
the row in Table 4 with minimum value for Z. This is de facto a Monte Carlo
based optimization across the ai, where the optimum coefficients ki for given expo-
nents ai have been determined in the previous step.

Considering the results in Table 4, entry 629 gives the minimum value for Z.
The associated values for ai and ki have been listed above in Table 3.

3.5.6. Step 5 Considering ai and ki as defined by Step 4, the PDF fy is mathemati-
cally estimated by (5).

As an example, and considering the optimum ai and ki as evaluated in Step 4
and listed in Table 3, fy (14) is estimated below through Equation (22). This result
is an excellent match with the true analytical result (fy (14) indeed equals 0.043),
as visualized in Figure 3.

f̂Y 14ð Þ¼ exp 16:722�21:732 �14�0:355þ3:427 �140:626�6:866 �140:549
� �

¼ 0:043

ð22Þ

3.6. Basic application example 2: efficient estimation of parameters of a
known or assumed distribution type

The ME-MDRM as discussed above makes an unbiased estimate of the PDF
describing the model output Y through the Maximum Entropy optimization of

Table 4
LHS Set Evaluations for ‘Basic Example 1’

Simulation a1 a2 a3 k1 k2 k3 k0 Z

1 0.457 0.943 1.265 -6.338 1.663 -0.214 10.244 3.258

2 1.618 0.327 0.465 -0.006 -32.207 17.150 21.176 3.248

…
629 -0.355 0.626 0.549 21.732 -3.427 6.866 -16.722 3.242

…
1000 0.716 -0.475 -1.581 0.600 7.490 5.319 -3.039 3.243
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Equations (5)–(8). However, often a standard distribution type for Y exists or is
assumed. When the distribution type is known, the goal of stochastic model evalu-
ations is the estimation of the parameters of this known distribution. This has
been referred to earlier as making a biased estimate of the PDF. The estimation
of the distribution parameters is traditionally done using for example Latin
Hypercube Sampling (LHS), see [22].

For situations where the distribution type for Y is pre-determined, a reduced
application of the ME-MDRM is possible in which the Maximum Entropy princi-
ple is not considered. In this reduced application, the Multiplicative Dimensional
Reduction Method of Equation (9) is applied in conjunction with Gaussian
quadrature of Equation (14) for estimating the moments of the assumed distribu-
tion type for Y. Subsequently, the parameters describing the known distribution
type can be derived from the estimated moments. This methodology for the esti-
mation of parameters of an assumed distribution type will further be denoted as
‘‘MDRM–G’’.

Consider for example a situation where Y is the resistance of a structural ele-
ment. In this case a lognormal distribution would be a standard choice for
describing the PDF [26], and MDRM–G can be applied to estimate the mean lY
and standard deviation rY which define the parameters of this lognormal distribu-
tion. This is done by applying Equation (14) for evaluating the first and second
order moments of Y (i.e. giving ai a value of 1 and 2 respectively). While the first
order moment is a direct estimate of the mean value lY, the standard deviation rY
is approximated by Equation (23).

r̂Y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ma¼2

Yð Þ � Ma¼1
Yð Þ2

q
ð23Þ

The efficiency of using MDRM–G for estimating the parameters of the LN is
illustrated by Table 5, where the LN parameters corresponding with the example
above are compared (i.e. analytical, MCS, and MDRM–G). For this specific
example, the MDRM–G methodology with 13 model realizations results in a bet-
ter estimation than the 10000 MCS.

While the application of the Maximum Entropy principle is recommended for
making an unbiased estimate of the PDF when the distribution type is not known
a priori, the above example illustrates that the application of MDRM–G can in
itself give an excellent estimate of the parameters for a known or assumed distri-
bution type.

Table 5
Mean l and Standard Deviation r for Y: Analytical Result and Esti-
mated Respectively Through the MCS and the MDRM–G

l̂Y r̂Y

Analytical 12.480 8.059

MCS 12.579 8.106

MDRM–G 12.480 8.059
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From a practical perspective the procedure of Table 6 is recommended to
choose between the ME-MDRM result and an assumed distribution type with
parameters determined with the MDRM–G:

The relevance and efficiency of this proposed procedure is illustrated by the
practical applications given further. These applications consider different durations
of the ISO 834 standard fire. The ISO 834 standard fire has been chosen as a
common reference for fire safety engineers. In actual design and assessment appli-
cations, the relevant fire curve and exposure duration (when relevant) have to be
determined in function of the building characteristics. The examples further are
intended to illustrate the application of the ME-MDRM and do not entail a rec-
ommendation regarding the use of the ISO 834 standard fire curve or specific
exposure durations.

4. Practical Application 1: Load Bearing Capacity of an
Eccentrically Loaded Concrete Column Subjected to Fire

4.1. Introduction

The structural stability of (concrete) columns in case of fire exposure is of primary
importance for the overall stability of the building. In order to allow for true risk
and reliability-based decision making for structural fire safety, the structural relia-
bility of concrete columns during fire exposure has to be evaluated. However, due
to the strong non-linearity of the column behaviour and due to second order
effects, advanced computationally expensive calculation tools need to be used,
especially if interaction with floorplates or local fire exposure of continuous col-
umns is to be modelled. As the evaluation of a single column can already be com-
putationally expensive, performing Monte Carlo simulations for reliability analysis
becomes untenable.

For specific situations and using analytical approximations, reliability calcula-
tions for concrete columns subjected to eccentric loads have been performed in
[25] and [1] using Monte Carlo simulations and FORM.

Table 6
Proposed Procedure for Estimating the PDF of a Model Output

Step Action

[1] Calculate the 1 + nÆ(L - 1) model evaluations required for the ME-MDRM methodol-

ogy

[2] Determine the parameters of the assumed PDF type (when applicable) through MDRM–

G, using the model evaluations obtained in [1]

[3] Make an unbiased estimate of the PDF through full application of the ME-MDRM

methodology, using the same model evaluations obtained in [1]. See application details

discussed above in Basic application example 1

[4] Compare the distributions (PDF and CDF) obtained in [2] and [3]. If both are similar

(especially the shape of the PDF), then the assumed distribution can be applied as calcu-

lated in [2]. If both results are not similar, then the unbiased ME-MDRM result obtained

in [3] is preferred
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A numerical model for an iterative second-order calculation of fire-exposed con-
crete columns has been developed by [33]. Here another approach is used, i.e.
application of a Direct Stiffness Method (DSM) matrix calculation described in
[31]. This calculation approach discretizes the structural frame (in casu a single
column) in segments. In the example below a segment length of approximately
4 cm has been used. Each segment is characterized by its temperature- and load-
dependent axial and bending stiffness, which are evaluated by a cross-sectional
model. The mutual interaction of the different segments and their interaction with
the external loads is incorporated in the stiffness matrix of the DSM. For given
axial and bending stiffness of the individual segments, the DSM results in an eval-
uation of the displacement and member forces for the structural frame. As the
segment stiffness is load dependent (i.e. depends on the member forces) and as the
displacement of the frame results in second order effects, the method is evaluated
iteratively until convergence. For a given vertical load and eccentricity the con-
verged results correspond with those of the model by [33]. The DSM has the
advantage that any type of (localized) exposure and intermediate restraints can be
modelled. However, as the initial goal is an evaluation of the applicability of the
ME-MDRM methodology and since an isolated column with pin connections at
the top and bottom is one of the most generally relevant practical cases, the DSM
is applied for the square column model as defined in Table 7 and Figure 5, con-
sidering exposure to 60 min ISO 834 standard fire.

Figure 5. Schematic mode of the investigated fire exposed concrete
column.
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Table 7 also specifies the considered stochastic variables and associated probabilis-
tic models. For the temperature dependent concrete compressive strength and steel
yield stress reduction factors kfc(h) and kfy(h) (where h is the local material tempera-
ture), the probabilistic models given in [30] are applied. These models consider the
nominal reduction factor given in the Eurocodes as mean value and a temperature-
dependent coefficient of variation V based on test data. For the concrete Vkfc(h) = 0
at 20�C and 0.045 at 700�C, with linear interpolation for intermediate temperatures
and Vkfc(h) = 0.045 for temperatures above 700�C. For the reinforcement yield stress
reduction factor a similar model is used with Vkfy(h) = 0 at 20�C, Vkfy(h) = 0.052 at
500�C, linear interpolation for intermediate temperatures, and Vkfy(h) = 0.052 for
temperatures above 500�C. Note that the probabilistic model for the temperature-de-
pendent reduction factor is independent from the probabilistic model for the reference
20�C material strength to which the reduction factor applies.

The ME-MDRM is applied to evaluate PDF’s describing respectively the load
bearing capacity Pmax for given eccentricity e, and the maximum eccentricity emax

for a given load P.

4.2. Load Bearing Capacity for a Given Eccentricity e

The load bearing capacity Pmax is evaluated for an eccentricity e = 5 mm as the
maximum force for which equilibrium can be obtained in the DSM calculation.
For larger P the lateral deflection of the column results in a second order bending
moment at the mid-section of the pinned column which is larger than the bending
moment capacity of the column cross-section, resulting in failure of the column.
Determining Pmax is done iteratively by step-wise improving the estimate for Pmax.
A computational precision of 1 kN has been applied.

Since 6 stochastic variables are considered in accordance with Table 7, only 25
(6 9 4 + 1) model evaluations are required for applying the ME-MDRM
methodology.

Results obtained through the ME-MDRM are compared with a histogram of
10000 Monte Carlo simulations in Figure 6, illustrating the excellent performance
of the method for correctly capturing the shape of the PDF. Figure 6 clearly
shows that a priori assuming a lognormal approximation would not result in a
correct description of the shape of the PDF. Furthermore, as illustrated by Fig-
ure 7 the lognormal approximation results in an unsafe estimate of the occurrence
rate of low values for Pmax. Admittedly the ME-MDRM result deviates as well
from the observed cumulative frequency for low Pmax, but the deviation is conser-
vative and the approximation is excellent for probabilities as small as 0.005, indi-
cating for example that the ME-MDRM would very accurately predict a
characteristic value for Pmax corresponding with a 99.5% exceedance probability.

On the other hand, the application of the reduced methodology of MDRM–G
in itself gives an almost perfect estimate of the parameters for the lognormal dis-
tribution. This is illustrated by the excellent match of the two lognormal approxi-
mations with each other, both in Figure 6 and in Figure 7. The underlying
estimates for the mean l and standard deviation r of Pmax are given in Table 8
for the MCS and MDRM–G respectively.
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In the above the obtained estimates for the PDF are compared with an MCS
histogram. For practical applications only the ME-MDRM PDF and the assumed
lognormal PDF with parameters estimated through MDRM–G would be avail-

Figure 6. ME-MDRM result for PDF of Pmax for e = 5 mm at 60 min
ISO 834 and comparison with histogram of 10000 MCS and lognor-
mal approximation (parameters respectively through MCS and
through MDRM–G).

Figure 7. ME-MDRM result for CDF of Pmax for e = 5 mm at 60 min
ISO 834 and comparison with cumulative frequency of 10000 MCS
and lognormal approximation (parameters respectively through MCS
and through MDRM–G).
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able. Applying the proposed procedure of Table 6 for choosing between both
options, the PDF shapes in Figure 6 do not match and consequently the unbiased
ME-MDRM estimate would be preferred. This choice for the ME-MDRM result
is in agreement with the preference resulting from the comparison with MCS.

4.3. Maximum Eccentricity for a Given Vertical Load P

An alternative application of the DSM allows to evaluate the maximum allowable
eccentricity emax for a given column load P. The calculation methodology itself is
identical to the one discussed above for determining Pmax for given e.

Results of 10000 Monte Carlo simulations are compared in Figures 8 and 9
with the ME-MDRM estimation (25 model realizations) and with two lognormal
approximations: one for which the parameters are estimated from the MCS, and
one for which the parameters are estimated through application of MDRM–G
(i.e. using the same 25 model realizations).

Again it is observed that the Maximum Entropy estimation of the PDF results
in a very good estimate of the overall shape of the PDF. On the other hand, a

Figure 8. ME-MDRM result for PDF of emax for P = 1290 kN at
60 min ISO 834 and comparison with histogram of 10000 MCS and
lognormal approximation (parameters respectively through MCS and
through MDRM–G).

Table 8
Mean l and Standard Deviation r for Pmax Estimated Respectively
Through the MCS and the MDRM–G

l (kN) r (kN)

MCS 1639.51 212.73

MDRM–G 1639.04 215.08

1730 Fire Technology 2017



priori assuming a lognormal distribution does not give a good match with the
observed histogram.

Evaluating Figure 9, the occurrence rate of low emax is much better estimated
through the ME-MDRM, although the result is admittedly slightly non-conserva-
tive compared to the observed histogram. Furthermore, a priori assuming a log-
normal distribution results in a sever overestimation of the structural capacity.

The values obtained for the mean l and standard deviation r estimated through
the MCS and the MDRM–G are given in Table 9, again illustrating the excellent
approximation by the MDRM–G methodology.

As for Pmax above, the ME-MDRM estimated PDF and CDF result in a much
better approximation compared to a priori choosing for a lognormal distribution.
Applying the proposed procedure of Table 6 to choose between the ME-MDRM
PDF and the assumed lognormal PDF with parameters estimated through
MDRM–G would result in opting for the ME-MDRM estimate. This choice for

Table 9
Mean l and Standard Deviation r for emax Estimated Respectively
Through the MCS and the MDRM–G

l (mm) r (mm)

MCS 79.22 17.44

MDRM–G 79.86 17.58

Figure 9. ME-MDRM result for CDF of emax for P = 1290 kN at
60 min ISO 834 and comparison with cumulative frequency of 10000
MCS and lognormal approximation (parameters respectively through
MCS and through MDRM–G).
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the ME-MDRM result is in agreement with the preference resulting from the
comparison with MCS.

5. Practical Application 2: Bending Moment Capacity of a
Concrete Slab Exposed to Fire

Traditionally a lognormal distribution would be assumed for the PDF describing
the bending moment capacity MR,fi,t of a concrete slab during fire. However, con-
sidering the importance of the concrete cover c, a mixed-lognormal approximation
should be used [30]. This very specific type of PDF could only be determined as
part of a research project and through a large number of MCS. It is therefore
most interesting to evaluate how the ME-MDRM performs here—i.e. to assess
whether the ME-MDRM is capable of identifying the irregularity of the PDF.

Consider the concrete slab configuration of Table 10. MCS for the bending
moment capacity MR,fi,t are executed for exposure to 240 min of ISO 834 stan-
dard fire, using the approximate analytical model, of Equation (24).

MR;fi;t ¼ Askfyfy h� c�£

2

	 

� 0:5

Askfyfy
� �

bfc
ð24Þ

As Table 10 indicates 5 stochastic variables, only 21 model evaluations are nee-
ded for application of the ME-MDRM. The obtained PDF and CDF are com-
pared in Figures 10 and 11 with the mixed-lognormal approximation, a traditional
lognormal approximation (with parameters estimated both from the MCS and
through MDRM–G) and the histogram of the MCS.

Figure 10. ME-MDRM result for PDF describing MR,fi,t at 240 min
ISO834, with histogram of 10000 MCS, the mixed-lognormal
approximation, and lognormal approximation (parameters respec-
tively through MCS and through MDRM and Gauss).
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As shown in the graphs above, the ME-MDRM results in a very reasonable
approximation and correctly identifies the irregular shape of the PDF. The irregu-
larity of the PDF estimated with ME-MDRM indicates to the user that more
detailed analyses may be required. Ideally these additional analyses identify the
cause of the irregularity and provide the user with additional information to con-
sider for a reframing of the problem, resulting in casu in considering a mixed-log-
normal distribution, see [27] and [30].

Considering the proposed procedure of Table 6 for estimating PDF’s, the differ-
ence between the assumed lognormal estimate and the unbiased ME-MDRM esti-
mate would result in opting for the ME-MDRM estimate. Note that this ME-
MDRM estimated PDF has an excellent agreement with the observed cumulative
frequency of the MCS up to a CDF precision of 10-2, indicating that for example
a characteristic value with 99% exceedance probability is very accurately pre-
dicted.

For completeness the mean and standard deviation estimated from the MCS
and through MDRM–G are compared in Table 11, further illustrating the excel-
lent performance of MDRM–G in estimating parameters for an a priori assumed
distribution.

Figure 11. ME-MDRM result for CDF describing MR,fi,t at 240 min
ISO834, with cumulative frequency of 10000 MCS, the mixed-log-
normal approximation, and lognormal approximation (parameters
respectively through MCS and through MDRM and Gauss).

Table 11
Mean l and Standard Deviation r for MR,fi,t Estimated Respectively
Through the MCS and the MDRM–G

l (kNm) r (kNm)

MCS 24.57 6.86

MDRM–G 24.62 6.83
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6. Practical Application 3: Stochastic Response of a
Concrete Portal Frame Exposed to Fire

6.1. Introduction

The ME-MDRM can also be applied to evaluate the response of structural sys-
tems where the overall structural behaviour is defined through the interaction of
the different components. In the following, this interaction is considered by apply-
ing the Direct Stiffness Method (DSM) matrix calculation described earlier in
Practical application 1.

The concrete portal frame of Figure 12 is considered to be exposed to 30 min of
the ISO 834 standard fire. While the beam in the frame is considered to be
exposed from 3 sides only (top surface air cooled in accordance with EN 1992-1-
2), both columns are exposed to fire from 4 sides. Even for the simple portal
frame of Figure 12 the interaction of the different components has to be consid-
ered to evaluate to overall structural response. This is amongst others because the
lateral support conditions for the top beam depend on the restraint (stiffness)
exerted by the columns, resulting in a partial inhibition of the thermal expansion
of the top beam. This restraint will in turn give rise to fire-induced lateral forces
pushing the columns outwards.

The parameters describing the top beam are given in Table 12, while the col-
umns are described by the same data as given earlier in Table 7.

The time-dependent deformation of the frame is visualized in Figure 13, consid-
ering mean values for the stochastic variables of Tables 12 and 7. The displace-
ments in Figure 13 have been scaled by a factor of 50 for a more clear visual
effect. Only half the frame has been visualized as the problem setup is perfectly
symmetrical (when considering characteristic or mean values for all variables).

Figure 13 clearly illustrates how the thermal expansion of the beam pushes the
column outwards. These kind of effects have been identified for example in [10] as
a potential cause of premature structural failure in case of fire. In the conceptual

Figure 12. Schematic illustration of the investigated fire-exposed
frame.
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model of Figure 12 the column is exposed to fire as well as the beam. Conse-
quently the thermal elongation of the column lifts the beam during fire exposure
as shown in Figure 13.

As the column partially restrains the expansion of the beam, the beam is sub-
jected to an axial restraining force and the column to a shear force. The column
shear force corresponding with Figure 13 is visualized in Figure 14. Also at 0 min
of exposure a shear force exists as also in ambient design conditions the assump-
tions underlying standard cross-section calculations results in an elongation of the
beam, as discussed in [31]. This beam elongation is partially restrained by the col-
umn.

Note that while the shear force in the column approximately doubles in the
considered 30 min of ISO 834 fire exposure, this increase in shear force coincides
with a reduction of the shear capacity due to the heating of the column.

6.2. Application of the ME-MDRM

In order to understand the uncertainty associated with the model outputs, a prob-
abilistic evaluation is made.

A specific question relates to the relationship between the stochastic realizations
for the left and right column: should they be considered independent, perfectly
correlated, or correlated up to an intermediate degree? Dependent on the specifics
of the construction method and planning, different levels of correlation may be
appropriate. A high degree of correlation can be considered appropriate assuming
both columns have been made simultaneously and using the same concrete mix
and reinforcement shipment.

Figure 13. Deflection for setup of Figure 12, for different fire dura-
tions tE, considering mean values for the stochastic variables of
Tables 12 and 7. Scale factor of 50 applied to the calculated dis-
placements.
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As the goal is to illustrate the application of the ME-MDRM to structural sys-
tems, the above discussion is not further elaborated here. Both columns are con-
sidered to be perfectly correlated as this allows to maintain the symmetry applied
in Figure 13. Considering symmetry reduces the computational requirements,
which is an important consideration for the MCS validation of the ME-MDRM
result.

Note that one of the advantages of ME-MDRM would be to reduce the num-
ber of required modelling assumptions (e.g. symmetry) as the model computa-
tional time is less onerous as compared to MCS.

The ME-MDRM is applied considering independent stochastic realizations for
the columns (Table 7) and the beam (Table 12). This results in a total of 15 inde-
pendent stochastic variables and 4Æ15 + 1 = 61 required model evaluations.

As the shear force is quasi-constant in the column (see Figure 14), only the
force Vcolumn,connection at the beam-column connection is considered. The MCS and
ME-MDRM results for this shear force are visualized in Figures 15 and 16, toge-
ther with the PDF corresponding with an assumed lognormal distribution.

Similarly, results for the horizontal outwards displacement uconnection of the
beam-column connection are visualized in Figures 17 and 18.

For this specific example, the ME-MDRM estimation is not fundamentally bet-
ter than a priori opting for a lognormal distribution (whose parameters can be
estimated efficiently through the MDRM–G methodology).

However, it should be emphasized that the logarithmic scales in the CDF visu-
alizations emphasizes the differences between the observed cumulative frequency
and the estimation. Considering for example Figure 18, the ME-MDRM estima-
tion gives an excellent approximation for the 95% quantile. For larger quantiles,

Figure 14. Column shear force for setup of Figure 12, for different
fire durations tE, considering mean values for the stochastic variables
of Tables 12 and 7.
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the approximation is less perfect, but conservative (as it overestimates the occur-
rence rate of respectively large shear forces and large displacements).

Furthermore, when focusing on the PDF visualizations, the match obtained
through the ME-MDRM methodology is very good. Also, when increasing the
estimation order m of the ME-MDRM to 5, a much better approximation is
obtained.

Figure 15. ME-MDRM estimated PDF for the column shear force at
the beam-column connection at 30 min ISO 834 and comparison with
histogram of 10000 MCS and lognormal approximation (parameters
respectively through MCS and through MDRM–G).

Figure 16. ME-MDRM estimated CDF for column shear force at the
beam-column connection at 30 min ISO 834 and comparison with
observed cumulative frequency of 10000 MCS and lognormal
approximation (parameters respectively through MCS and through
MDRM–G).
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Considering the methodology proposed in Table 6 and maintaining m = 4, a
practical recommendation would be to accept the lognormal distribution as the
ME-MDRM estimated PDF and the lognormal PDF with parameters estimated
through MDRM–G are similar. As indicated in Figures 16 and 18, this lognormal
distribution results in a good overall agreement with the observed MCS cumula-
tive frequency.

Figure 17. ME-MDRM estimated PDF for horizontal displacement
beam-column connection at 30 min ISO 834 and comparison with his-
togram of 10000 MCS and lognormal approximation (parameters
respectively through MCS and through MDRM–G).

Figure 18. ME-MDRM estimated CDF for horizontal displacement
beam-column connection at 30 min ISO 834 and comparison with
observed cumulative frequency of 10000 MCS and lognormal
approximation (parameters respectively through MCS and through
MDRM–G).

1740 Fire Technology 2017



For completeness, the MCS estimated parameters for the lognormal distribution
are compared with the MDRM–G estimated parameters in Tables 13 and 14.
Again, the efficiency of the MDRM–G methodology for estimating the parameters
is illustrated.

7. Discussion

The application of the ME-MDRM methodology to concrete structures exposed
to fire is shown to be very promising. Although the estimated CDF does not
always accurately match the extreme quantiles of the observed cumulative fre-
quency (crude Monte Carlo simulations), the overall shape of the PDF is very
well approximated. Furthermore, the ME-MDRM estimation is found to be very
accurate for estimating characteristic values of the model output, especially con-
sidering the limited number of required model evaluations.

The performance of the ME-MDRM is especially remarkable when the
observed histogram deviates from a traditional (lognormal) distribution. In these
cases the unbiased PDF estimate is clearly superior to a priori assuming a (log-
normal) PDF type.

When a traditional distribution type is known or assumed, the parameters can
be very efficiently estimated through a reduced application of the methodology
(i.e. without the Maximum Entropy principle). This reduced methodology has
been denoted as MDRM–G and can have significant practical applicability for
studies where the parameters of an assumed/known PDF are currently estimated
through for example Latin Hypercube Sampling.

From a practical perspective it is recommended to evaluate both the unbiased
ME-MDRM estimated PDF and the assumed PDF type with parameters calcu-
lated through MDRM–G. Note that only a single set of nÆ(L - 1) model evalua-
tions is required to make both PDF estimates. If both PDF’s are very similar, the

Table 13
Mean l and Standard Deviation r for Vcolumn,connection Estimated
Respectively Through the MCS and the MDRM–G

l (kN) r (kN)

MCS 25.87 2.02

MDRM–G 25.89 2.04

Table 14
Mean l and Standard Deviation r for uconnection Estimated Respectively
Through the MCS and the MDRM–G

l (mm) r (mm)

MCS -7.48 0.72

MDRM–G -7.46 0.73
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assumed (known) PDF type may be considered appropriate. Whenever a signifi-
cant difference exists between both estimates, the unbiased ME-MDRM estimate
is recommended.

Note that the ME-MDRM methodology is compatible with any type of
advanced calculation model and requires no difficult interaction with the model
calculation core. More specifically, it suffices to generate the nÆ(L - 1) model
input vectors in a readily available spreadsheet or mathematical tool and to imple-
ment these values as part of the model input data. Having run all nÆ(L - 1) simu-
lations, the results are to be collected and implemented in a separate calculation
tool for applying the Maximum Entropy methodology. Depending on the flexibil-
ity of the model (e.g. black box with restricted access, or flexible tool with clear
input and output files) the above can be automated and all calculations can be
run simultaneously or in a single batch. As the ME-MDRM model evaluations
are not dependent on intermediate results (as compared to methodologies which
work iteratively), this results in excellent opportunities for parallelization.

8. Conclusions

A computationally efficient methodology has been presented which makes an
unbiased estimate of the probability density function (PDF) describing a stochas-
tic model output Y. Making an unbiased estimate of the PDF (as opposed to a
biased estimate where the PDF type is a priori known or assumed) is especially
important in the field of fire safety engineering where the PDF type describing
model output is generally not known.

The presented unbiased method is known as the Maximum Entropy Multiplica-
tive Dimensional Reduction Method (ME-MDRM) and results in a mathematical
formula for the estimated PDF, while requiring only a very limited number of
model evaluations. When considering the full methodology as presented in the
paper, only 4n + 1 model evaluations are required, with n the number of stochas-
tic input variables. The method can easily be used together with existing models
and calculation tools. No modification of the calculation model itself is needed,
and as the input vectors corresponding with these 4n + 1 model evaluations are
fixed at the onset of the method, the ME-MDRM has a large potential for paral-
lel computing.

A reduced application of the method allows to estimate the moments of the
model output Y using the same limited set of 4n + 1 model evaluations. This
reduced application has been denoted as the MDRM–G method and can be used
for making a biased estimate of the PDF (i.e. an estimate where the PDF type is a
priori known or assumed). This biased application is however not recommended
when the PDF type has not been verified a priori.

Application of the ME-MDRM and MDRM–G is illustrated with example
applications from the field of structural fire safety, indicating the excellent perfor-
mance of the method in capturing non-traditional distribution shapes. While the
examples come from the field of structural fire safety, the presented methodology
is applicable to other types of engineering problems as well.
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