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Abstract Stochastic volatility (SV) models are theoretically more attractive than the
GARCH type of models as it allows additional randomness. The classical SV models
deduce a continuous probability distribution for volatility so that it does not admit a
computable likelihood function. The estimation requires the use of Bayesian approach.
A recent approach considers discrete stochastic autoregressive volatility models for a
bounded and tractable likelihood function. Hence, a maximum likelihood estimation
can be achieved. This paper proposes a general approach to link SV models under the
physical probability measure, both continuous and discrete types, to their processes
under a martingale measure. Doing so enables us to deduce the close-form expression
for the VIX forecast for the both SV models and GARCH type models. We then carry
out an empirical study to compare the performances of the continuous and discrete
SV models using GARCH models as benchmark models.

Keywords Stochastic volatility · GARCH · DSARV · Continuous SV · VIX ·
Forecast

1 Introduction

There has been a growing interest in VIX computed from market prices for S&P
500 options, as a volatility derivative, since the Chicago Board Options Exchange
(CBOE) introduced trading in futures and options on S&P 500 implied volatility
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index (VIX) in 2004 and 2006, repectively, allowing volatility to be treated as an
asset class. The VIX-related literature includes Carr and Wu (2006), Dupire (2006),
Psychoyios and Skiadopoulos (2006), Dotsis et al. (2007), Becker et al. (2009), and
Lin and Chang (2010). The growing interest in forecasting on the VIX index brings the
necessity of choosing a better model for volatility. Kanniainen et al. (2014) valuate
S&P 500 options using three popular GARCH models with VIX data. They find a
joint maximum likelihood estimation (MLE) with returns and VIX improves option
pricing performance, in contrast to traditional returns-based MLE. They also find that
non-affine models clearly outperform affine models, consistently with the existing
research.

GARCH models of Bollerslev (1986) are gaining popularity in practice probably
because the likelihood function can be expressed in close form, making the maximum
likelihood estimation (MLE) of the model parameters possible. Therefore, GARCH
models is a natural candidate to predict VIX asVIX is essentially related to the options’
implied volatility. However, Nelson (1991) finds that a random oscillatory behavior of
the conditional variance process is missing in the GARCH typemodels. Besides, these
types of models can only generate a volatility skew in some option markets whereas
a U-shaped volatility smile is observed in practice.

Heston (1993) extends the SV model to have a leverage effect by allowing a non-
zero correlation between the asset return and its volatility. Hull andWhite (1987) adds
an additional stochastic process in the volatility of GARCH-type models which is
unobserved, introducing the stochastic volatility (SV) model. Heston (1993) extends
the SV model by allowing a leverage effect, a non-zero correlation, between the asset
return and its volatility.

Unfortunately, the estimation of the SV models is a highly challenging task as the
models do not have the likelihood function in close form. Therefore, the Bayesian
framework becomes a useful alternative. The implementation of Bayesian methods
usually requires the construction of aMarkovChainMonteCarlo (MCMC) simulation.
Jacquier et al. (1994) analyze SV models with a leverage effect by adopting the Gibbs
sampling scheme. Shephard and Pitt (1997) employ the Metropolis–Hastings scheme
for the sameproblem.Meyer andYu (2000),Yu (2005) alsomake somegeneralizations.
Wang et al. (2016) propose an SV model with scale mixture of normal type of error
distributions, satisfying that the historical model can be calibrated using Bayesian
inference from historical data and that it can easily be transformed into a risk neutral
model useful to estimate option prices. The implementation of Bayesian approach on
continuous SV models could be time consuming and is criticized for the use of a prior
information. Yet there are frequentist approaches of estimating the continuous SV in
mean (SVM) models based on Monte Carlo simulation methods like Koopman and
Hol-Uspensky (2002).

Recent advances attempt to discretize the continuous volatility to a finite set
of volatility states. Cordis and Kirby (2014) develop a class of discrete stochastic
autoregressive volatility (DSARV) models using Markov chain methods, allowing a
low-dimensional state space for the volatility, which greatly improves the compu-
tational tractability. They can be easily estimated through a recursively computed
likelihood function shown by Hamilton (1989, 1990) at first, and can accommodate
features such as volatility asymmetry and time-varying volatility persistence. The
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DSARV models share some structural similarities with both the Markov-switching
multi-fractal (MSM) models of Calvet and Fisher (2004) and the component-driven
regime-switching (CDRS) models of Fleming and Kirby (2013) but dispute the tight
parameterization and let the volatility follows a low-order autoregressive process,mak-
ing it feasible to be developed into various multivariate versions. In the paper, several
variations within the class of DSARV models are compared by their performances
of forecasting volatility. However, they solely consider the models under physical
measure.

In this paper, we examine continuous SV model, DSARV model, and the GARCH
type models in forecasting the VIX index. We propose a transformation to bridge
between the physical and risk-neutral probability measures so that the three types of
models can predict the VIX as the risk-neutral expectation on the future volatility. We
examine the models’ performances through out-of-sample tests. By “out-of-sample”
here, we refer to the tex sample which is out of the estimation sample, instead of which
from the time series perspective. Our goal is to determine which model explains
the volatility better. Given a time series of stock prices sampled from time points
t1, t2, . . . , tn , we predict the VIX at time tn and compare it with the market observed
VIX at tn . This is important for derivatives pricing purpose. For example, the European
call option at time tn needs the volatility at tn as an input. When the underlying asset
does not have a liquid option market for calibration purpose, the volatility at time tn
predicted by the time series of the underlying asset prices becomes important. We
use the liquid index option market which has observed VIX data to test for volatility
prediction of stochastic model based on historical index values. Unlike Cordis and
Kirby (2014) who use VIX data as input to forecast volatility, we do not use the VIX
data as our sample input but, rather, output the VIX to compare with the observed
VIX.

Therefore, we derive the risk-neutral dynamic of the DSARV model, so that the
model can be applied to option pricing and VIX forecast directly. We also deduce
the close-form expression for the VIX with the continuous SV model. Our empirical
study suggest that the continuous SV model has the best performance among the
three models although MCMC method has to be used in the estimation procedure.
The DSARV model gives a rather unsatisfactory result, even compared to GARCH
model. Although the implementation of the MLE method avoid subjectivity and may
reduce computational time for the DSARV model, the computation of VIX is rather
tedious.

This paper is organized as followed. Sect. 2 presents the the GARCH-type model,
the continuous SV model, and the generalized DSARVmodel that we are to compare,
under the physical probability measure. Then we give the risk-neutral equivalence
of the DSARV model, in order to conduct volatility forecast under the risk-neutral
measure. The GARCH and continuous SV model in the risk-neutral measure are
also shown. In Sect. 3, the estimation methods of the models are discussed. The
methods of VIX prediction with the three models are given. An empirical study based
on the historical S&P 500 data is done in Sect. 4 to show the performances of the
three models on predicting the VIX index. Finally concluding remarks are made in
Sect. 5.
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2 Models

Weconsider three volatility specifications in this paper: theDSARVmodels, the classi-
cal continuous SVmodel with leverage, and the non-affine GARCH(1, 1) models. The
NGARCH-specifications proposed by Engle and Ng (1993) is adopted in our GARCH
benchmarking model. In later part of this section, we deduce the DSARVmodel under
the risk-neutral measure, which is new to the literature, so that the volatility forecast
can be done straightforwardly.

2.1 NGARCH Model

The NGARCH model is specified to be:

Rt+1 = log

(
St+1

St

)
= r + λσt+1 − 1

2
σ 2
t+1 + σt+1zt+1, (1)

σ 2
t+1 = β0 + σ 2

t

[
β1 + β2 (zt − β3)

2
]
, (2)

where β0 > 0, β1, β2 ≥ 0 since the conditional variance has to be positive. zt is the
i id standard normal random variable. λ stands for the risk-premium. According to
Duan (1995), the dynamics of the return and volatility under the risk-neutral measure
can be expressed as followed:

Rt+1 = log

(
St+1

St

)
= r − 1

2
σ 2
t+1 + σt+1 z̃t+1, (3)

σ 2
t+1 = β0 + σ 2

t

[
β1 + β2

(
z̃t − β̃3

)2]
, (4)

where β̃3 ≡ β3+λ. z̃t is the corresponding normal process undermeasureQ. The shift
cauzed by the change of measure is absorbed by the parameter β3, which therefore
becomes β̃3.

2.2 Continuous SV Model

For the continuous SV model, the return and log-volatility take the following dynam-
ics:

Rt+1 = r + λeht+1/2 − 1

2
eht+1 + eht+1/2zt+1, (5)

ht+1 = μ + φ (ht − μ) + τηt , (6)

ηt = ρεt +
√
1 − ρ2zt , (7)

where ht is the log-volatility at time t , τ is the standard variance of ht . We assume the
persistence in the volatility, i.e., |φ| < 1, so that ht is stationary. To reflect leverage
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effect, volatility and return are correlated through (7). zt and ηt follow standard normal
distributions.

The risk-neutral dynamics become

Rt+1 = r − 1

2
eht+1 + eht+1/2 z̃t+1, (8)

ht+1 = μ̃ + φ (ht − μ) + τ η̃t , (9)

where z̃t+1 and η̃t are standard normal process under the Q measure. μ̃ is the corre-
sponding μ under Q,

μ̃ = μ − ρλτ, (10)

absorbing the shift from the physical measure by the error term of volatility through
Eq. (7). Therefore, the volatility is a continuous random variable for any future time
points.

2.3 Discrete Stochastic Autoregressive Volatility (DSARV) Model

Cordis andKirby (2014) developdiscrete stochastic autoregressive volatility (DSARV)
models as a discrete version of SV models. They consider several variations of the
original DSARV model in their paper. We take the generalized first-order DSARV
model, denoted as DSARV(1, N ), for the volatility process for analysis, where N
stands for N volatility states in total, the length of the vector σ . In our paper, the
DSARV(1, N ) model for the volatility takes the following form:

Rt+1 = r + λvt+1 − 1

2
v2t+1 + vt+1zt+1, (11)

vt+1 = σ
′
xt+1, σ = (σ1, σ2, ... σN ), (12)

xt+1 = P
′
txt + et+1, (13)

Pt = φIN + (1 − φ)1Nπ
′
t . (14)

In the model setting, volatility dynamics are described in Eq. (12) by a first-order
Markov chain instead of a continuous diffusion process setting. σ = (σ1, σ2, . . . , σN )

′

is an N × 1 vector that specifies the volatility mass points. xt is an N × 1 vector that
represents the states of the N-state Markov chain at time t , whose j th element equals
1 if the process is in state j ∈ 1, 2, . . . , N at time t and 0 otherwise (Hamilton 1994).
Equation (13) describes the state transitions specifically. et+1 is a vector martingale
difference sequence, where the expectation of et+1 given state transitions up to time
t equals 0. The N × N time-changing transition matrix Pt stands for the transition
probabilities of the Markov chain {xt }, whose typical element is pkjt = Pr(vt+1
= σ j |vt = σk), and is modeled by Eq. (20). IN denotes N × N identity matrix. 1N
denotes an N × 1 vector of all 1. zt+1 in the return process also follows a standard
normal distribution.

To capture the feature of asymmetric volatility by making the volatility correlated
with the returns and to reduce heavy parameterization, Cordis and Kirby (2014) allow
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the transitionmatrixPt to be changingwith time and the past return series. Of themany
ways of specifying the elements within Pt to make the volatility process correlated
with the returns, we follow one possible specification proposed by Cordis and Kirby
(2014) by modeling π t in (20) as

π j t = (N − 1)!
( j − 1)!(N − j)!w

j−1
t (1 − wt )

N− j , j = 1, 2, . . . , N , (15)

wt = exp(η + ψRt )

1 + exp(η + ψRt )
, (16)

where parameter wt is time-varying, and a function of the past returns. 0 < wt < 1.
The direction and strength of the volatility asymmetry effect is modeled by the sign
and the magnitude of ψ .

Under the risk-neutral measure, the model becomes

R̃t+1 = r − 1

2
v2t+1 + vt+1 z̃t+1, (17)

vt+1 = σ ′xt+1, (18)

where z̃t+1 is the standard normal process under probability measure Q. R̃t+1 is the
corresponding risk-neutral return process that to be generated. Therefore the transition
matrix is also changing to P̃t as in the following process

xt+1 = P̃
′
txt + et+1. (19)

Further, π̃ t and w̃t are the risk-neutral equivalence of π t and wt in (15) and (16):

P̃t = φIN + (1 − φ)1N π̃
′
t , (20)

π̃ j t = (N − 1)!
( j − 1)!(N − j)! w̃

j−1
t (1 − w̃t )

N− j , j = 1, 2, . . . , N , (21)

w̃t = exp(η + ψ R̃t )

1 + exp(η + ψ R̃t )
. (22)

Here for the DSARV model, the change in the volatility through the measure
transformation is not linear as for the continuous SV model. The shift from the trans-
formation procedure is absorbed by (22), and have effect on the risk-neutral volatility
through a series of equations by (21), (20), and (19).

To further reduce the heavy parametrization of the DSARV(1, N ) model, we adopt
the extended possibility of ’log-linear’ DSARV specification for σ by Cordis and
Kirby (2014):

logσ j = δ + γ j, j = 1, 2, . . . , N , (23)

where γ > 0 and no restriction is given to δ. In this specification, log-volatility are
distributed evenly along a line.
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3 Model Estimation and VIX Prediction

3.1 Parameter Estimation of NGARCH and Continuous SV Model

For the NGARCH models, parameters can be estimated through the maximum likeli-
hood estimation.

One tricky point of the continuous SV models is the impossibility of writing the
likelihood function of the model in close form. One has to use Bayesian approach
via MCMC sampling method to do the estimation in this study. Under the Bayesian
framework, the sampling from posterior distribution of parameters needs us to specify
the prior distributions for the parameters concerned in this model.

We adopt the following prior distributions:

μ ∼ N (aμ, bμ)

λ ∼ N (aλ, bλ)

τ 2 ∼ IG(aτ , bτ )

φ∗ ∼ Be(aφ, bφ)

ρ ∼ U (aρ, bρ)

where φ∗ = φ+1
2 , Be(a, b) is the beta distribution with density

f (x |a, b) = 1

B(a, b)
xa−1(1 − x)b−1,

B(·, ·) is the beta function, and IG(a, b) is the inverse gammadistributionwith density

f (x |a, b) = ba

�(a)
x−(a+1)e− b

x .

Specifically, a vague normal prior distribution is assigned to μ, a uniform prior is
assigned to ρ , a non-informative inverse gamma prior distribution is assigned to τ 2 ,
a beta prior distribution is assigned to φ∗ and a normal prior distribution is assigned
to λ.

3.2 Parameter Estimation of the DSARV(1, N) Models

Cordis and Kirby (2014) gives in their paper the log likelihood function of the
DSARV(1, N ) model as

L (θ) =
T∑
t=1

log 1
′
N (xt |t−1 � ηt ), (24)

where � denotes element-by-element multiplication, and ηt = (η1t , ..., ηNt )
′
with

η j t = f (Rt |vt = σ j ,Ft ; θ). Here the density is Gaussian as the error distribution
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of return process is normal. θ denotes all the unknown parameters within the model,
including parameters in the transition matrix and volatility states. In this likelihood
function, xt+1|t denote the expectation of the N × N state vector xt+1 given infor-
mation up to time t , i.e., xt+1|t = E (xt+1|Ft ). T denote the number of observations
within a dataset. xt+1|t is a recursive algorithm given by Hamilton (1989, 1990)

xt+1|t = P̃
′
t

(
xt |t−1 � ηt

1
′
N (xt |t−1 � ηt )

)
. (25)

Thus MLE can be applied to the log likelihood function in (24) to get the result of the
estimation.

3.3 VIX Derivation

This paper mainly intends to compare the volatility forecast with the NGARCH, con-
tinuous SV model, DSARV(1, N ) model, by the help of the VIX index. Considering
the fact that there is relatively not much literature on directly predicting the VIX, and
that we need to figure out a way to use the three models to conveniently make VIX
forecast, we take Kanniainen et al. (2014)’s expression for the VIX as the risk-neutral
expectation of integrated variance within a month:

1

τ

(
VIXt

100

)2 ∼= 1

T
Ẽt

T∑
j=1

σ 2
t+ j , (26)

in discrete time, where Ẽ(·) is an expectation under the risk-neutral measure, and σ is
the volatility. We follow Hao and Zhang (2013) and take the annualizing parameter τ

as 252, and T = 30.

3.3.1 VIX for NGARCH

Kanniainen et al. (2014) shows for NGARCH models, the VIXt can be computed by
iteratively computing the volatility as

1

τ

(
VIXG

t

100

)2

= 1

T

T∑
j=1

(
ht+1�̃

j−1 + h̃
(
1 − �̃ j−1

))
(27)

= ht+1
1 − �̃T

(1 − �̃)T
+ h̃

(
1 − 1 − �̃T

(1 − �̃)T

)
, (28)

with

h̃ = β0

1 − �̃
,
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where � and �̃ denote the volatility persistence of the corresponding model under
the physical and risk-neutral measures, respectively. VIXG

t denotes the predicted VIX
series from the NGARCH models. Under this model, � = β1 + β2(1 + β2

3 ), and
�̃ = β1 + β2(1 + β̃2

3 ).

3.3.2 VIX for Continuous SV Models

We derive the close-form expression for the VIX with the continuous type of SV
models by applying VIX basic formula (26) to the model in Eqs. (5), (6), and (7)
directly. Then we get

1

τ

(
VIXt

100

)2 ∼= 1

T
Ẽt

T∑
j=1

eht+ j . (29)

From Eq. (10), if we denote the linear shift from measure P to measure Q as �, i.e.,
μ̃−μ = ρλτλ�, the conditional n step prediction under the risk-neutral measure can
be expressed as

Ẽt e
ht+ j = eμ(1−φ j ) + φ j ht − �(1 − φ j )

φ(1 − φ)
· Ẽt e

τ(φ j−1η̃t+1+φ j−2η̃t+2+...+η̃t+ j ) (30)

= eμ(1−φ j )+φ j ht− φ�(1−φ j )
(1−φ) · e

1
2 τ 2

1−φ2 j

1−φ2 (31)

with η̃t+ j being the random process driving the volatility under the risk-neutral
measure at time t+ j . Therefore taking (31) back into (29), theVIXt for the continuous
SV models can be written as

VIXC
t = 100 ·

√√√√ τ

T

T∑
j=1

eμ(1−φ j )+φ j ht− φ�(1−φ j )
(1−φ) · e

1
2 τ 2

1−φ2 j

1−φ2 . (32)

Here VIXC
t denotes the VIX index predicted from the continuous SV model.

We can see from (32) that for continuous SV model, although estimation could be
troublesome with MCMC sampling under the Baysian framework, the forecast on the
VIX can be written fully in close form. Thus the prediction on the VIX is direct and
convenient.

3.3.3 VIX for DSARV Models

For theDSARV(1, N )models, unfortunatelywe do not have a close formof calculating
the VIX index. So we simply follow the definition of the VIX in Eq. (26), simulate
vt+ j according to Eq. (18) given information up to time t , and then compute Ẽtv

2
t+ j

from
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VIXD
t = 100 ·

√√√√ τ

T

T∑
j=1

Ẽtv
2
t+ j , (33)

where VIXD
t denotes the predicted VIX index from the DSARV(1, N ).

3.4 AR(1) Model for VIX

When we actually conduct the VIX forecast, we need to first estimate the parameters
from each model under measure P. After estimation, we transform each model is
into the measure Q and get the corresponding VIXG , VIXC , and VIXD from (28),
(32), and (33). To compare the performances of different models, there are many
statistical approaches. One way is to form a model with VIX from the model and
market VIX.

Kanniainen et al. (2014) take the AR(1) specification for the VIX index to describe
autoregressive disturbances to associate with the VIX market price. They denote the
bias as

ut = VIXMkt
t − VIXMdl

t , (34)

where VIXMkt represents the market VIX index, VIXMdl denotes the VIX that we get
from the above three models, respectively. Further the bias takes an AR(1) form:

ut = ρut−1 + εt , (35)

where εt ∼ NID(0, σ 2). We follow Beach and MacKinnon (1979) in applying MLE
with autoregressive disturbances with the VIX, where ut is granted a normal dis-
tribution with a zero mean and a contemporaneous variance �. Hence we have the
log likelihood for the parameters ρ and � in the AR(1) model in Eqs. (34) and (35)
as

log LV I X (VIX; θ , ρ) = −n

2

(
(log(2π) + log(�(1 − ρ2))

)

+ 1

2

(
log(�(1 − ρ2)) − log(�)

)

− 1

2�

(
u21 +

n∑
t=2

(ut − ρut−1)
2

1 − ρ2

)
.

where θ is the parameter vector that contains all the parameters that have already been
estimated in the estimation procedure.

Using this AR(1) model for the difference between the market observed VIX index
and the model predicted VIX, we empirical compare the prediction errors for the
three models. Our goal is to test if the DSARV model implemented with MLE really
outperforms its continuous counterpart.
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4 Empirical Studies

We collect historical data of S&P 500 on a daily basis, estimate the models with the
stock data using methods mentioned in Sect. 3, and calculate the predicted VIX index
using the corresponding representation of each model. The empirical performance is
based on the comparison between the model-predicted VIX and the market-observed
VIX, during which the testing sample is the VIX data from the market, out of our
estimation sample.

4.1 The Empirical Framework

Specifically, for the discrete type of SV models, we examine the estimation behavior
of DSARV models with different volatility state. Cordis and Kirby (2014) find the
estimation for the first order DSARV models achieves the best result at N = 8, for
there is not a decrease in the DIC as obvious as the DSARVmodels with smaller N . In
our study,we focus onDSARV(1, 4),DSARV(1, 6),DSARV(1, 8), andDSARV(1, 10).
Maximum likelihood estimation (MLE) is carried out directly for the aforementioned
models with different numbers of volatility mass points.

The MLE of the parameters is also computed directly for NGARCH models. We
implement the estimation of the continuous SV model using the WinBUGS package
in R. The WinBUGS software mainly implement the Gibbs sampler. A single Markov
chain is run for 15000 iterations. To ensure better convergence, the initial 5000 of all
the iterations are discarded as burn-in period. Prior distributions are chosen according
to Sect. 3.1. After estimation, we start simulating the VIX from the starting date where
we take the S&P 500 data. We generate a series of VIX index for each model under the
risk-neutral measure according to Sect. 3.2, and calculate predictive bias by dividing
the market VIX by the model VIX. The VIX data simulated from the three models are
further used to compute the autoregressive coefficient and variance of the VIX model
itself, for the reference of comparison.

The data points we take are the S&P 500 dailies from January 2009 to December
2014. VIX index of the same period are collected for out-of-sample comparison. Table
1 and Fig. 1 present the summary statistics and the plot for the source data of market
VIX, respectively. We use the Libor rates in US dollar as the constant interest rate for
both the estimation, while a zero risk-free interest rate in the predicting. The choice of
risk-free interest rate do not affect the result of comparison. During the estimation of
DSARVmodel, we treat v1, volatility at state 1, as a parameter to be estimated through
the MLE. Table 2 gives the result of estimation through MLE for the DSARV models
with different number of volatility mass points. BIC is calculated for each model for
reference.

Table 1 Summary statistics of
market VIX

Min 25% quantile Median 75% quantile Max

10.32 14.74 18.02 24.32 56.65

123



142 Y. Wang, H. Y. Wong

Fig. 1 Plot of market VIX

Table 2 Estimation result of DSARV(1, N) model for VIX

No. of volatility states δ γ ψ η φ β

N = 4 −0.6897 0.556 −0.334 −1.468 0.795 0.0514

N = 6 −0.3480 0.2787 −0.3314 −1.3843 0.67780 0.0662

N = 8 −0.4187 0.2138 −0.5105 −1.2201 0.8972 0.1616

N = 10 −0.2728 0.1214 −0.2868 −1.2052 0.9063 0.0389

Fig. 2 Plot of predictive bias from DSARV(1, 4) model

For the continuous SV model, the Bayesian approach treats all the volatilities as
latent variables, making them all parameters to be estimated, altogether as augmented
parameter space. Predictive bias for DSARV(1, 4), DSARV(1, 6), DSARV(1, 8), and
DSARV(1, 10) are calculated and plotted in Figs. 2, 3, 4, and 5. Figures 6 and 7
are the predictive bias for the continuous SV model and NGARCH model. Summary
statistics of the predictive bias for each model are also given in Tables 3 and 4. In order
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Fig. 3 Plot of predictive bias from DSARV(1, 6) model

Fig. 4 Plot of predictive bias from DSARV(1, 8) model

Fig. 5 Plot of predictive bias from DSARV(1, 10) model

to visualize the bias and better describe it, boxplots of the bias from DSARV(1, 4),
DSARV(1, 6), DSARV(1, 8), DSARV(1, 10), continuous SV model, and NGARCH
are presented in Figs. 8, 9, 10 and 11.
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Fig. 6 Plot of predictive bias from continuous SV model

Fig. 7 Plot of predictive bias from NGARCH model

Table 3 Summary statistics of predictive bias

Model Min 25% quantile Median 75% quantile Max

NGARCH −8.95 4.79 6.67 9.84 19.76

Continuous SV −10.80 −1.48 0.63 4.15 23.37

DSARV(1, 4) −14.70 −7.85 −4.43 1.99 34.87

DSARV(1, 6) −11.87 −6.12 −2.94 3.38 35.90

DSARV(1, 8) −10.89 −4.46 −1.04 5.06 37.33

DSARV(1, 10) −7.99 −3.16 0.34 6.56 38.81

4.2 Results

We can see that through the comparison of the plot of predictive bias, the bias of
NGARCH and continuous SV models are obviously closer to the horizontal dotted
line in the graph as a reference of ideal case of zero bias, ofwhich the bias of continuous
SV is relatively more around the zero line than the NGARCH model, which tends to
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Table 4 Summary statistics of predictive bias

Model Mean Absolute mean Variance Percentage mean

NGARCH 7.44 7.50 14.53 36.3

Continuous SV 1.63 3.52 20.41 2.91

DSARV(1, 4) −1.92 7.08 71.38 −23.56

DSARV(1, 6) −0.16 6.47 70.66 −14.16

DSARV(1, 8) 1.49 6.06 69.64 −4.97

DSARV(1, 10) 2.99 6.15 72.09 2.85

Fig. 8 Boxplot of predictive bias from DSARV(1, 4) model

Fig. 9 Boxplot of predictive bias from DSARV(1, 6) model

slightly under-predict the VIX. While the plots of the bias from the DSARV models
show a few big jumps from time to time, at which points the models do not make a
fairly good forecast. In contrast, the forecast of continuous SV and NGARCHmodels
are more stable.

Table 3 shows from a digital facet that the median of predictive bias from contin-
uous SV and DSARV models with higher N are closest to zero while the NGARCH
model suffer from a bigger bias median, which might come from the under-prediction.
Similarly for the mean of the bias, NGARCH model has a larger bias than the other
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Fig. 10 Boxplot of predictive bias from DSARV(1, 8) model

Fig. 11 Boxplot of predictive bias from DSARV(1, 10) model

models in the sense of magnitude. But for the absolute mean, which is calculated by
taking the mean of the absolute value of the bias, the continuous type of SV model
seems to the outperform the other models notably. The same case is for the mean of
percentage bias, which is calculated by taking the mean of the quotient of the bias
divided by the market VIX. From the perspective of variance, from Table 4, we see
the variances are relatively smaller for NGARCH and continuous SV models, while
the DSARV models produce rather large variance, which can be explained by the
simulation procedure of VIX as there is no close-form formula for the VIX forecast
for the DSARV models. The above results are in favor of the continuous SV model,
in making the best forecast among the three models, though the variance of the bias
may not the smallest.

We further take the VIX predicted from the three models into an AR(1) model in
Sect. 3.4. The result is presented in Table 5, showing that the next forecast conditional
on the last one from continuous SV is less volatile compared to the other two. Also
from the boxplots, it is clearly seen that the VIX forecast from continuous SV model
greatly outperforms the other two type ofmodels in the sense of a closer to zeromedian
for bias and a relatively smaller interquartile range. Although there is an outlier from
the continuous SV model, the predictions from NGARCH and DSARV are either
over-predict or under-predict the VIX quite much (Figs. 8, 9, 10, 11, 12, 13).
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Table 5 Parameter estimation
of AR(1) model for VIX

Model NGARCH CSV DSARV

Conditional var 70.14 23.43 241.84

Fig. 12 Boxplot of predictive bias from continuous SV model

Fig. 13 Boxplot of predictive bias from NGARCH model

5 Conclusion

We generalize the DSARV(1, N ) model by proposing a risk-neutral transformation
for VIX forecast. We further deduce the close-form formulas for the VIX under the
continuous SV model with normal innovations. Using these analytical results, we
empirically examine the VIX forecasting ability of NGARCH, the continuous SV
model and the DSARVmodel with different number of volatility states. The empirical
study based on the S&P500 data shows that the continuous SVmodel performs the best
among the three models and the little subjectivity in the prior for parameter estimation
does not materially affects its performance. Discrete SV is attractive for its convenient
estimation withMLE. However, the DSARV(1, N ) model gives a rather unsatisfactory
prediction in the VIX.
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