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Abstract. In this paper we present a stochastic approach for modelling passenger
performances during evacuation process in passenger trains. The paper is divided into

two parts. The first part describes the identification of variables and data collection.
This process allows obtaining statistical samples of predefined random variables (per-
sonal responses, non-emergency actions, walking speeds, etc.). Then, statistical meth-
ods to determine the input and outputs for a stochastic analysis are proposed. In the

second part, results from EvacTrain�, a stochastic model for passenger trains, were
compared with other evacuation models and an announced evacuation drill. Results
suggest that predicted evacuation times can be strongly dependent on the activities of

individuals whose actions interrupt the continuous movement of other passengers
within the aisle and the time spent by each passenger to negotiate the train steps. The
advantages of using a stochastic approach for modelling passenger behaviours are

discussed.
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1. Introduction

There has been very little research carried out that analyses the evacuation process
in passenger trains. First studies were conducted by the National Institute for
Standards and Technology (NIST) [1]. Egress calculations were performed to esti-
mate the minimum necessary egress time by using egress modelling for an upright
rail car with a maximum capacity of 72 passengers. As the report states, different
assumptions were considered showing the lack of empirical data and the absence
of a specific tool that permits to simulating a passenger performing activities, such
as collecting belongings, investigating the fire, etc., instead of simply exiting the
car. Another contribution was carried out by the Department of Fire Safety Engi-
neering (Lund University) publishing a report about safety conditions in case of
fire in an intercity train [2]. However, inputs regarding the characteristics and
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passenger behaviours were assumed and the model limitations to represent the
specific conditions of this kind of scenarios were highlighted. One of the attempts
to simulate evacuation in rail vehicles was performed in [3]. In the agent based
model, passengers are modelled as adaptive agents obeying rules of behaviour and
the collective behaviour of the group emerges through the interaction of the pas-
sengers, between them and the environment. However, it is not clear if the pro-
posed model can simulate the responses and activities of passengers.

The attempts to analyze the passenger behavioural parameters during evacua-
tion processes are really scarce. A special mention is required for the developed
studies done by the Fire Safety Engineering Group (FSEG) at University of
Greenwich with a series of evacuation experiments in an overturned rail vehicle
[4]. Due to the limited number of tests, the results about passenger flow rates
are just indicative more than definitive. In Boston, on August 2005, The Federal
Railroad Administration (FRA) in collaboration with the Massachusetts Bay
Transportation Authority (MBTA) conducted a series of evacuation experiments
to a platform in an intercity train [5]. The experiments were performed with
normal and emergency lighting systems. The results (flow rates through the exits
and evacuation times) did not show differences in evacuation times under these
two lighting conditions. Another research work was performed to obtain passen-
ger performance data by conducting a series of evacuation experiments in a
metro train [6]. The obtained results made reference to flows through the avail-
able doors in one side of the train and the strategies adopted by passengers to
leave the train (from the train level to the rail level): ‘‘jumping’’, ‘‘Sitting’’ or
‘‘Sitting on a side’’.

At the moment, one of the most interesting proposals is being developed by the
METRO Project [7], a multidisciplinary project developed by nine entities whose
aim is protection of underground rail mass transport systems. The project is
divided into seven Work Packages. The aim of the work package WP2 (Lund
University and Stockholm Public Transport, Sweden) is to develop a series of sub-
models, which will be implemented into current evacuation models to reproduce
the specific conditions of rail vehicles.

From the current results it can be concluded that: (1) the current egress models
cannot represent the specific characteristics of trains, and research using evacua-
tion modelling makes assumptions and simplifications and (2) empirical data of
passenger behaviours are really scarce. The existing data are mainly referred to
exit flow rates. Therefore, an extensive data collection is necessary to quantify the
behavioural variables and passenger responses.

This paper explores passenger performances during evacuation process in trains
with specific interior configurations—seat rows on both sides with an aisle in the
middle of the coach—and no deteriorating environmental conditions. In the first
part, behavioural variables and empirical data-sets of passenger performances
were collected. Then, statistical methods to determine the input and outputs for a
stochastic analysis are proposed. The second part discusses this specific set of
behavioural random variables and their application in EvacTrain�, a stochastic
egress model for passenger trains.
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2. Behavioural Variables

Nowadays, it is well known that human performances can play a key role during
evacuation process. One of the most important tasks in safety science is to predict
and quantify human performances and prevent inappropriate behaviours to ensure
an efficient and safe evacuation. This is particularly important inside trains, where
the space is limited.

As soon as the train passengers have been warned about the emergency, their
actions before and during evacuation movements, such as preparing for evacua-
tion, gathering information, waiting for others, etc. may cause a block in the aisle
and interrupt the continuous movement. This leads to the following question.
How do we simulate additional behaviours of passengers?

In order to reproduce any actions the occupants might perform during the evac-
uation process, most egress models-mainly designed for buildings- assume a pre-
evacuation time as the time in which individuals will wait in their initial position
before beginning evacuation movements. Other models assign a sequence of
behavioural actions (a ‘‘behavioural itinerary’’) to the occupants in order to simu-
late an interruption in the evacuation process. However, this ‘‘behavioural itiner-
ary’’ is assigned by the user before the simulation begins rather than being
predicted by the model [8].

But the actions performed by passengers change amongst individuals. Further-
more, these actions and their impact are unknown prior to an event. For that rea-
son deterministic approaches have problems to analyse all the possible behaviours
and their effects on the evacuation process.

A probabilistic approach can be an alternative to solve the problem [9]. We
cannot predict the certain actions that individuals may perform given an emer-
gency situation. However, we can predict by stochastic analysis based on reliable
data, the impact of multiple combinations of these actions in predicted evacuation
times.

The development and the increasing use of stochastic models lead to the selec-
tion of a random nature for the input and output variables. Therefore, there is a
need to define the stochastic quantitative parameters. In this section behavioural
variables of passengers are identified and empirical data-sets of passenger perfor-
mances were collected. Then, statistical methods to determine the input and out-
puts for a stochastic analysis are proposed.

2.1. Identification of Variables

Figure 1 shows the sequence of passenger response and the identified variables
during evacuation process in trains.

As shown Figure 1, the pre-movement time is broken into two time intervals
(variables).

tpr: Personal response time. The time spent by each passenger in standing up
once he/she receives the emergency notification by the crew member or PA (Public
Address System)

t1: Delay time within the aisle. The time elapsed from tpr to the purposeful
movement to the exit. This variable is considered part of the pre-movement time.
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During this period of time, passengers can perform different actions such as collect-
ing belongings, getting dressed, checking the seat area, waiting, etc. These activities
can be performed within the aisle thus interrupting the continuous movement

But not every passenger performs a delay time within the aisle. For this reason
we define Pt1 as the Probability of passenger delay time within the aisle. This vari-
able can be defined as follows:

Pt1 ¼ P t1 6¼ 0jSAð Þ ð1Þ

where SA, passenger stays in the aisle; Pt1 is the probability that the delay time
within the aisle is different to 0 once the passenger reaches the aisle.

In some situations the pre-movement time variables (tpr and t1) can be over-
lapped i.e. passenger undertakes different actions before standing up (shot down
laptops, information exchange, etc.). In the present analysis, this behaviour had
been combined and measured as tpr. On the other hand, despite some passengers
can have available space to access the aisle and start evacuation movement, they
decide to wait for crew members or for other passengers. This behaviour has been
assumed as t1. In some cases, the passenger stands up and starts evacuation move-
ment without undertaking any other activity, therefore t1 = 0.

The end of t1 denotes the beginning of the Travel Time.
Figure 1 shows how during the Travel Time another time intervals for train

evacuation can be identified:
t2: Delay time to collect the baggage. The time spend by (some) passengers pick-

ing up his/her suitcases from baggage compartment within the aisle (see Figure 2).
But not all passengers are likely to perform this action. For this reason, a proba-
bility is defined as Pt2 Probability of passenger delay time to collect the baggage.
This variable can be defined as follows:

Pt2 ¼ P t2 6¼ 0jSCð Þ ð2Þ

where SC, passenger stops in front of the baggage compartment.

Figure 1. Sequence of passenger response.
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This means that Pt2 is the probability that the delay time to collect the baggage
is different than 0 due to the condition that the passenger passes in front of the
baggage compartment.

t3: Delay time to negotiate exit This variable is the time spent by each passenger
to negotiate the exit. This variable depends on passengers (abilities, baggage), the
exit design and how they behave in response to it [10]. For instance, evacuation
through platform, sidewalk, emergency ladder or a ramp can produce different
values for t3. In fact, even in the most favourable scenario (platform), the distance
and the height of platform respect to the train floor can vary. Other scenarios
(emergency ladder or a ramp) are more complex and will generate a higher delay
time to negotiate the exit.

Ws Unimpeded walking speed This variable represents the unimpeded walking
speed of each individual through the aisle inside the train.

Its value depends on the psychological and physical features of each passenger,
the belongings they carry with them. The experimental nature of this variable is
checked by measuring the time spent to walk down the aisle of a certain length.
In this case the relation density vs walking speed are not considered due to restric-
ted spaces inside the train and the queue discipline conditions.

2.2. Data Collection

2.2.1. Evacuation Drills. Data collection was obtained from two evacuation drills
conducted by RENFE Operadora (Spanish Railroad Administration). More
detailed information about the evacuation drills can be found in [11].

The first evacuation drill took place on 7th July 2007. The train involved was a high
speed train S 103 200 m long with 8 passenger coaches and capacity for 316 passen-
gers. The drill involved 83 workers from Renfe Operadora (Spanish Railroad

Figure 2. Location of baggage compartment.
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Administration). Some of the participants had jackets and hand bags. It should be
noted that they were not carrying any luggage. The drill was not previously
announced in order to provide more realistic information about crew and passenger
performance. The procedure consisted of a managed evacuation from three coaches to
the platform through one exit once the vehicle had stopped.

The drill was documented by a video camera following the crew member inter-
vention during the evacuation process. The further video processing (frame by
frame) permitted to collect data related to the variables tpr and t1 (see Figure 3).

The second drill took place on 19th September 2009. It involved a high speed
train S 130 (198 m long). It has 11 passenger coaches with a capacity for 299 pas-
sengers. The drill involved 218 participants. The passenger did not carry luggage,
however most of them had jackets and hand bags. This was an announced evacu-
ation drill. It consisted of a simulated fire in one of the coaches and the relocation
procedure was performed coach by coach along the length of the train before the
train stopped inside a rail tunnel. Once the train had stopped, the doors were
automatically open.

The drill was documented with two fixed video cameras (see Figure 4)—one
camera inside a passenger coach and other camera in front of the exit. The further
video processing permitted to obtain the walking speed (Ws) during the relocation
procedure and the delay time to negotiate exit (t3).

Additionally, a dataset of unimpeded walking speeds of passengers in the aisle
was obtained inside a high speed train (Alvia S 130) during 8 journeys in normal
conditions. The time spend by different passengers walking down the aisle of a
passenger coach length was manually measured with a total of 74 samples.

Figure 3. Passengers performing actions during evacuation drills.

Figure 4. Location of video cameras during the evacuation drill.
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2.2.2. Experiments. In order to increase the samples of behavioural variables,
individual experiments were conducted at laboratory of GIDAI Group at Univer-
sity of Cantabria. A total of 22 participants (12 males and 10 females) aged
between 20 and 70 were recruited. They were not pre-informed about the experi-
ment. In order to measure the estimated personal response time (tpr), each individ-
ual was exposed to the following pre-recorded voice message: ‘‘Attention please,
Attention please, this is an emergency, leave the train by the nearest exit’’. This
voice message lasted 7 s.

Some of participants were performing different actions such as using laptops,
reading or listening music on their personal music device before hearing the voice
message. It was observed that, depending on the activities, participants spent time
preparing for evacuation. Of particular note, some of the participants spent time
by switching off their laptops (closing all the applications) thus increasing signifi-
cantly their response time. Then, the times of participants performing the follow-
ing discrete actions were measured:

� (t1) Delay time within the aisle: (1) Putting on jacket and (2) Collecting hand
bag from overhead baggage rack.

� (t2) Time at luggage compartment: (1) Collecting a large suitcase and (2) Col-
lecting a small suitcase.

� (t3) Personal time to negotiate exit steps: (1) Normally, (2) Carrying a large
suitcase and (3) Carrying a small suitcase.

2.3. Statistical Methods

The basis of stochastic approach is the application of Monte Carlo methods. For
this reason it is necessary to know the distribution functions of the random vari-
ables (tpr, t1, t2, t3 and Ws) and their probability of occurrence (Pt1 and Pt2).

The possibility to combine the samples of data from video recordings and
experiments in order to increase the sample size is analyzed and the Mann–Whit-
ney non-parametric test is performed in assessing whether the two samples come
from the same distribution. The Hypothesis that the two samples of each variable
come from the same distribution is accepted with a significance level of 0.05. The
PDF (Probability Distribution Function) of a random variable can be achieved by
fitting data for a known distribution. Otherwise data can be achieved by density
estimation. This process consists in the application of goodness of fit tests.
According to the egress literature reviewed log-normal and normal distributions
are the most usually applied for human performance data. For this reason, for
assessing whether a given distribution is suited to dataset, the following specific
tests and their underlying measures are used [12–14]:

� D’ Agostino’s K-square normality test (for samples greater than 25).
� The Anderson–Darling normality test (for samples smaller than 25).
� Hypothetical log-normal test applying the same test above.
� The Anderson–Darling uniformity test (normally test modified).
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Specific tests are considered because they have more power. Otherwise, data can
be achieved by density estimation. From the multiple methods of density estima-
tion, such as Kernel density estimation (used to smooth samples), the histogram
method is considered to provide an easier and suitable application for Monte
Carlo simulations. In order to obtain the probabilities Pt1 (time to prepare) and
Pt2 (time at baggage compartment), a Bernoulli trial was performed based in real
observations [12]. The results for Pt1, Pt2 and their Wilson score intervals with a
significance level of a = 0.05. By using the data collection approach and tests out-
lined above, the following data are obtained displayed in Figure 5 and Table 1.
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Figure 5. Histograms of random variables.
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3. Simulations

3.1. EvacTrain�: An Stochastic Model for Passenger Trains

EvacTrain� is an Evacuation Model developed by GIDAI Group of University of
Cantabria [9, 15]. The model was developed with the purpose to capture and pro-
cess stochastic variations in evacuation times by using Monte Carlo methods in
order to simulate the random characteristics, decisions and actions of passengers.
This is an object-oriented model (developed with Microsoft Visual C# 2008 over
.NET Framework 3.5 SP1 platform) in which train spaces are represented by a
fine network and passengers move throughout the train from one cell space to
another (with a cell size of 0.5 9 0.5 m).

Passengers find their way towards the exit by following the information of
neighbouring cells. The interaction between passengers resolves around the idea
that two passengers cannot be in the same grid/cell at the same time.

A passenger will not move to another occupied grid cell and will wait until the
next cell is empty. If more than one passenger is waiting for the same cell (i.e. in
merging flows at exit doors) and they have the same characteristics (i.e. walking
speed), the model will resolve the conflict randomly to decide which passenger
moves first. Due to restricted space conditions, in this first version the model does
not consider the relation between walking speed and density.

As Figure 6 shows, cells 11 and 12 are seats, cells 0 are unavailable cells and
cell 44 is the exit. All the other cells are available spaces and passengers move
from one cell to the next cell towards the exit. However, some grid cells (cell 32 or
the cells that passengers immediately use to access the aisle and the cells in front
of the baggage compartment) are locations where behavioral actions (delays) may
occur. Cells have the potential to cause delay and passengers may or may not per-
form delay actions, according to a probability of occurrence assigned randomly by
the model.

Table 1
Distributions of Behavioural Variables

tpr (s) Pt1 t1 (s) Pt2 t2 (s) t3 (s) Ws (m/s)

n 79 39 65 37 48 89 74

PDF* LN U LN LN N

l 11.92 12.04 4.38 2.27 0.99

r 16.25 7.98 2.15 1.26 0.27

p 0.84 0.16

pmin 0.70 0.076

pmax 0.93 0.31

a 1.48

b 26.06

PDF probability density function, LN log-normal, U uniform, N normal, N number of samples, l mean, r standard

deviation, p probability, pmin probability minimum value, pmax probability maximum value, a minimum value, b

maximum value
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Furthermore, the time spent by each passenger performing each action (in the
aisle) is assigned randomly by the model as well, according to distributions.
Monte Carlo methods are used to assign stochastic parameters to each individual.

The modeling method is a microscopic approach which incorporates the proba-
bility of passengers performing actions in addition to their movement towards the
exits [16, 17]. The model permits to statistically treat the sample of total evacua-
tion times and fit it to a known distribution (if possible). Otherwise, density esti-
mation is given.

The main output parameter is the percentile of egress times (0.90, 0.95 and
0.99). The model also provides other statistical characteristics: mean, variance,
maximum and minimum values. The resulting model is quick and easy to set-up
and the results of thousands of simulations can be obtained in real-time.

3.2. Comparison with an Evacuation Drill

The results from stochastic model are compared with a fire drill in a passenger
train conducted by RENFE Operadora (Spanish Railroad Administration). The
simulated fire started in a lounge coach while the train was still operating. Passen-
gers were warned about the emergency before the train stops inside a rail tunnel.
No baggage was involved in the process.

The data from the drill was obtained by two fixed video cameras in position
and the evacuation time of 40 passengers through one exit door was recorded.
The input information provide to the model involved the train layout, the number
of passengers through the exit and outflow (0.58 per/s) and the time spend in
opening the train doors (53 s). Table 2 shows the comparison of results of 100
runs for each case simulated by using the stochastic model.

Figure 6. The fine network system and locations where potential
delays may occur during evacuation in a passenger coach.
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The second row in Table 2 shows the results from the simulation of drill. The
third and fourth rows in Table 2 represent the impact of imputing different proba-
bilities of Pt1 and the flow through the exit door by default.

Due to the fact that baggage was not included in the trial, participants only
carried their jackets and handbags. Because of this reason, it was necessary to cal-
ibrate the probability of occurrence for t1 (Pt1) from 0.7–0.9 to 0.3–0.5 and the
flow rate through the train exit from 0.44 per/s to 0.58 per/s in order to simulate
the same conditions of the evacuation drill. In this case, the average predicted
evacuation time obtained by EvacTrain and the evacuation time from actual drill
are very close (first and second rows in Table 2). However, results from model
described in third and fourth rows suggest that, if baggage is considered, the pre-
dicted evacuation times could increase from 12% to 28% (third and fourth rows
in Table 2) when compared to evacuation drill.

3.3. Comparison with Other Models (STEPS, FDS + Evac and
PathFinder)

A behavioural comparison is performed in order to check the effect of actions per-
formed by passengers in predicted evacuation times using three egress models:
STEPS [18], FDS + Evac [19] and PathFinder [20]. The first problem in the com-
parison was to set up the same inputs for the egress models. STEPS FDS + Evac
and PathFinder do not include delays during evacuation-passengers stopping in
the aisle- as the EvacTrain do. These models only consider one parameter: pre-
movement time as the time in which individuals will wait in their initial position
before beginning evacuation movements.

In order to solve this problem, a program was developed using Microsoft
Visual Studio 2008. NET Framework 3.5 SP1. The program simulates 1,000 ran-
dom values for tpr, t1 and t2 taking into account the probabilities of occurrence,
Pt1 and Pt2. The program then sums all of the values and fits them to a known
distribution. The results fit to a log-normal distribution with a mean of 53 s and a
standard deviation of 47 s. This pre-movement time and the walking speed used
by default in EvacTrain� were also used for STEPS, FDS + Evac and Path-
Finder simulations.

The comparison is made for a single-exit scenario with involves two coaches
and 50 passengers as shown in Figure 7. A total of 100 runs were performed with

Table 2
Predicted Egress Times from EvacTrain� Model in Comparison
with an Evacuation Drill

Mean (s) SD (s) Min. (s) Max. (s) Percentile 95% (s)

Evacuation drill 121 – – – –

Simulation of drill: Pt1 = 0.3–0.5;

Flow = 0.58 per/s

120 13 104 170 152

Default: Pt1 = 0.3–0.5; Flow = 0.44 per/s 137 13 117 178 171

Default: Pt1 = 0.7–0.9; Flow = 0.44 per/s 169 23 123 274 224
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each model to estimate the probable maximum egress time as well as the average
egress time.

Figure 8 shows the cumulative distribution functions of evacuation times. The
predicted evacuation times vary among each model. It can be seen that results
from STEPS, FDS + Evac and PathFinder have lower predicted evacuation times
in comparison with the results of EvacTrain�. Predicted evacuation times of
STEPS and PathFinder have a low variability with a mean of 105.25 s and a stan-
dard deviation of 7.69 s and a mean of 117.74 s and a standard deviation of
8.62 s respectively.

The predicted evacuation times of FDS + Evac are longer with a higher vari-
ability, with a mean of 130.40 s and a standard deviation of 17.52 s. In the sto-
chastic evacuation model, the evacuation times are strongly dependent on the
activities of individuals whose actions interrupt the continuous movement of other
passengers within the aisle. This phenomenon, which cannot be well represented in
the other models, produces longer evacuation times.

The results of EvacTrain� show a wide range of possible evacuation times. This
is expected for a stochastic model because of the intrinsic uncertainty in such
complex systems. In the simulated case with a probability of passengers delay time
within the aisle (Pt1) between 0.3 and 0.5, the average predicted evacuation time is
140.53 s with a standard deviation of 26.03 s. In this case the predicted evacuation
time is similar to FDS + Evac results.This suggests that ‘‘social force’’ algorithm
can represent interactions between passengers and their effects in narrow spaces.

Figure 7. Simulated scenario.
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When two passengers try to access the aisle at the same time, there is conflict that
produces an interruption in the continuous movement within the aisle thus
increasing the evacuation times. In the simulated case with a probability
(Pt1 = 0.7–0.9), the predicted evacuation times from stochastic model are longest
with a mean of 177.74 s and a standard deviation of 38.10 s when applying the
default input values. In this case, the stochastic model simulates the worse case
where the probability of each passenger blocking the aisle (Pt1) is between 0.7 and
0.9.

Apart from the passenger actions that may interrupt the continuous movement
within the aisle, we identified another dominant parameter. This variable is the flow
rates through the train steps. Current evacuation models assign door capacities
based on observed human behavior data and standards for buildings [21–24]. How-
ever the flow rates based on passenger performance data applied by default in Evac-
Train�, are lower. Furthermore, the model considers flow rates as a random
variable in order to simulate the personal time to negotiate train steps with a mean
value of 2.27 s and a standard deviation of 1.26 s (average flow of 0.44 per/s). This
is done by assuming this parameter as random variable more than a value based on
density correlation. Results from comparison suggests that currently, evacuation
models–particularly those primarily designed for buildings–can make simplifications
about the behaviour of passengers and are likely to produce inaccurate results in
passenger trains evacuation analysis.

4. Conclusions

In this paper a collection and analysis of data sets to support evacuation model-
ling in trains have been presented. The specific behavioural variables and a collec-
tion of empirical data-sets have been defined. In order to make this calculation,
we attempt to answer two questions: (1) what actions a passenger may take and
(2) how long it takes to perform each action. Then, statistical methods to deter-
mine the input and outputs for EvacTrain�, a stochastic evacuation model that
specializes in these particular scenarios, have been proposed.

EvacTrain has been partially validated with an evacuation drill. Then results
from EvacTrain� have been compared with STEPS, FDS + Evac and Path-
Finder. Current egress models allow the user to input distributions of pre-move-
ment times. However, the consideration and application of this parameter inside
trains should be reviewed.

The proposed model takes into account passengers stopping in the aisle, or
being stopped in the aisle by the behaviors of others. This cannot be simulated by
current egress models (mainly designed for buildings).

Results from simulations showed that:

� The specific characteristics of passenger trains make hard to use the currently
available evacuation models.

� EvacTrain� model, based on the Monte Carlo Method, permits to represent the
random character of evacuation processes.
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� Evacuation process in trains is not a simple matter of movement and more
behavioural factors should be taken into account for evacuation analysis. New
parameters should be considered and new approaches should be done in order
to obtain reliable and accurate results.
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