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Mathematical models and methods of determination of functional-use relaxation-recovery properties
of textile industry materials having decisive importance for comparative analysis and qualitative
sampling of materials having specific properties are reviewed.

Functional-use and performance properties of textile industry materials are based primarily on determination of
the physicomechanical properties of these materials, to the study of which paramount attention must be paid.

For a comprehensive study and prediction of the functional-use and performance properties of textile industry
materials to improve the quality of goods therefrom, it is proposed to conduct investigations of the basic relaxation-
recovery and deformation-performance processes, i.e., relaxation and creep, which characterize the key physicomechanical
properties of the materials [1-3].

It is expedient to conduct such study making use of mathematical modeling, followed by computer-aided
prediction of relaxation and creep.

Although relaxation and creep processes are different in physical nature, they are, in fact, reciprocal processes
harmoniously complementing each other.  Because of this, the study of relaxation and deformation properties of textile industry
materials relating primarily to the class of viscoelastic solids is an essential and, in some cases, an urgent task [4-6].

Relaxation process implies a change in the stress σ
t
 (or force F

t
) applied to a material over a time t under the

action of deformative ε:
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A key property of relaxation process is relaxation modulus Eεt
 = σ

t
/ε, which has two asymptotic values:modulus

of viscoelasticity
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and modulus of elasticity [7-9]
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The relaxation modulus Eεt
 can be modeled mathematically using increasing normalized relaxation function ϕεt

that acquires significance in the segment [0.1]:

( ) .tt EEEE ε∞ε ϕ−−= 00 (4)

Let us take the normalized arc tangent of logarithm (NAL) that characterizes the Cauchy integral distribution as
the relaxation function ϕεt

 [10, 14]:
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where τε − a characteristic of mean relaxation time and b
nε − a characteristic of relaxation intensity.

For ease of modeling, logarithmic scale of reduced dimensionless time is used.
Instead of the mean relaxation time parameter τε,, which is defined by the deformation-time function of shears

in logarithmic time scale, it is proposed to consider the mean relaxation time ε determined by the equation

∫
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where ε
1
, ε

2
 – minimum and maximum values from the studied deformation range [15-18].

When determination only of qualitative properties of the materials is needed, switch from functional relationship
to a constant is justified for mathematical modeling of relaxation-recovery properties.  Such switch greatly simplifies the
mathematical model, which is of considerable importance for investigating qualitative viscoelastic properties.  Note that
in more detailed studies of viscoelastic-relaxation processes, for example, from the spectral analysis premises, such
switch to a simplified mathematical model is unjustified [19-21].

Thus, equation (4) is a mathematical model of polymer material relaxation process.
The choice of the function NAL as the foundation of the mathematical model of relaxation is not accidental

because the Cauchy probability distribution, the integral function of distribution of which it is, possesses a unique
property, i.e., the sum of the characteristics distributed in accordance with the Cauchy probability law also has by its
distribution the Cauchy probability distribution.  For textile industry materials obeyance to this law is extremely important
because any complex textile object is an aggregate of simpler textile objects (yarns consist of fibers, fabrics consist of
yarns, etc.).  So, if the parameters of simpler textile materials obey the Cauchy probability distribution law, the parameters
of more complex textile materials will also obey this distribution law [22-25].

The method of determination of functional-use relaxation-recovery properties of textile and light industry
materials is based on numerical treatment  of experimental “family” of relaxation curves for values of deformation
constant ε = const obtained on a stress relaxometer.
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Fig. 1.  Graph depicting experimental “family” of
relaxation curves of 33.3 tex Nitron yarn at
constant deformation values.
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An example of the graph of “family” of relaxation curves for Nitron polymer yarn with a linear density of 33.3
tex at constant values of deformation ε is given in Fig. 1.

Introducing the formula for the studied normalized relaxation function (5)
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and differentiating (4) further we get the expression for the derivative from the relaxation modulus:
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which contains the relaxation core εt
:
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The quantity t
1
 means the value of the “base” time, which we will assume for convenience as t

1
 = 60 sec.  The

base time value is needed so that a dimensionless quantity lay under the sign of the logarithm.
Considering that the extreme value of the derivative from the relaxation modulus  is attained at Wεt = Wτ = 0,

let us determine its corresponding characteristic value of relaxation modulus Eτ:
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which enables determination of the width of the band of relaxation modulus values:

( ) ( ),222 00 ∞τ∞∞τ −⋅=−=−⋅=Δ EEEEEEE (12)

whence we get the elasticity modulus value

ττ Δ+= EEE0 (13)

and the viscoelasticity modulus value

ττ∞ Δ−= EEE . (14)

Table 1.  Technical Characteristics of Studied Textile Yarns.  
 

Name Linear density, tex Breaking stress, GPa Breaking  
d eformation, % 

Capron-91 91 1.08 13.2 

Capron-149 149 1.10 17.0 

Lavsan-15.6 15.6 0.52 24.3 

Lavsan-114 114 0.83 11.5 

Capron-187 187 0.78 15.5 

Capron-189 189 0.91 16.8 

Nitron -33.3 33.3 0.92 12.8 

Capron-410 410 0.68 23.3 
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Hence, under the condition of attainability of the extremum  at the midpoint of the band at Wτ = 0 we can
determine using expression (9) the characteristic value for the derivative from the relaxation modulus:
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Further, from expressions (9) and (15) we get
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Subtracting equation (4) from equation (11) and taking account of (12) we get:
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whence we get the characteristic value of the relaxation intensity 1/b
nε:
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The characteristic of the mean relaxation time τε is obtained as a parameter of time shift of the relaxation curve
obtained for the deformation ε value until coincidence with the generalized relaxation curve obtained by equation (4) [26-28].

Table 3.  Technical Characteristics of Studied Technical Fabrics. 
 

Name Width, mm Compositio n,  % Linear density, 
t ex (warp/weft) 

Breaking 
s tress, GPa 

Breaking  
deformation 

TF-11 140 
Lavsan-60,  
Capron -40 6.7/18.8 2.9 18 

TF-13 100 Capron-100 3.3/5.0 3.7 22 
TF-14 140 Lavsan-100 7.1/16.3 3.4 19 

TF-16 150 
Lavsan-80,  
Capron -20 6.9/14.3 3.6 21 

TF-17 100 Capron-100 5.0/5.0 3.1 18 
 
  

Table 2.  Technical Characteristics of Studied Capron Tapes. 
 

Name 
Linear densi ty, tex 

(warp/weft) Width, mm 
Breaking  stress, 

GPa 
Breaking  

deformation, % 

CT-2 16/16 2 1.53 18 

CT-13 16/16 13 1.69 20 

CT-15 29/29 15 1.82 25 

CT-16 29/29 16 1.91 26 

CT-25 29/29 25 4.41 25 

CT-26 29/29 26 5.-89 20 

ShK 303/14 5  1.96 30 
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The relaxation characteristics E
0
, E∞, τε, and b

nε of textile industry materials obtained by the method of modeling of
the functional-use relaxation-recovery properties of these materials are proposed to be used further for evaluation of their
quality.  Note as well that the relaxation properties obtained by mathematical modeling using NAL function obey Cauchy
probability distribution, which is particularly important for materials that have a complex (composite) macroscopic structure.

The method of determination of functional-use relaxation-recovery properties of textile industry materials is
applicable for a variety of textile materials, such as textile yarns (technical characteristics listed in Table 1), Capron tapes
(Table 2), and technical fabrics (Table 3).

The calculated relaxation-recovery properties of textile yarns are listed in Table 4, of Capron tapes, in Table 5,
and of technical fabrics, in Table 6.

A preliminary evaluation of the functional-use relaxation-recovery properties of the studied materials can be made
from the calculation parameters of the functional-use relaxation-recovery properties of textile industry materials, namely,
elasticity modulus E

0
, viscoelasticity modulus E∞, relaxation process intensity 1/b

nε, and mean relaxation time ετ   [29-32].
For example, among the textile yarns, Nitron yarn having a linear density of 33.3 tex is the one whose elastic

properties are restored most fully after deformation because its viscoelasticity modulus is the lowest (E = 0.8 GPa).  The
elastic properties of Lavsan yarn having a linear density of 15.6 tex are least restored because its viscoelasticity modulus
is the highest (E∞ = 6.5 GPa).

Table 4.  Calculated Relaxation-Recovery Properties of Textile Yarns. 
 

Name E0, GPa E∞, GPa 1/bnε ετ , sec 

Capron -91 3.9 1.2 0.43 193 
Capron -149 2.8 1.5 0.41 98 
Lavsan-15,6 13.9 6.5 0.13 138 
Lavsan-114 14.0 4.0 0.09 132 
Capron -187 2.4 1.5 0.16 142 
Capron -189 3.1 1.2 0.42 139 
Nitron -3 3,3 5.9 0.8 0.30 104 
Capron -410 3.9 1.8 0.32 207 

 

Table 5.  Calculated Relaxation-Recovery Properties of Studied 
Capron Tapes. 
 

Name E0, GPa E∞, GPa 1 /bnε ετ , sec 

CT-2 65.0 28.5 0.213 942 

CT-13 45.7 14.8 0.313 832 

CT-15 43.8 15.7 0.334 984 

CT-16 42.2 16.2 0.249 791 

CT-25 40.4 18.8 0.356 718 

CT-26 38.2 19.2 0.241 637 

ShK 49.8 21.5 0.312 587 
 
  Table 6.  Calculated relaxation-recovery properties of studied tech-

nical fabrics.  
 

Name E0, GPa E∞, GPa 1/bnε ετ , sec 

TF-11 53.5 22.6 0.709 394 

TF-13 51.7 19.1 0.696 372 

TF-14 57.4 18.3 0.647 389 

TF-16 48.3 21.6 0.682 351 

TF-17 59.8 16.9 0.584 384 
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At the same time, the restoration is most intense for Capron yarn having a linear density of 91 tex because its
intensity parameter value is the highest (1/b

nε = 0.43).  The restoration process is least intense for Lavsan yarn because its
intensity parameter has the lowest value (1/b

nε = 0.09).
If the textile yarns are compared in terms of mean relaxation time, it can be stated here that among the textile

yarns the elastic properties of Capron yarn having a linear density of 149 tex are restored fastest because its mean
relaxation time is the least ( ετ  = 98 sec) and the elastic properties of Capron yarn with a linear density of 410 tex are
restored the slowest because its mean relaxation time is the longest ( ετ = 207 sec).

Thus, application of the mathematical model and the method of determination of functional-use relaxation-
recovery properties of textile industry materials is tested on a representative group of textile materials, for which predictable
relaxation-recovery parameters and properties, which have a decisive importance for comparative analysis and qualitative
sapling of materials possessing specific properties, were obtained.

This work was financed within the ambit of execution of the state assignment of the Ministry of Science and
Higher Education of the Russian Federation, Project No. FSEZ-2020-0005.
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