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Abstract. Optical fire sensors, sometimes called ‘‘volumetric’’ sensors, are complemen-
tary to conventional point sensors such as smoke and heat detectors in providing people
with early warnings of fire incidents. Cameras combined with image processing software

hold the promise of detecting fire incidents more quickly than point sensors and can also
provide size, growth, and direction information more readily than their conventional
counterparts. In this paper, we present QuickBlaze, a flame and smoke detection system

based on vision sensors aimed at early detection of fire incidents for open or closed in-
door and outdoor environments. We use simple image and video processing techniques
to compute motion and color cues, enabling segmentation of flame and smoke candi-

dates from the background in real time. We begin with color balancing, then separate
smoke and flame detection streams operate on the image. Both streams identify candi-
date regions based on color information then perform morphological image processing
on the candidates. The smoke detection stream then filters candidate regions based on

turbulence flow rate analysis, and the flame detection stream filters based on growth and
flow rate information. QuickBlaze does not require any offline training, although manual
adjustment of parameters during a calibration phase is required to cater to the particular

camera’s depth of view and the surrounding environment. In an extensive empirical
evaluation benchmarking QuickBlaze against commercial fire detection software, we find
that it has a better response time, is 2.66 times faster, and better localizes fire incidents.

Detection of fire using our real-time video processing approach early on in the burning
process holds the potential to decrease the length of the critical period from combustion
to human response in the event of a fire.

Keywords: Optical flow, Machine vision, Fire detection, Turbulence analysis

1. Introduction

Fire poses a major risk to human safety, health, and property. Traditional ‘‘point
sensor’’ fire detection technologies based on particle sampling, temperature sam-
pling, and smoke analysis have slow response time, usually measured in minutes,
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and have little applicability in outdoor environments. To avoid false alarms,
smoke and heat detectors only trigger once a sufficient amount of smoke particles
flow into the device or until the temperature has increased substantially. However,
time is a major factor in minimizing the damage caused by a fire. Decreasing the
response time can greatly increase our chances to extinguish a fire and reduce the
damaged caused by the incident.

The slow response time of point sensors has led researchers to consider, as an
alternative, volumetric sensor based computing for automatic fire detection sys-
tems. Detecting smoke and flame in images or video frames grabbed from a vision
sensor is one such technique [1]. Vision sensor based methods hold the promise of
decreasing the response time, increasing the probability of detection, and provid-
ing coverage of large areas including open areas. Vision sensors can provide infor-
mation about the direction, size, and growth of fire and smoke [2]. Existing CCTV
surveillance systems in factories and public sites can in principle be upgraded at
low cost to provide early warnings of a fire using video processing and machine
vision techniques to detect flame and smoke.

Çetin et al. [3] provide a recent review of short-range video-based fire detection
systems and summarize the existing approaches in terms of the underlying tech-
niques they use. They note that the current vision sensor based approaches focus
on both flame and smoke detection, while earlier work only investigated flame de-
tection. From the early research of the late 1990’s, significant improvement has
been made, leading to commercial products such as VFDS [4], VisiFire [5], and
SIGNIFIRE [6], which are now widespread in buildings and outdoor wild-fire
warning systems. However, these fire detection systems still require human intelli-
gence to distinguish between real fires and false alarms.

In general, vision sensor based fire detection systems consist of three components:
motion detection, candidate object segmentation, and flame or smoke blob detection.
As the camera is normally assumed to be fixed in such applications, most of the at-
tempts use some variation on background modeling or image subtraction methods [7]
to detect initial motion. Motion detection is followed by candidate object segmenta-
tion using either color information [8, 9], texture cues [10], pixel variability mea-
sures [11], or by optical flow field distribution [12]. Flame and smoke blobs may be
detected either by modeling flame or smoke in mathematical terms [13–15] or using
image separation approaches [16, 17]. After motion detection, morphological image
processing techniques are often used as a preprocessing step for region detection. Mil-
lan-Garcia [18] present an early fire alarm system using IP cameras focusing only on
smoke detection. The motion and smoke detection is carried out in Discrete Cosine
Transform (DCT) domain instead of the time domain. Yu Cui et al. [10] and Truon-
get et al. [19] also focus on the detection of smoke for early fire alarms and use color
and texture cues respectively for smoke segmentation and machine learning classifiers
for the final region classification decision.

Classifiers able to identify regions of interest can be used at a number of stages
in the process. A classifier may involve simple image processing based segmenta-
tion criteria [20, 21] or more complex approaches involving machine learning [22,
23], Baysian classification [24], classifiers using a mixture of Gaussian (MoG)
model [25], support vector machines [26], Markov random fields [27–30], or neural
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networks [31, 32]. Classifiers may incorporate features characterizing color, texture
of flame or smoke, and spatial or temporal frequency analysis.

Video evidence of a fire can be characterized by either flame or smoke regions.
In either case, the system’s ability to detect fire and smoke will depend on the
specific scene depth and camera field of view. But flame and smoke have different
physical properties and dynamic behavior. A system that can detect both smoke
and flame regions would have a greater probability of detecting fire earlier than
one that only detects one or the other. Yu et al. [33] present a real-time flame and
smoke detection algorithm. Initial candidate moving pixels are computed using
differential background subtraction and then flame and smoke color models are
used to obtain a decision rule to segment out the flame and smoke regions. Fore-
ground images for flame and smoke are accumulated. Candidate flame regions are
declared if a block (an 8� 8 group of pixels) of accumulated foreground image
value is greater than a threshold. Smoke features are extracted using optical flow
of blocks of pixels of the accumulated foreground image. Smoke candidate re-
gions are classified using a neural network classifier. The authors report a process-
ing time of 25 frames per second for a video at 320� 240 resolution, but they do
not mention the specification of the processor, the response time (the time from
the point the fire started to the time the fire is detected), or the false alarm rate
for their method.

Some authors have reported empirical evaluation results more thoroughly.
Wang et al. [34] present a fire flame detection algorithm that extracts initial flame
candidates using motion, texture, and color cues. They then use flame area varia-
tion to eliminate false detections. Finally, the authors compare their algorithm’s
performance with that of Chen et al. [35] in terms of response time. The authors
claim to process a 320� 240 video at 24 frames per second. However, they do not
detect smoke, which results in a slow response time for incidents where smoke is
the better early indicator of fire.

In this paper we focus on the use of an RGB camera to detect flame and smoke
as an early indicator of fire incidents occurring within a range of one meter to 20
meters from the camera.Our system, called QuickBlaze, is an extension of Rin-
surongkawong et al.’s [20] and Malenichev et al.’s [21] methods. We combined the
techniques into two parallel streams to achieve better response time for early fire
detection. Flame is detected by a combination of growth rate analysis and Lucas-
Kanade pyramidal optical flow analysis [36] on candidate regions segmented out
by background subtraction and a RGB color model. To detect smoke, we use tur-
bulence analysis on candidate regions detected after motion and color cues.

We present a comprehensive empirical evaluation of QuickBlaze in terms of re-
sponse time, processing speed in frames per second (FPS), and frame error rate
(FER, for videos that do not contain fire) on a wide variety of videos including a
new set of videos of fire incidents and non-fire events as well as a set of videos
available online. For comparison, we choose the commerical-grade software Visi-
Fire [5], which is a real-time vision-based flame and smoke detection application
available for commercial use. It is based on a series of academic research contri-
butions [3, 27, 28, 37, 38] in the area of fire incident detection. Out of 20 test
video sequences that contain flame or smoke regions, QuickBlaze’s time is better
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for 18 of the sequences. QuickBlaze is able to detect fire incidents in cases (three
video sequences) where VisiFire failed to detect the fire incident. The algorithm
runs 2:66 times faster than VisiFire on the same hardware. The name QuickBlaze
is not a trademark; it is simply used for ease of reading the manuscript. All the
videos used for testing in the empirical evaluation described in this paper are
available online at the AIT Computer Vision Wiki [39].

In summary, the detailed experimental evaluation reported upon in this paper
shows that QuickBlaze is faster and has a lower response time to fire incidents
than state of the art commercial software. More generally, simultaneous detection
of flame and smoke in video holds the promise to increase the probability of de-
tection, decrease false alarm rates, and decrease the response time of fire detection
systems.

In the rest of this paper, we first describe our methods (Sect. 2). Then, in Sect. 3, we
present and discuss the empirical evaluation. Finally, in Sect. 4, we conclude.

2. Methodology

The general framework of QuickBlaze is shown in Figure 1. We provide details on
each block in the following subsections.

2.1. Color Balancing

An essential preprocessing step of our video processing pipeline is color balancing.
Color balancing is essential when object segmentation is based on a color model
and the system may be deployed under different illumination conditions. Color
balancing consists of two steps, estimation of the illumination and chromatic nor-
malization by a scaling factor [40]. We assume that there is a good color distribu-
tion in each frame and therefore use a ‘‘gray-world’’ algorithm, one of the
simplest illuminant estimation methods. We compute the average of the image in-
tensities in the R, G, and B planes over each frame. The resulting vector of three
intensities is known as the ‘‘gray-value’’ for the image. Each R, G, and B plane is
then scaled independently using a multiplication factor that normalizes the gray-
value to the average intensity of the frame in the R, G, and B planes. If a scaled
value is greater than the maximum possible intensity, it is clamped to the max-
imum. After color balancing, the frames are fed to the independent flame and
smoke detection pipelines as shown in Figure 1.

2.2. Motion Detection

Generally, vision sensors for fire detection are assumed to be fixed at a certain lo-
cation and orientation, keeping the field of view and the background scene fixed.
Motion regions are detected and segmented by extracting the foreground objects
using a background model. Let the intensity of pixel ðx; yÞ in frame t be represent-
ed by Iðx; y; tÞ, and let the estimated background intensity of pixel ðx; yÞ in frame t
be denoted by Bðx; y; tÞ. To determine whether the pixel positioned at ðx; yÞ is
moving, we first compute D1ðx; y; tÞ, D2ðx; y; tÞ, and D3ðx; y; tÞ, given as
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D1ðx; y; tÞ,Iðx; y; tÞ � Iðx; y; t � 1Þ;
D2ðx; y; tÞ,Iðx; y; tÞ � Iðx; y; t � 2Þ;
D3ðx; y; tÞ,Iðx; y; tÞ � Bðx; y; tÞ:

Let F ðx; y; tÞ be a binary image that specifies whether pixel ðx; yÞ is apparently
moving in frame t. F ðx; y; tÞ can be defined by

Figure 1. QuickBlaze framework. Blocks shown in parallel can be
executed in parallel on separate cores.
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F ðx; y; tÞ ¼ 1

if D1ðx; y; tÞj j>T ðx; y; tÞ^
D2ðx; y; tÞj j>T ðx; y; tÞ^
D3ðx; y; tÞj j>T ðx; y; tÞ

0 otherwise;

8
>>><

>>>:

ð1Þ

where a, an update parameter, is a small positive real number close to zero. We
use the same procedure to obtain F ðx; y; tÞ for flame and smoke independently,
but the background model Bðx; y; tÞ and the threshold T ðx; y; tÞ are different for
flame and smoke.

2.2.1. Dynamic Background Model and Adaptive Motion Threshold for Flame For
flame, the background is dynamically updated for pixels considered stationary us-
ing the update rule

Bðx; y; t þ 1Þ ¼
aBðx; y; tÞ þ ð1� aÞIðx; y; tÞ if F ðx; y; tÞ ¼ 1

Bðx; y; tÞ otherwise:

�

ð2Þ

The threshold T ðx; y; tÞ for flame is adaptive, updated according to two cases:

T ðx; y; t þ 1Þ ¼
aT ðx; y; tÞ þ ð1� aÞjIðx; y; tÞ � Bðx; y; t þ 1Þj if F ðx; y; tÞ � 1

T ðx; y; tÞ otherwise:

�

ð3Þ

We use the same a for the adaptive threshold and the background model update.

2.2.2. Static Background Model and Static Threshold for Smoke Smoke pixels are
generally more sparse than fire pixels, and the rate of change of the intensity of
smoke pixels per frame is slower than that of flame. Regularly updating the back-
ground mode suppresses detection of slow-moving smoke pixels as foreground. To
address this problem, we use a static background model Bðx; y; tÞ for smoke detec-
tion that is computed at the start of video processing and an empirical constant
T ðx; y; nÞ ¼ s for the threshold. The parameter s can be determined through ex-
perimental evaluation on training videos.

2.3. Chromatic Filtering

The color of flame is generally in the red-yellow or reddish range, while smoke, at
least at the start of a fire, has a color that varies from bluish white to white. We
therefore use separate color models to detect flame and smoke regions. Pixels are
only considered as candidate members of potential flame or smoke regions if they
are marked as being in motion according to the motion map F ðx; y; tÞ described in
Sect. 2.2 and then survive the chromatic filtering step for flame or smoke.
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2.3.1. Flame Color Model To find the candidate fire pixels we follow the method
of Chen et al. [9]. The first filter selects pixels that have an appropriate hue in the
HSI color space. The method then eliminates from consideration any pixels out-
side the red-yellow range of 0� to 60� for H. Let the intensity of a pixel under
consideration in the red, green, and blue channel be R, G, and B respectively. The
hue filter happens to correspond to the RGB region where, R � G and G>B. The
consequence of this filter is that for all selected pixels, in the RGB color space,

R � G>B:

To prevent selection of reddish pixels with low brightness and low saturation, we
further filter out pixels with low red levels and low saturation levels. For the red
level, we apply a simple threshold:

R>RT ;

where R is the red level of the pixel in question and RT is an empirical threshold
for the red level that is determined by calibrating on training videos. For satura-
tion, we apply a slightly more complicated rule:

S � ðð255� RÞ � ST
RT

Þ

The set of valid saturation and red levels according to this rule is shown in Fig-
ure 2. As a final step, following Chen et al., we filter out any candidate fire pixels
with intensity below a threshold IT . As with all other parameters, we set the val-
ues of RT , ST , and IT empirically using training videos.

2.3.2. Smoke Color Model For the smoke color model, we used the rule presented
by Celik et al. [41]:

jR� Gj<T ; jG� Bj<T ; jR� Bj<T ;

where threshold T is adjusted for good performance on the training video set.

2.4. Morphological Image Processing

After basic filtering according to motion and color cues, the resulting candidate
regions are typically noisy. We perform morphological image processing on both
the flame and smoke pixel maps to remove noise and extract final candidate re-
gions. We first perform basic operations to close holes and remove small noise ele-
ments. We then obtain connected components and eliminate small components
according to the length of the region’s perimeter. Finally, we get a chain code for
each surviving candidate fire and smoke region separately.
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2.4.1. Candiate Flame Regions On the potential flame pixels, we perform morpho-
logical closing and then opening to eliminate small holes and connect nearby re-
gions. Since fire normally moves and spreads vertically, we use a 5� 5 specifically-
tuned vertical structuring element for closing and a standard 3� 3 rectangular
structuring element for opening.

2.4.2. Candidate Smoke Regions Candidate smoke pixel regions tend to be more
sparse than candidate flame pixel regions. Instead of using opening and closing,
we used dilation and erosion (using 3� 3 rectangular structuring element) on the
probable smoke pixels to remove the noise.

2.5. Localization of Candidate Regions

A frame may contain multiple candidate flame and smoke regions. Each candidate
region should be tracked and localized separately to analyze growth rate and flow
rate in case of flame regions or turbulence in case of smoke regions. When track-
ing regions from frame to frame, each region can be classified as either newly
born or a previously existing region. To perform this classification, we logically
AND the masks (obtained after filtering for motion and color morphology) for
the current and previous frame. If all the values for a given foreground region
evaluate to 0, the region is classified as newly born. If, on the other hand, some
values for the given foreground region are non zero, the region is associated with
the previously detected region. For both smoke and flame, a candiate region must
survive (be associated with a region in the previous frame) for some number of
frames before being declared evidence of an actual fire (see the next subsection for
details).

Figure 2. Filtering for candidate flame pixels based on red level and
saturation level.
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2.6. Smoke Detection

For smoke, we use simplistic motion, color, and connectivity rules to finalize the
set of detected regions, as detailed below.

2.6.1. Absolute Color Change When smoke appears in a scene, it tends to cause
fading of the color of the object behind it, until it completely covers that object.
This color change or increase in smoke opacity does not happen instantly, but
happens gradually as the smoke density increases. When a smoke candidate region
is detected, due to morphological processing in the previous step, the region may
include not only actual smoke pixels but also neighboring background region or
object pixels. This leads us to define a criterion for the presence of smoke: let
ðdR; dG; dBÞ be the absolute change in the color of a pixel from the previous frame
to the current frame. We define a threshold Cmax such that to be considered part
of a smoke region, the pixel must satisfy

dR<Cmax ^ dG<Cmax ^ dB<Cmax:

As with all other parameters, we fix Cmax for good performance on a set of train-
ing videos.

2.6.2. Turbulence Rate Analysis Smoke emanating from a fire is warmer and
lighter than surrounding air and therefore tends to move upwards. The shape of a
smoke region’s projection onto the image plane is therefore complex; furthermore,
its perimeter will change more abruptly than its area. This property can be mod-
eled mathematically to more accurately detect possible smoke regions.

Let the perimeter of a candidate smoke blob be P ðtÞ, and let the area of the
blob be AðtÞ. We define a ratio XðtÞ to represent the irregularity of the blob at
time t:

XðtÞ ¼ P ðtÞ
2

ffiffiffiffiffiffiffiffiffiffiffi
pAðtÞ

p :

We can characterize the turbulence of the blob [42], as the derivative of the ir-
regularity with respect to time:

dX
dt

¼
2 dP

dt AðtÞ � P ðtÞ dAdt
4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
pA3ðtÞ

p :

dX
dt increases with the complexity of the shape. To increase our level of confidence
in declaring a candidate region as smoke, we maintain a cumulative sum of dX

dt and
AðtÞ for Dt frames. If the cumulative sum of dX

dt for a region is greater than
Xthreshold , and AðtÞ is greater than DA, we classify the region as a smoke region.
The thresholds are empirically calculated on the training dataset.
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2.7. Flame Detection Algorithm

Similar to the way in which we use pixel color change and turbulence analysis to
eliminate false positive smoke regions, we can eliminate false positive flame re-
gions when their behavior is inconsistent with the physics of flame. Fire is charac-
terized by turbulent flames. As shown in Figure 3, as air is heated by a fire, since
the density of a gas is inversely proportional to its temperature, a plume will rise
above the burning object, causing upward motion. As air in the hot plume is
cooled by the surrounding air, its buoyancy decreases, causing it to cease rising
and start falling. As cool air is induced to flow into the fire plume (a process
called entrainment), eddies form, creating rising vortices and turbulence. We use
two heuristics, growth rate analysis and flow rate analysis, to characterize the dy-
namics typical of flame regions and to filter out regions unlikely to contain flame.

2.7.1. Growth Rate Analysis As explained in the previous section, generally, a
burning fire will expand upward and outward, depending on the air flow and fuel
type. Our growth rate analysis method exploits this feature of growing fires. When
a candidate fire connected component is initially detected, we record its bounding
box for the frame in which it is first detected. We then extract growth rate infor-
mation from the next n frames. We measure growth separately in the left, right,
upward, and downward directions. Only candidate regions that grow more in the
upward direction than the other three directions are finally considered fire regions.
Our method of measuring growth in each frame is as follows. In the first frame
subsequent to detection of the region, we initialize a search region obtained from
the original bounding box by expanding the bounding box by one pixel in all four
directions and then removing the pixels corresponding to the original bounding

Figure 3. Buoyancy and fire plumes.
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box. On each subsequent frame, we expand the search region by one pixel. In ev-
ery frame, we count candidate fire pixels separately for the left, right, upward, and
downward directions. We take the summation of the number of candidate fire pix-
els in the region over all n frames as a measure of how much the candidate fire
blob has grown in the respective direction from the frame in which it was
originally detected. Finally, we only retain as candidate fire regions those compo-
nents whose growth in the upward direction is greater than its growth in the left,
right, and downward directions at frame n.

2.7.2. Flow Rate Analysis Flow rate analysis is based on the hypothesis that im-
age regions containing turbulent flames generate a large amount of flow compared
to more rigid moving objects.

We use the intensity-based pyramidal Lucas-Kanade optical flow method with
Shi and Tomasi keypoint features [43] to estimate motion in a candidate flame re-
gion from frame to frame. Lucas-Kanade first solves for the optical flow at the
top of the pyramid, then at each layer below, it uses the motion estimates from
the previous layer as a starting point. The method continues down the pyramid
until it reaches the lowest level. Pyramidal Lucas-Kanade estimates a motion ve-
locity vector for each feature point in the region of interest. The results at time t
are

P ðtÞ ¼ fðpðtÞxi ; p
ðtÞ
yi Þgi21;...;mðtÞ

QðtÞ ¼ fðqðtÞxi ; q
ðtÞ
yi Þgi21;...;mðtÞ ;

where each p
ðtÞ
i and q

ðtÞ
i denote the starting and ending point of a feature point, re-

spectively. mðtÞ is the total number of feature points tracked from frame t � 1 to
frame t. We will use the velocity vectors q

ðtÞ
i � p

ðtÞ
i to calculate two features of the

overall flow rate. The first feature is the average flow from frame 0 to frame 1:

F0 ¼
1

mð1Þ

Xm
ð1Þ

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðpð1Þyi � qð1Þyi Þ
2 þ ðpð1Þxi � qð1Þxi Þ

2
q

: ð4Þ

F0 is used as a reference value for the subsequent n� 1 frames:

F ðtÞ ¼ 1

mðtÞ

Xm
ðtÞ

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðpðtÞyi � qðtÞyi Þ
2 þ ðpðtÞxi � qðtÞxi Þ

2
q

: ð5Þ

Fv ¼
1

n� 1

Xn

t¼2

ðF ðtÞ � F0Þ; ð6Þ

Fv is the total growth in the average flow rate over a window of n frames. We
expect the flow rate of turbulent fire regions to grow faster than that of other
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moving objects. We fix a threshold for the flow rate growth FT . We require Fv > FT
to declare a candidate flame region as a fire region. FT is computed using training
video data.

3. Experimental Results

We implemented the algorithm pipeline defined in Sect. 2 for fire detection using
an Intel Core 2 Quad CPU Q9550 with four cores, running at 2.83GHz with 4
GB RAM and Ubuntu Linux as the operating system. The current implementa-
tion is sequential, but since the two processing streams are in fact independent,
they can in principle easily be run on separate cores after the color balancing step.
The software was written in C and C++ with the help of the OpenCV 2.4 li-
brary. The focus of our experiments is to analyze the ability of the system to de-
tect fires as early as possible after the burning process has begun, so as key
indicators of the algorithm’s effectiveness, we measure the response time, the
frame processing rate, and the false error detection rate. We manually adjusted
the threshold parameters (Table 1) to enable the system to perform well on a set
of three training videos, which contains two videos with flame and smoke regions
and one distracter video containing an orange balloon.

After training, the system was tested on the videos listed in Table 2 without any
modification to the parameters. Of course, some further calibration might be nec-
essary to detect flames or smoke with characteristics very different from those in
the videos tested, but the manually adjusted parameter settings proved suitable
without modification for this set of test videos, including those with orange dis-
tractor objects, moving people and cars, and so on. Sample frames from each of
the training videos are shown in Figure 4.

For testing we collected a total of 30 videos, 20 of which contain flame and/or
smoke and 10 of which are distracters containing no flame or smoke. M-1, M-2,
M-3, M-4, M-8, and M-22 were created by the authors [20]. M-5, M-6, M-9,
M-10, M-11, M-12, M-13, M-14, M-21, M-23, M-24, and M-29 are from the Visi-
Fire website [5]. M-7 was taken from NIST [44]. M-16, M-17, M-18, M-19, M-25,
M-26, M-27, and M-28 were taken from Malenichev et al. [21]. To verify that our
algorithm runs in real time, we created videos M-20 and M-30 using an IQEye IP

Figure 4. Sample frames from training videos used for adjusting
thresholds for QuickBlaze. T1 has 7343 frames, T2 has 1607 frames,
and T3 has 3383 frames. T1 and T3 contain both fire and smoke
regions, while T2 contains no fire or smoke but does contain an
orange balloon as a distracter (Color figure online).
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camera with a resolution of 720� 480 pixels at 15 frames per second and ran our
algorithm on the live streams as the videos were being recorded. M-1 through
M-15 and M-20 contain both flame and smoke, while M-16 to M-19 only contain
smoke. M-21, M-25, M-27, and M-28 contain distracter objects likely to be classi-
fied as smoke. M-22, M-24, M-29, and M-30 contain distracter objects likely to be
classified as flame. M-23 has both flame-like and smoke-like objects. M-1, M-3,
M-4, and M-22 are similar to the training videos, but they were created at differ-
ent times with different target objects. Detailed descriptions of each video are
given in Table 2, and a sample frame from each video that contains flame and
smoke is shown in Figure 5. We selected the first frame containing flame or smoke
according to human observation of the incident. Sample frames from the test
videos that do not contain flame or smoke are shown in Figure 6.

In our implementation, to speed up total compute time, every frame is down-
sampled to 320� 240 as a preprocessing step. For the ground truth, the first au-
thor manually identified the first frame of each video in which evidence of fire
(flame or smoke) was evident. This manual identification process is tedious, and
the precise localization of the first frame would no doubt differ for different peo-
ple, especially for videos that contain faint smoke regions before flame appears.
However, as we shall see, the ground truth frame numbers are always lower than
those identified by the machine vision algorithms. Since any human error affects
both of the tested algorithms equally, it can be ignored.

To demonstate the effectiveness of combining the two methods in parallel
streams, we evaluate the performance of our combined approach with the indi-
vidual methods as described in [20] and [21]. In Table 3, we compare the com-
bined approach to the individual methods in terms of fire detection time, and the
data clearly show that the combined approach is better in terms of detection time
than either of the individual methods alone. In Table 4, we compare the combined
approach to the individual methods in terms of false alarm rates, and the data

Table 1
Threshold Parameters Adjusted for Good Performance on Training
Videos

No. Parameter Description Value

1 T ðx; y; 0Þ Initial flame motion threshold 40

2 s Smoke intensity change threshold 40

3 a Background averaging update ratio 0.02

4 RT Red flame intensity threshold 230

5 ST Flame color saturation threshold 0.7

6 TT Flame intensity threshold 150

7 FT Flame optical flow growth rate threshold 10

8 T Smoke color compatibility threshold 10

9 Cmax Smoke color difference threshold 60

10 Xthreshold Smoke region area growth threshold 2.0

11 Dt Smoke region area observation window 3

12 DA Smoke region area 100
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clearly show that the improvement in terms of response time comes at the cost of
a small increase in false alarm rates, as the false alarms for the combined system
will necessarily be the union of the false alarms for the individual systems.

For a comparative evaluation of our machine vision detection algorithm, we
contrast our results with those obtained from VisiFire [5], a Windows-based pro-
gram that is available for commercial use with a fee and for free limited academic
use on request. VisiFire contains several different fire analyzers, including a fire
and smoke detector, a forest fire detector, and an infrared sensor-based fire detec-
tor. We chose VisiFire because it runs in real time and has evolved through a ser-
ies of academic research contributions [3, 27, 28, 37, 38]. In the program, we
selected fire and smoke detection and used the default settings for the parameters
available. The detailed settings are shown in Figure 7. We set the processing size
for each video frame to 320� 240, the same as used by our algorithm. The S_T
parameter shown in Figure 7 represents the threshold number of neighboring
blocks with evidence of fire necessary to trigger a fire alarm. The software marks

Table 2
Video Sequences Selected for Testing

Seq. no. Description Duration (frames) Frames/s Fire/smoke

M-1 Outdoor plain box 2208 24 Fire, smoke

M-2 Multiple boxes-1 4301 24 Fire, smoke

M-3 Printed box 5027 24 Fire, smoke

M-4 Multiple boxes-2 4500 24 Fire, smoke

M-5 Barbeque stand 439 10 Fire

M-6 Plant pot 707 15 Fire, smoke

M-7 Chrismas tree room 1464 30 Fire

M-8 Warehouse fire 4389 30 Fire

M-9 Dark room flame 410 24 Fire

M-10 Indoor night 20 m heptane 1657 24 Fire

M-11 Outdoor daytime 10 m gasoline 3490 24 Fire

M-12 Outdoor daytime 10 m heptane 4547 24 Fire

M-13 Outdoor night 10 m gasoline 1207 24 Fire

M-14 Outdoor night 10 m heptane 3274 24 Fire

M-15 Hard paper flame on grass 3436 25 Fire, smoke

M-16 Wastebin smoke 900 10 Smoke

M-17 Smoke from car 155 30 Smoke

M-18 Behind the fense 629 10 Smoke

M-19 Ballastic smoke 347 30 Smoke

M-20 Box on fire outdoor 1160 15 None

M-21 Tunnel accident 190 15 None

M-22 Moving orange balloon 1183 24 None

M-23 Car lights at night 155 15 None

M-24 Moving man with red jacket 55 24 None

M-25 Black and white cat 87 25 None

M-26 Man with white shirt 223 25 None

M-27 Lady moving 794 25 None

M-28 Girl moving with white shirt 178 15 None

M-29 Flame-like neon sign 529 24 None

M-30 Flame-like CD cover 587 15 None
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likely flame blocks with red squares and likely smoke blocks with dark blue
squares. Although the VisiFire executable was run on Windows and our method
was run on Ubuntu, the test video sequences were identical, and the runs were
performed on the same hardware. VisiFire displays the frame number and number
of frames currently being processed per second on its display, so we could easily
record the first frame in which fire was detected and the overall frame processing
rate by observing this display.

Comparisons of VisiFire and the QuickBlaze for response time, frames per sec-
ond, and false alarms are shown in Tables 5 and 6.

In terms of speed of processing, although the frame rate varies from video to
video based on the number of candidate fire and smoke regions, the proposed

Figure 5. Sample frames from test videos that contain flame or
smoke. In each case, the first frame containing flame or smoke ac-
cording to human observations is shown. Although M-1, M-3, and
M-4 are similar to videos in the training set, they were acquired at
different times with different target objects.
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method runs faster than VisiFire on every video, with a total overall speedup of
2.66.

In terms of accuracy, we observe that on 18 of the 20 videos that contain flame
and/or smoke, fire detection using our proposed method results in better response
time than using VisiFire.

In general, we observe that the fire incidents can be characterized by the visibi-
lity of any flame and/or smoke and depends upon the surrounding environment,
the illumination of the scene, and the camera’s field of view. We now take a closer
look at results on specific videos.

Figure 8 compares detection of fire based on smoke regions by our method and
by VisiFire. The first row shows the first frame of video sequence M-1, M-3, M-4,
and M-15 respectively, in which a fire incident was first detected by our method,
and the second row shows the first frame in the corresponding video in which
VisiFire detected fire, if it did. VisiFire detected smoke regions in M-1 and M-2
(albeit much later than our method), a flame region in M-4, and did not detect
any fire incident in M-15 (see Table 5 for details for all fire videos).

Figure 9 shows a similar comparison of fire detection based on flame regions.
The first row shows the first frame of video sequence M-7, M-8, M-12, and M-14
respectively, in which a fire incident was first detected by our method, and the sec-
ond row shows first frame in the corresponding video in which VisiFire detected
fire, if it did. VisiFire detected smoke in M-7, flame in M-8, and did not detect a
fire incidents in M-12 or M-14. Clearly, our method detects flame regions earlier
than VisiFire in these videos. QuickBlaze tends to work very well when illumina-

Figure 6. Arbitrary sample frames from test video sequences without
any flame or smoke regions. Although M-22 is similar to one of the
training videos, it was acquired at a different time with different tar-
get objects.
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Table 3
Experimental Results for Videos Containing Fire and/or Smoke

Seq. no.

First fire

frame (Ground truth)

First fire

frame (Method [20])

First fire frame

(QuickBlaze)

First fire frame

(Method [21])

M-1 1037 1213 1158 1158

M-2 246 2304 694 694

M-3 990 1665 1001 1001

M-4 1 873 440 440

M-5 1 11 11 Not-detected

M-6 50 401 323 323

M-7 251 305 305 761

M-8 1685 1755 1755 Not-detected

M-9 1 12 12 Not-detected

M-10 120 133 133 156

M-11 90 105 105 426

M-12 120 207 207 Not-detected

M-13 70 104 104 Not-detected

M-14 92 168 168 231

M-15 1 1985 594 594

M-16 19 Not-detected 87 87

M-17 19 Not-detected 28 28

M-18 54 Not-detected 233 233

M-19 59 Not-detected 71 71

M-20 1 35 35 201

Column two shows the ground truth frame number in which the fire is first visible. Columns three, four, and five

show the frame number in which Method [20], Method [21], and QuickBlaze detect fire in, respectively. Bold text

indicates the best result

Table 4
Experimental Results for Distracter Videos (Videos without any Fire or
Smoke)

Seq. no. FER (Method [20], %) FER (QuickBlaze, %) FER (Method [21], %)

M-21 0 6 6

M-22 0 0.2 0.2

M-23 0 0 0

M-24 0 0 0

M-25 0 0 0

M-26 0 0 0

M-27 0 0 0

M-28 0 0 0

M-29 1 1 0

M-30 0 0 0

FER (false error rate) is the percentage of frames in the video classified as fire using Method [20], QuickBlaze and

Method [21]
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tion is dim relative to any flame and when clutter is low with little background
contrast.

In two cases, VisiFire detected flame or smoke regions earlier than the proposed
method. See Figure 10 for a visual comparison of the frames in which fire was
first detected by the proposed method and VisiFire. In video M-6, the flame is

Figure 7. Settings used for VisiFire fire and smoke analyzer in the
experimental comparison.

Table 5
Experimental Results for Videos Containing Fire and/or Smoke

Seq. No.

First fire frame

(ground truth)

First fire frame

(VisiFire)

First fire frame

(QuickBlaze)

Processing speed

(FPS, VisiFire)

Processing speed

(FPS, QuickBlaze)

M-1 1037 1165 1158 4.86 14.1

M-2 246 1427 694 8.76 14.1

M-3 990 1599 1001 8.09 14.0

M-4 1 1460 440 11.82 13.6

M-5 1 37 11 11.40 36.11

M-6 50 187 323 11.79 13.8

M-7 251 370 305 8.81 29.2

M-8 1685 1858 1755 8.31 28.6

M-9 1 70 12 11.97 34.1

M-10 120 179 133 16.02 32.7

M-11 90 171 105 13.64 32.6

M-12 120 Not detected 207 12.5 32.2

M-13 70 454 104 12.1 33.3

M-14 92 Not detected 168 12.39 32.5

M-15 1 Not detected 594 11.54 33.3

M-16 19 37 87 13.94 34.0

M-17 19 135 28 11.23 37.9

M-18 54 241 233 13.22 32.0

M-19 59 100 71 11.73 34.8

M-20 1 39 35 6.77 29.8

Column two shows the ground truth frame number in which the fire is first visible. Columns three and four show

the frame number in which VisiFire and QuickBlaze detect fire in, respectively. Columns five and six show the pro-

cessing speed of VisiFire and QuickBlaze, in frames per second. Bold text indicates the best result
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quite transparent, so the background shows through, reducing our method’s abil-
ity to detect it. The method does detect the smoke given off by the fire, but later
than VisiFire, which is able to detect the flame early on. In the second case, Visi-
Fire rapidly detects the thick, opaque smoke initially coming from the smoke

Table 6
Experimental Results for Distracter Videos (Videos Without any Fire
or Smoke)

Seq. no. FER (VisiFire, %) FER (QuickBlaze, %)

Processing speed

(FPS, VisiFire)

Processing speed

(FPS, QuickBlaze)

M-21 5 6 13.46 40.9

M-22 0.2 0.2 11.75 37.7

M-23 8 0 13.49 43.1

M-24 0 0 15.32 45.0

M-25 0 0 16.6 43.3

M-26 0 0 16.5 45.2

M-27 0 0 15.6 41.6

M-28 4 0 9.88 43.5

M-29 1 1 16.62 51.8

M-30 3 0 13.14 13.7

FER (false error rate) is the percentage of frames in the video classified as fire using VisiFire and QuickBlaze

Figure 8. First frame in which fire is detected through smoke detec-
tion by QuickBlaze. The first row shows the first frame in video se-
quences M-1, M-3, M-4, and M-15 in which the fire incident was
detected by the proposed method’s smoke region detector. The sec-
ond row shows the first frame in the same sequences in which the fire
incident was detected by VisiFire. VisiFire failed to detect any fire in-
cident in video M-15.
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bomb, whereas our method performs better on thin, wispy smoke, resulting in
later detection once the smoke is more diffuse.

We also observe that our algorithm precisely localizes fire incidents in all of the
test video sequences, both in daytime and nighttime. This is shown in Figure 11.
The first row shows the first frame in which a fire incident is detected by our
method in nigghttime videos M-9, M-10, and M-13, while the second row shows
the VisiFire result for the corresponding sequences. Visual comparison clearly
shows that the proposed method better localizes the fire incident than does Visi-
Fire.

Although the best possible threshold parameters may vary with the type of fire
or smoke, we observe that the threshold parameters we obtained manually using

Figure 9. First frame in which fire is detected through flame detec-
tion by QuickBlaze. The first row shows the first frame in video M-7,
M-8, M-12, and M-14 in which the fire incident was detected by the
proposed method’s flame region detector. The second row shows the
first frame in the same sequences in which the fire incident was de-
tected by VisiFire. VisiFire failed to detect any fire incident in videos
M-12 and M-14.

Figure 10. First frame in which fire was detected by QuickBlaze and
VisiFire on two videos for which the QuickBlaze’s response time was
slow than VisiFire’s.
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the training videos provide very good performance across a wide variety early fire
detection scenarios. For instance, in video sequences M-7, M-8, M-10, and M-13,
actual fires were detected by their indirect reflections from other surfaces. These
results can be seen in Figure 12.

As a final comparison, Figure 13 shows sample false detections in M-21, M-22,
and M-23. M-21 contains a cloud of dust produced by a car accident, which trig-
gers a false alarm for our method. Our method was distracted by the partly or-
ange neon sign in M-29 whereas VisiFire was not; VisiFire, on the other hand,
was distracted by the headlights in M-23, whereas our method was not.

This extensive evaluation in comparison with state of the art commercial soft-
ware shows that our method responds to fire incidents sooner, processes the im-
ages faster, has a slightly lower false alarm rate, and better localizes fire incidents,
especially at night-time.

Figure 11. The first frame in which fire incidents were detected in
nighttime video sequences M-9, M-10, and M-13. QuickBlaze detect-
ed flame regions, while VisiFire detected smoke regions. Note the
better localization of the fire by the proposed method.

Figure 12. Frame in which fire was detected from an indirect surface
that reflected the radiation emitted by fire (QuickBlaze).
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4. Conclusion

In this paper, we have proposed QuickBlaze, a real-time early fire incident detec-
tion system that detects both flame and smoke regions in video images. We use
parallel image processing streams to detect flame and smoke regions at high speed,
with low response times. Our method does not require any offline training,
although manual adjustment of parameters during a calibration phase is required
to cater to the particular camera’s depth of view and surrounding environment.
We compare the combined approach to the individual methods in terms of false
alarm rates, and the data clearly show that the improvement in terms of response
time comes at the cost of a small increase in false alarm rates, as the false alarms
for the combined system will necessarily be the union of the false alarms for the
individual systems. We evaluate the algorithm on videos of a variety of real-world
fires, and we have also performed a live test. Our focus in this paper is on detec-
tion of bright red-to-orange flame and white smoke typical of early fires [45, 46].
Detecting different kinds of smoke and flame more typical of mature fires is out
of the scope of this paper. For comparison, we benchmark our method against
commercial real-time fire and smoke detection software that evolved through a
series of academic research contributions. We find that QuickBlaze has a better re-
sponse time, is faster, and provides better fire localization than the commercial
system. QuickBlaze could be deployed in any environment, and would likely have
a faster response time than smoke detectors, as long as the fire or smoke is in
view of the camera sensor. This does mean however that it may be most practical
for large open spaces (commercial or industrial spaces) and less practical for areas
with many small rooms such as residences. Furthermore, one sensor system might
not be the best possible detector for all situations. In indoor environments, it

Figure 13. Sample frames from videos M-21, M-22, M-23, and
M-29 in which false alarms were raised by the QuickBlaze or VisiFire.
No false alarm was raised for M-23 by QuickBlaze. No false alarm
was raised for M-29 by VisiFire.
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would of course be possible to augment the video based approach reported upon
here with traditional point based sensors such as demonstrated by [47–50].
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3. Çetin AE, Dimitropoulos K, Gouverneur B, Grammalidis N, Günay O, Habiboglu
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