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INNOVATIVE DIRECTIONS OF POLYMER FIBER AND

COMPOSITE MATERIALS SCIENCE DEVELOPMENT

MATHEMATICAL MODELING OF VISCOELASTIC PROPERTIES OF

REINFORCED POLYESTER SEWING THREADS

E. A. Buryak, N. S. Klimova, UDC 539.434:677.494
N. V. Pereborova, and L. V. Titova

The method of mathematical modeling of viscoelastic properties of textile materials having a complex
macrostructure is used for sewing threads and for variously twisted polyester yarn constituting them.
The efficiency of the methods of determination of physicomechanical properties and of prediction of
deformation processes relating to these materials is checked.  The qualitative dependence of the effect
of twist of threads and yarn on their physicomechanical properties and on the relaxation time spectrum
is determined.  The effect of twist on the elastic components of deformation and specific mechanical
work of deformation is studied.

A large variety of textile materials with diverse structures are used in textile and light industry productions.
These materials may be divided tentatively into two groups, viz., materials having a simple macrostructure, i.e., various
types of polymer threads, and composite materials with a more complex macrostructure consisting of a combination of
simple materials, such as fabric, tape, yarn, tow, etc.

At present, the first group of materials, for which all kinds of mathematical models that satisfactorily
describe their physicomechanical properties are constructed, is studied most comprehensively.  Here, it is important
to set off the model that is based on normal distribution of relaxing particles in terms of proper relaxation and delay
times [1].

Despite the much larger variety of materials belonging to the second group, their physicomechanical
properties have not been studied adequately.  The reason for this lies in the fact that the mathematical models
describing the physicomechanical properties of the materials of the first group fail to work here, i.e., it is essential
to construct a model that takes account of the fact that relaxation times have a more complex spectrum than normal
distribution [2].

The integral function and density of the desired distribution must resemble normal in form on the one hand and
have significant distinctions, including broadened spectrum and delayed convergence to asymptotic values, on the other.

This type of distribution is observed among elementary functions, for example, distribution in accordance with
the arctangent law.  Affiliation of its integral function and density to the class of elementary functions and densities
greatly simplifies integrodifferential transformations.  Other similar distributions belong either to the class of special
functions or are integral, which considerably complicates the mathematical model [3].

Threads used in clothing and knitwear productions must have adequate strength on the one hand and prescribed
physicomechanical properties on the other at the point of impact of nondestructive mechanical stress and load that affect
the mechanical properties of the end products during their use.
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Getting breaking characteristics is the simplest task, for which it suffices to use conventional methods of
construction of tensile-test diagrams.  While determining other physicomechanical properties however, for example,
mean statistical relaxation and creep times, based on which the modern methods of prediction of deformation processes
are developed, the investigators face certain difficulties.  These difficulties are bound primarily with the complexity of
the macrostructure of the studied object, owing to which many methods conventionally applicable for synthetic
monofilaments either cease to work or give a large error [4].

Textile objects having complex macrostructures are characterized by broader relaxation and creep spectra, due
to which the mathematical model of physicomechanical properties ought to be constructed using relaxation and creep
functions that take account of this characteristic.  One of such functions is normalized arctangent of logarithm of reduced
time (NAL), a useful feature of which, in comparison with other normalized functions, is its affiliation to elementary
functions, which greatly simplifies integrodifferential transformations [5]:
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where t is the time, t
1
 is the base time, and 1/b

p
 is the structural parameter.

The goal of this investigation was to check the efficiency of the methods of determination of the
physicomechanical properties and the methods of prediction of viscoelastic processes of textile materials with a
complex macrostructure.

Determined also is the effect of twist of threads on their physicomechanical properties.  Reinforced polyester
sewing threads of several types (Petronit threads) manufactured by OAO NII Nitok (Scientific Research Institute of
Petronit Fibers PJSC), out of which two types of polyester threads (PET-1 and PET-2), which differ most in linear
density and twist degree (T) (Table 1), were chosen as the samples.

The chosen sewing threads have a complex structure, i.e., they are produced by twisting into a reinforced two-
ply yarn (Table 1).

The yarn, in turn, consists of a core, which is a complex polyester thread that occupies 70-80 % of the yarn
volume, and a braid of loosely twisted tape.

The diagrams of extension (ε) until breakup of both types of sewing threads (Fig. 1) and yarn (Fig. 2) were
obtained on an Instron-1122 tensile tester.
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Fig. 1.  Tensile-test diagrams for PET-1 (1) and PET-2 (2) types of sewing threads.

Fig. 2.  Tensile-test diagrams for PEY-1 (1) and PEY-2 (2) types of yarns.

Fig. 1.                                                   Fig. 2.

Table 1. Physicomechanical Properties of Sewing Threads and Yarn. 
 

Material 
Linear 

density, tex γ, g/cm3 T, twist/m Pe, N σe,  MPa εe , % 

Thread PET-1 63.3 1.36 530 29 623 26 
Thread PET-2 82.8 1,.36 575 37 610 25 
Yarn PEY-1 30.9 1.36 902 15.0 660 20 
Yarn PEY-2 40.4 1.36 629 14.8 498 19 
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The samples were extended at a sample base of 200 mm at the rate of 100 mm/sec, which corresponds to the rate

of change of deformation ε = 0.0083/sec.
For determining the main physicomechanical properties of sewing threads and yarns, a mathematical model

suitable for determination of deformation characteristics of complex textile objects, such as yarn, fabric, textile tapes [6],
etc., was used:
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where t is the time, 1/b
pε is the parameter of the relaxation process intensity, 1/b

pσ is the parameter of the creep process
intensity, τε is the relaxation time, τσ is the delay time, Eεt

 = σ/ε is the modulus of relaxation, E
0
 is the modulus of
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Fig. 3.  “Family” of relaxation curves for PET-2 type of sewing thread.

Fig. 4.  “Family” of creep curves for PET-2 type of sewing thread.
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Fig. 3.                                                               Fig. 4.
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Fig. 5.  Relaxation time unction f
1
ε = ln(t

1
/τε) of PET-1 (1) and PET-2 (2) sewing threads.

Fig. 6.  Relaxation time function f
1
ε = ln(t

1
/τε) of PEY-1 (1) and PEY-2 (2) yarns.

Fig. 5.                                                      Fig. 6.

Table 2.  Physicomechnical Properties of Sewing Threads 
and Yarn.  

 
Material E0, GPa E∞, GPa 1/bpε D0, GPa-1 D∞, GPa-1 1/bpσ  

Thread PET-1 8.14 0.86 0.037 0.123 1.163 0.090 

Thread PET-2 6.52 1.10 0.034 0.153 0.908 0.101 

Yarn PEY-1 6.04 1.21 0.029 0.166 0.826 0.115 

Yarn PEY-2 6.32 1.14 0.031 0.158 0.877 0.107 
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elasticity, E∞ is the modulus of viscoelasticity, Dσt
 = ε/σ is the compliance, D

0
 is the initial compliance, D∞ is the ultimate

equilibrium compliance, ε is the deformation, and σ is the stress.
The “families” of relaxation (Fig. 3) and creep (Fig. 4) curves for the PET-2 type of sewing thread and similar

“families” of curves for PET-1 and for yarn of both types obtained experimentally on a stress relaxometer were processed
by a quick method using mathematical models (2) and (3).  As a result, the main physicomechnical properties of these
materials were obtained (Table 2, Figs. 5−8) [7].

Comparing the values of the obtained physicomechanical characteristics of the sewing threads and yarns (Table
2, Figs. 5-8) we find that the modulus of elasticity and the relaxation process intensity parameter decrease with increase
of the degree of twist of both sewing threads and yarns.

The mean statistical relaxation times (Figs. 5 and 6) and the structural coefficient of relaxation b
pε, which

characterizes the width of the relaxation spectrum, increase simultaneously with increase of twist degree [8].
Note that, in all four types, the referred coefficient lies within 27 < b

pε < 35, which, in comparison with synthetic
threads, for which this parameter generally lies within 2 < b

pε < 20, indicates widening of the relaxation spectrum.
The spectra of the noted width (27 < b

pε < 35) are described well by the mathematical model constructed using
the NAL function of reduced time (because of its relatively slow convergence to the asymptotic values) just as similar
spectra of textile materials with a complex structure.  Thus, it may be concluded that relaxation time spectrum widens
with increase of twist degree.

Let us check the influence of twist on elastic components of deformation and specific mechanical work of
deformation.

Fig. 7.  Creep time function f
1
σ= ln(t

1
/τσ) of PET-1 (1) and PET-2 (2) sewing threads.

Fig. 8.  Creep time function f
1
σ= ln(t

1
/τσ) of PEY-1 (1) and PEY-2 (2) yarns.
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Fig. 7.                                                      Fig. 8.

Table 3.  Components of Deformation and Specific Mechanical 
Work of Deformation. 

 
Material ε1, % ε0, % ε1 −  ε0 , % at0, GPa at, GPa att, GPa 

Thread PET -1 

2 0.8 1.2 0.28 0.72 0.44 
4 1.4 2.6 0.74 2.09 1.35 
6 1.9 4.1 1.31 4.17 2.86 
8 2.3 5.7 1.84 7.21 5.37 

Thread PET -2 

2 1.1 0.9 0.38 0.69 0.31 
4 1.7 2.3 0.85 2.01 1.16 
6 2.2 3.8 1.43 4.03 2.60 
8 2.8 5.2 2.03 6.95 4.92 

Yarn PEY -1 

2 1.0 1.0 0.34 0.67 0.33 
4 1.8 2.2 0.99 2.23 1.24 
6 2.3 3.7 1.61 4.19 2.58 
8 2.8 5.2 2.25 6.38 4.13 

Yarn PEY -2 

2 0.9 1.1 0.31 0.66 0.35 
4 1.7 2.3 0.93 2.19 1.26 
6 2.1 3.9 1.48 4.11 2.63 
8 2.5 5.5 2.07 6.23 4.16 
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It is known that the process of thread deformation at the set rate ε  as the initial stage of the tensile-test diagram
is analytically described by the phenomenological integral equation of the nonlinear hereditary type

( ) .
0

00 ∫ ε−∞ ϕ′σ−−ε=σ
t

ssttt dsEEE (4)

As in a general case where ε ≠  const, the elastic component of deformation can be determined by the equation

tt E σ=ε −1
00 (5)

or by mathematical prediction using equation (4)
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For a given point of the tensile-test diagram with the coordinates ε
t
 and σ

t
 the specific mechanical work (per unit volume)

is calculated by the equation

∫
ε

εσ=
t

da tt
0

(7)

or by the equation
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The potential (elastic) component of the specific mechanical work 21
00 5.0 tt Ea σ= −  and the dissipating part of

the specific mechanical work a
tt
 = a

t
 − a

t0
 also are determined by any of the referred two equations.

Calculation of the specific mechanical work a
t0
, the dissipation component a

tt
, and elastic component of

deformation ε
0
 for both types of sewing threads (PET-1 and PET-2) and yarn (PEY-1 and PEY-2), taking account of NAL

function, is given in Table 3.
As evident from Table 3, the elastic components of deformation and specific mechanical work increase with

increase of twist of sewing thread and yarn of both types.  This implies that the material with a greater degree of twist is
more elastic, i.e., it recovers its original state better after deformation, which is expressed favorably in the performance
qualities of the end sewing or knitting products [10].

On the other hand, decrease of the proportion of the component a
tt
 in the mechanical work with increase of twist

indicates decrease of the role of the viscoelastic factor.
The work was financed within the ambit of accomplishment of the state assignment of the Ministry of Science

and Higher Education of the Russian Federation, Project No. FESZ-2020-0005.
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