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Abstract Wind power energy has been paid much attention recently for various
reasons, and the production of electricity with wind energy has been increasing rap-
idly for a few decades. One of the most difficult issues for using wind power in practice
is that the power output largely depends on the wind condition, and as a result, the
future output may be volatile or uncertain. Therefore, the prediction of power output
in the future is considered important and is key to electric power generating indus-
tries making the wind power electricity market work properly. However, the use of
predictions may cause other problems due to “prediction errors.” In this work, we
will propose a new type of weather derivatives based on the prediction errors for
wind speeds, and estimate their hedge effect on wind power energy businesses. At
first, we will investigate the correlation of prediction errors between the power output
and the wind speed in a Japanese wind farm, which is a collection of wind turbines
that generate electricity in the same location. Then we will develop a methodology
that will optimally construct a wind derivative based on the prediction errors using
nonparametric regressions. A simultaneous optimization technique of the loss and
payoff functions for wind derivatives is demonstrated based on the empirical data.
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68 Y. Yamada

1 Introduction

Predicting the future weather conditions is considered important in real businesses for
many industries including electricity producers and suppliers, because their profit
or loss is largely affected by the weather conditions. Under these circumstances,
we may have a new risk when the prediction error exists. In this work, we will
propose a new type of weather derivative (see, e.g., Geman 1999 for the introduc-
tion of weather derivatives) to effectively hedge the loss caused by prediction
errors.

This work is motivated by a critical issue in wind power energy markets, which is
explained as follows: In general, electricity companies must sell the output immedi-
ately because the electricity has to be consumed as soon as it is produced. Therefore,
sales contracts need to be written in advance. However, in the case of electricity produc-
tion using wind power energy, the power output largely depends on wind conditions,
and as a result, tradable volume is uncertain.

What we can do is to predict the future power outputs and quote them in advance.
But, this may cause another risk (or loss) associated with prediction errors of the
power outputs. One of the objectives of this work is to hedge this type of risk using
weather derivatives based on prediction errors on the wind condition. In contrast to the
standard weather derivatives in which the underlying index is given by weather data
only (such as temperature Brody et al. 2002, Cao and Wei 2004, Davis 2001, Emoto
and Misawa 2006, Kariya 2003, Platen and West 2004, Yamada 2007, Yamada et al.
2006), the proposed weather derivative uses prediction data and the payoff depends
on the difference between the actual data and the prediction data.

Here we consider the power output from a wind farm (WF), which is a collection
of wind turbines that generate electricity in the same location. The power output is
predicted using numerical weather prediction and the power generating properties for
turbines, where a public weather forecasting company computes sophisticated values
from Japan Meteorological Agency data. Because of this prediction mechanism, we
have both the wind and power predictions data.

A possible sales contract of the power output using the prediction may be described
as follows: The value of electricity generated by wind power is normally considered to
be low due to the uncertainty of the tradable volume. Here we assume that the electric-
ity price without prediction is estimated to be 3 yen per 1 kWh. On the other hand, the
value of the electricity would be estimated to be higher, if the tradable volume were
quoted in advance by prediction, but the seller has to guarantee the quoted volume or
has to pay the penalty in case of shortages. Suppose that the value of electricity with
prediction is given as 7 yen per 1 kWh and that the penalty of the shortage is 10 yen per
1 kWh. These assumptions are not so far from the current situation discussed in the
prediction business (Takano 2006). In this case, the loss function caused by prediction
errors is depicted in Fig. 1, which shows the relation between the prediction error for
the power output P − P̂ (the actual power output minus its prediction) and the loss
caused by the prediction error. Note that, even if the prediction error is positive, we
can also think of this situation as an opportunity loss to sell the output with a suitable
price.
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Fig. 1 An example of loss function

Based on the above discussions, we will first consider the following problems:

P1 Given the loss function and the payoff function of wind derivatives, find the
optimal volume of wind derivative using a linear regression.

P2 Given the loss function, find the optimal payoff function of wind derivatives.

We will investigate the hedge effect of wind derivatives and show that using wind
derivatives on prediction error of wind speed is highly effective to hedge the loss
caused by prediction errors of power output.

Then we will consider a situation in which there already exists a standardized deriv-
ative contract with a certain payoff function, but there is some room for improvement
on the loss function, e.g., for a WF owner. The problem can be thought of as a reverse
problem of P2), which is given as follows:

P3 Given the payoff function of wind derivatives, find the optimal loss function against
prediction errors of power output.

Finally, we will formulate a simultaneous optimization problem of payoff and loss
functions as P4 below:

P4 Optimize the payoff function of wind derivatives and the loss function simulta-
neously.

The rest of this paper is organized as follows: In Sect. 2, we explain the defini-
tions of loss and payoff functions, and formulate the first problem, P1, as the standard
minimum variance hedging problem. After describing the motivation to introduce a
non-parametric regression, we formulate the payoff function optimization problem
based on the generalized additive model (GAM) in Sect. 3. It is shown that the loss
function optimization problem may be solved using GAM as well in Sect. 4, where
a simultaneous optimization problem is also formulated and an iterative algorithm is
proposed. An empirical analysis and numerical experiments are performed in Sect. 5
to illustrate the hedge effect of the proposed wind derivatives. Finally, we explain the
multi-period case in Sect. 6, and provide some concluding remarks in Sect. 7.
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70 Y. Yamada

We use the following notation: For a sequence of observations of a variable, xn, n =
1, . . . , N , the sample mean and the sample variance are denoted by Mean(xn) and
Var(xn), respectively. Cov(xn, yn) and Corr(xn, yn) represent the sample covariance
and the sample correlation, respectively, where yn, n = 1, . . . , N is a sequence of
observations for another variable. The set of real number is denoted by �, and an n×m
matrix with real entries is denoted by A ∈ �n×m .

2 Standard Minimum Variance Hedging Problem

At first, we will explain loss and payoff functions, and then formulate the first problem,
P1, as the standard minimum variance hedging problem.

2.1 Loss and Payoff Functions

For simplicity, consider a wind power energy trade between two basic positions, a
seller and a buyer, for the electricity output. Assume that the seller and the buyer carry
out sales contracts based on the prediction of the power output. Let n = 1, . . . , N be
the time index (say, hourly index) and define the following variables:

Pn : Total power output at time n
P̂n : Prediction of Pn (which is computed, e.g., 1 day in advance)

The buyer is willing to trade the power output by using the reference P̂n , and may
require a penalty if the prediction error exceeds a certain level.

Let εp,n (n = 1, . . . , N ) be the prediction error of the power output at time n,
which causes a loss for the seller due to the penalty or opportunity loss to sell the
output. Suppose that the loss associated with the prediction error of the power output
is defined using a loss function as φ

(
εp,n

)
. For instance, the loss function may be

given as the one shown in Fig. 1 if the seller is a WF owner. Also, there is a case in
which the prediction is sufficiently accurate or the prediction error is less than a certain
(small) level. In this case, the seller can be thought of getting a bonus because of a
higher price of power output with prediction, which results in a profit for the seller
and makes the loss negative, i.e., φ

(
εp,n

)
< 0. We assume that

Mean
(
φ

(
εp,n

)) = 0 (2.1)

so that the sum of profit/loss is zero on average.
We will consider a situation in which the seller with φ (·)would like to compensate

their loss on εp,n using a weather derivative on the prediction error of the wind speed.
To this end, define the following variables:

Wn : Wind speed at time n
Ŵn : Prediction of Wn (which is computed, e.g., 1 day in advance)
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Optimal Hedging of Prediction Errors Using Prediction Errors 71

Let εw,n be the prediction error of the wind speed, and assume that the payoff of the
wind derivative is defined by using a suitable payoff function of εw,n asψ

(
εw,n

)
. Also,

suppose that the weather derivative contract with a payoff function ψ (·) is carried out
in advance without any cost and that ψ

(
εw,n

)
satisfies the following condition:

Mean
(
ψ

(
εw,n

)) = 0. (2.2)

Note that condition (2.2) indicates that the physical probability measure provides a
risk neutral probability measure, and that, in the case of simple forward contracts,
ψ

(
εw,n

)
may be given as a linear function, e.g.,

ψ
(
εw,n

) = εw,n . (2.3)

2.2 Minimum Variance Hedge

With the notation and definitions introduced in the previous subsection, the first opti-
mization problem, P1, is formulated as follows:

Contract volume optimization problem

min
�∈� Var

(
φ

(
εp,n

) +�ψ
(
εw,n

))
. (2.4)

The contract volume optimization problem may be considered as the standard “min-
imum variance hedge,” and the optimal volume �∗ may be computed analytically as

�∗ = −Cov
(
φ

(
εp,n

)
, ψ

(
εw,n

))

Var
(
ψ

(
εw,n

)) . (2.5)

To estimate the hedge effect, we define the variance reduction rate (VRR) as follows:

VRR := Var
(
φ

(
εp,n

) +�∗ψ
(
εw,n

))

Var
(
φ

(
εp,n

)) . (2.6)

Because the minimum variance can be computed as

Var
(
φ

(
εp,n

) +�∗ψ
(
εw,n

))

= Var
(
φ

(
εp,n

)) (
1 − [

Corr(φ
(
εp,n

)
, ψ

(
εw,n

)
)
]2

)
, (2.7)

we obtain

VRR = 1 − [
Corr(φ

(
εp,n

)
, ψ

(
εw,n

)
)
]2
. (2.8)
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Note that VRR satisfies

0 ≤ VRR ≤ 1 (2.9)

and that a smaller VRR provides a better hedge effect in terms of minimum variance.
In the case of standard minimum variance hedge, the optimal volume is also found

by solving a linear regression problem, where φ
(
εp,n

)
is regressed with respect to

ψ
(
εw,n

)
, and the regression coefficient gives the optimal volume for fixed loss and

payoff functions. On the other hand, we can expect to obtain a better hedge effect if
we could optimize the payoff function of the weather derivative directly. This can be
done by applying non-parametric regression techniques introduced in the next section,
and we will find that using a non-parametric regression corresponds to optimizing the
derivative contract directly by choosing a suitable payoff function.

3 Minimum Variance Hedging Using Non-parametric Regression

In this section, we first introduce a non-parametric regression technique, and then
formulate the second optimization problem, P2.

In the previous section, we showed that the contract volume optimization problem
is formulated as standard minimum variance hedging and can be solved by applying
linear regression. A similar idea may be employed to solve the payoff function optimi-
zation problem of P2 (or the loss function optimization problem of P3) by introducing
a non-parametric regression technique. Since we will apply a non-parametric regres-
sion to find a payoff function (or loss function) by assuming that a loss function (or
payoff function) is fixed, it may be useful to specify which function is given explicitly.
To this end, we use overlines as

φ(·) = φ(·) (or ψ(·) = ψ(·))

to indicate that the loss function (or payoff function) is given.

3.1 Generalized Additive Models

The non-parametric regression technique introduced here is to find a (cubic) smooth-
ing spline that minimizes the so-called penalized residual sum of squares (PRSS)
among all regression spline functions with two continuous derivatives. Let yn and xn

be dependent and independent variables, respectively, and express yn as

yn = h (xn)+ εn, Mean (εn) = 0 (3.1)
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using a smooth function h(·) and residuals εn . Here the function h (·) is a (cubic)
smoothing spline that minimizes the following PRSS,

PRSS =
N∑

n=1

(yn − h (xn))
2 + λ

∫ ∞

−∞
(
h′′(x)

)2 dx (3.2)

among all functions h(·)with two continuous derivatives, whereλ is a given parameter.
In (3.2), the first term measures closeness to the data while the second term penalizes
curvature in the function. Note that, if λ = 0 and h (·) is given by a polynomial func-
tion, the problem is reduced to the standard regression polynomial and is solved by the
least squares method. It is shown that (3.2) has an explicit and unique minimizer and
that a candidate of optimal λ may be found by using the so-called generalized cross
validation criteria (See Appendix A). Note that regression splines can be extended to
the multivariable case with additive sums of smoothing splines, known as generalized
additive models (GAMs; see e.g., Hastie and Tibshirani 1990). Also note that GAMs
can be computed using free software “R (http://cran.r-project.org/),” and we will refer
to the class of smoothing splines for non-parametric regression as GAMs in this paper.
We will apply GAMs to solve P2–P4 and estimate the hedge effect of wind derivatives.

Note that, instead of writing the problem as an unconstrained optimization problem,
we can reformulate it as an optimization problem constrained on h (·) as follows:

min
h(·)

N∑

n=1
(yn − h (xn))

2

s.t.
∫ ∞

−∞
(
h′′(x)

)2 dx ≤ α

(3.3)

where α is a given parameter. Based on the similar argument to that in Appendix A,
we can verify that the objective function of problem (3.3) is quadratic subject to a con-
vex constraint and that the minimization problem (3.3) is equivalent to the following
problem,

max
λ>0

{

min
h(·)

{
N∑

n=1

{yn − h (xn)}2 + λ

(∫ {
h′′(x)

}2 dx − α

)}}

, (3.4)

using a Lagrange multiplier λ > 0. Therefore, we see that fixing λ in (3.2) corresponds
to fixing α in (3.3) and that the non-parametric regression problem using GAM may
be recast as a minimization problem of the sample variance with a smooth constraint.

3.2 Optimization of Derivative Contracts

It is in a position to formulate the the second optimization problem, i.e., the payoff
function optimization problem, in the context of minimum variance hedge using non-
parametric regression as follows:
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Payoff function optimization problem

min
ψ(·) Var

(
φ

(
εp,n

) + ψ
(
εw,n

))

s.t.
∫ ∞

−∞
(
ψ ′′(x)

)2 dx ≤ α.

(3.5)

The minimization problem (3.5) may be recast as (3.3) by taking yn = φ
(
εp,n

)
,

xn = εw,n , and h (·) = −ψ (·), and therefore, can be solved by applying GAM. Let
ψ∗(·) be the optimal payoff function. Then VRR may be defined as

VRR := Var
(
φ

(
εp,n

) + ψ∗ (
εw,n

))

Var
(
φ

(
εp,n

)) . (3.6)

Although it is possible to find the optimal payoff function by solving GAM once, it
may be worthwhile to mention that we have a slight improvement by applying a linear
regression after finding the optimal payoff function ψ∗(·) as

min
a∈� Var

(
φ

(
εp,n

) + aψ∗ (
εw,n

))
. (3.7)

In this case, VRR may be given as

VRR = Var
(
φ

(
εp,n

) + a∗ψ∗ (
εw,n

))

Var
(
φ

(
εp,n

)) . (3.8)

or equivalently,

VRR = 1 − [
Corr

(
φ

(
εp,n

)
, ψ∗ (

εw,n
))]2

. (3.9)

where a∗ ∈ � is the regression coefficient to solve (3.7). Note that (3.9) is independent
of a∗, or any scaling parameter to ψ∗ (

εw,n
)
, and that it can be computed if ψ∗ (·)

is specified. Therefore, we use the right hand side of (3.9) as a proxy of VRR. It is
readily confirmed that VRR in (3.6) is actually an upper bound of (3.9). However, as
indicated in the end of Subsect. 5.2, the gap between (3.6) and (3.9) is very small from
our numerical experience.

4 Optimization With Loss Functions and Simultaneous Optimization

4.1 Optimal Loss Function

Next, we will consider a case in which a payoff function of wind derivative is given but
we would like to find a loss function that is desirable for using the wind derivative, i.e.,
in a case where there already exists a standardized derivative contract with a certain
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payoff function, but there is some room for improvement on the loss function, e.g.,
for a WF owner. We assume that possible losses on εp,n , φ

(
εp,n

)
, has the same mean

and variance, i.e., φ
(
εp,n

)
satisfies

Mean
(
φ

(
εp,n

)) = 0, (4.1)

Var
(
φ

(
εp,n

)) = c. (4.2)

We will compute an optimal loss function satisfying (4.2).
The loss function optimization problem is formulated as follows:

Loss function optimization problem

min
φ(·) Var

(
φ

(
εp,n

) + ψ
(
εw,n

))

s.t.
∫ ∞

−∞
(
φ′′(x)

)2 dx ≤ α,

Var
(
φ

(
εp,n

)) = c.

(4.3)

Note that the constraint Var
(
φ

(
εp,n

)) = c is also quadratic if φ is given by a cubic
natural spline function, and hence, the problem might be reformulated as an uncon-
strained optimization problem by introducing another Lagrangian term for the variance
constraint. On the other hand, we can still apply GAM directly to solve the problem
without the variance constraint (i.e., Var

(
φ

(
εp,n

)) = c), similar to the payoff func-
tion optimization problem (3.5). Then we can scale the minimizing function so that it
satisfies the variance constraint (4.2).

Let φ̂ (·) be the optimizer of problem (4.3) without the variance constraint (i.e.,
Var

(
φ

(
εp,n

)) = c), which can be computed by applying GAM. By scaling φ̂ (·) to
satisfy (4.2), we obtain the optimal loss function φ∗ (·) as follows:

φ∗ (·) = c

Var
(
φ̂

(
εp,n

)) φ̂ (·) . (4.4)

Note that the optimal volume of wind derivative with the given payoff and loss func-
tions,ψ(·) andφ∗(·), will be found by solving the standard minimum variance hedging
problem as in Subsection 2.2, and VRR may be computed as

VRR = 1 − [
Corr

(
φ∗ (

εp,n
)
, ψ

(
εw,n

))]2
. (4.5)
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4.2 Simultaneous Optimization

It may be interesting to consider a simultaneous optimization of the payoff and loss
functions, ψ

(
εw,n

)
and φ

(
εp,n

)
. Recall that VRR can be computed using the corre-

lation between the payoff function and the loss function as

1 − [
Corr

(
φ

(
εp,n

)
, ψ

(
εw,n

))]2
.

Since the larger correlation the smaller VRR, the minimization of VRR boils down
to the maximization of correlation between φ

(
εp,n

)
and ψ

(
εw,n

)
. Therefore, the

simultaneous optimization of the payoff and the loss functions may be formulated as
follows:

Simultaneous optimization problem

max
φ(·),ψ(·) Corr

(
φ

(
εp,n

)
, ψ

(
εw,n

))

s.t.
∫ ∞

−∞
(
φ′′(x)

)2 dx ≤ αφ,

∫ ∞

−∞
(
ψ ′′(x)

)2 dx ≤ αψ,

Var
(
φ

(
εp,n

)) = c.

(4.6)

The simultaneous optimization problem may be solved using an iterative algorithm
by solving the payoff function optimization problem with φ(·) = φ(·) fixed, or the loss
function optimization problem with ψ(·) = ψ(·) fixed, at each step. The following is
the iterative algorithm:

Iterative algorithm
1. Given φ(·) = φ(·), findψ(·) to solve the payoff function optimization problem.

Let ψ∗(·) be the optimal function, and let ψ(·) = ψ∗(·).
2. Given ψ(·) = ψ(·), find φ(·) to solve the loss function optimization problem.

Let φ∗(·) be the optimal loss function and let φ(·) = φ∗(·).
3. Repeat Steps 2 and 3 until the objective function in (4.6) does not change.

Note that the optimal loss function obtained from the above iterative algorithm satisfies
(4.2) and that we can consider additional constraints to take more realistic situations
into account for the loss and payoff functions.

Remark 1 The above iterative algorithm is formally in the class of so-called “Alter-
nating Conditional Expectations (ACE) algorithm (see, e.g., Chapter 7 of Hastie and
Tibshirani 1990).” The ACE algorithm seeks optimal transformations of θ(Y ) and
f (X) for two random variables X and Y so that the squared error loss

E

[
(θ(Y )− f (X))2

]
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is minimized. Since the zero functions trivially minimize the square error, ACE has a
constraint so that θ(Y ) has unit variance at each step, which is exactly the same as our
variance constraint (4.2).

Note that the convergence of ACE algorithm is also discussed in Hastie and
Tibshirani 1990, although we omit the details for brevity. Also note that, for solv-
ing the iterative algorithm, we may need to specify αθ and αφ . However, in stead of
fixing these parameters a priori in the algorithm, an optimal selection of smoothing
parameters for φ(·) and ψ(·) may be applicable at each step by using GAMs (See
Appendix A).

5 Empirical Analysis and Numerical Experiment

In this section, we demonstrate the solutions P1–P4 and estimate their hedge effect
using empirical data for the power output, wind speed, and their predictions. Here we
consider the power output from a wind farm (WF) located in Japan, where the power
output from the WF is predicted based on the numerical weather prediction and the
power generating properties for turbines. The numerical weather prediction consists
of the following two steps:

• Japan Meteorological Agency announces the hourly data of regional spectral mod-
els for the next 51 h twice a day (9 am and 9 pm).

• Using them as initial and boundary values, a public weather forecasting company
computes more sophisticated values for the next day’s hourly data by 12 pm.

5.1 Preliminary

5.1.1 Data Description

In this paper, we use the prediction data obtained from the Local Circulation Assess-
ment and Prediction System (LOCALS) developed by the ITOCHU Techno-Solutions
Corporation for the wind speed and the power output of a wind farm in Japan (Enomoto
et al. 2001). The data set is given as follows:1

Data specifications
Realized and predicted values of total power output for the WF, and those of wind
speed for the observation tower in the WF.

Data period
2002–2003 (1 year), hourly data, everyday

Total number of data
8,000 for each variable excluding missing values

Let n = 1, . . . , N be the time index (where N � 8, 000), and assume that the actual
power output and the wind speed at time n are, respectively, denoted by Pn and Wn .

1 All the data used in this paper were provided by ITOCHU Techno-Solutions Corporation.
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Fig. 2 Wind speed Wn [m/s] vs. Power output Pn [W]

Also, let P̂n and Ŵn be the predictions of the corresponding power output and the
wind speed obtained from LOCALs, which are computed by noon one day before the
actual data is observed. Figure 2 shows a scatter diagram for the wind speed Wn and
the power output Pn , where the power output Pn is normalized so that its maximum
equals 100. From Fig. 2, we can see that:

• The generator starts providing the power output when the wind speed exceeds
around 2 m/s.

• The power output increases with the wind speed between 5–15 m/s.

Also note that, because each electricity generator is controlled so that the maximum
output does not exceed a certain value, the total output is also bounded as shown in
Fig. 2.

5.1.2 Prediction Error of the Wind Speed

Figure 3 shows a partial residual plot for

Wn = awŴn + bw + εw,n, n = 0, . . . , N , Mean
(
εw,n

) = 0 (5.1)

i.e., the scatter diagram of
(

Ŵn, Wn − bw
)

, where aw and bw are a regression coef-

ficient and intercept, respectively, and εw,n is a residual satisfying Mean
(
εp,n

) = 0.
The partial regression line is depicted using a solid straight line shown in Fig. 3. In
this case, the sample variance of residuals is found to be

Var
(
εw,n

) � 5.12. (5.2)
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Fig. 3 Predicted vs. Measured values for the wind speed

On the other hand, the regression spline f (·) to fit the same data of Fig. 3 is shown
as a solid line in Fig. 4, where f (·) satisfies

Wn = f
(
Ŵn

) + εw,n . (5.3)

using GAM. In this case, the sample variance of the residuals is

Var
(
εw,n

) � 4.95 (5.4)

Noting that the sample variance of the measured values is computed as “11.0,” we can
say that the variance of the wind speed is reduced by 50% (from “11.0” to “5.12”)
using the predicted value and the linear regression, and it is improved a little using
GAM, i.e., from “5.12” to “4.95.” In this section, we define the prediction error of the
wind speed as the one given by GAMs, i.e., εw,n in (5.3).

5.1.3 Prediction Error of the Power Output

Similarly, we can draw a partial residual plot for the power output Pn with respect
to the predicted value P̂n as shown in Fig. 5, where the solid line is obtained from a
linear regression for partial residuals. In this case, the sample variance of the residuals
is found to be “249.” The solid line in Fig. 6 refers to the regression spline function
g (·) satisfying
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Fig. 5 Predicted vs. Measured values for the power output

Pn = g
(
P̂n

) + εp,n, n = 0, . . . , N (5.5)

using GAM. Note that the sample variance of residuals in this case is given as “239,”
whereas the sample variance of the measured value of the power output is “504.”
Similar to the wind speed case, we can say that the variance of the wind speed is
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Fig. 6 Spline regression function for the power output

reduced to less than half (from “504” to “249”) using the predicted value and the
linear regression, and it is improved a little using GAM, i.e., “249” to “239.”

Although we should be able to define the prediction error of the power output using
the residual in (5.5), it might be worthwhile to mention that there is another way to
define the prediction error of the power output. As stated in the beginning of this sec-
tion, the power output is predicted using numerical weather prediction, and therefore,
we can define a regression model such that the power output Pn is a dependent variable
and the wind speed prediction Ŵn is an independent variable, i.e.,

Pn = h
(

Ŵn

)
+ εp,n, (5.6)

where h(·) is a regression spline that minimizes PRSS.
Figure 7 shows the relation between the predicted values of the wind speed and the

measured values for the power output, where the solid line in Fig. 8 is the regression
spline h(·). In this case, the sample variance of the residuals is computed as

Var
(
εp,n

) � 254 (5.7)

which is, in fact, higher than the one given by (5.5). However, it will turn out that
using the prediction error in (5.6) provides not only a better hedge effect but also a
smaller variance of the hedged loss when combining with the optimal wind derivative.
Therefore, we will use the residual εp,n in (5.6) to define the prediction error of the
power output. An empirical analysis using the prediction error defined by the residual
in (5.5) may be found in Yamada (2008).
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Fig. 7 Predicted value of the wind speed vs. Measured values for the power output
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Fig. 8 Spline regression function for the power output using the wind speed prediction

5.2 Construction of Wind Derivatives and Their Hedge Effect

Next, we will construct wind derivatives and demonstrate their hedge effect on wind
power energy businesses.
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5.2.1 Linear Function’s Case

We first solve the minimum variance hedging problem for the simplest case where the
loss and the payoff functions are both linear. Let

φ
(
εp,n

) = εp,n, ψ
(
εw,n

) = εw,n (5.8)

without loss of generality. In this case, the problem is reduced to solving a linear
regression for the following regression function:

εp,n = awεw,n + ηn, (5.9)

where ηn is a residual. Since the linear regression computes aw that minimizes vari-
ance of ηn = εp,n − awεw,n , the regression coefficient provides the optimal volume
as

�∗ = −aw (5.10)

in the problem (2.4) under condition (5.8), where

aw = Cov
(
εp,n, εw,n

)

Var
(
εw,n

) . (5.11)

Figure 9 shows a scatter plot of εw,n vs. εp,n with a linear regression line. The sample
correlation is computed as

Corr
(
εp,n, εw,n

) � 0.76. (5.12)

and VRR as

VRR = 1 − Corr(εp,n, εw,n)
2 � 0.43. (5.13)

We see that the prediction errors of the wind speed and the power output, εw,n and εp,n ,
are highly correlated and that the sample variance is reduced to 43% from the original
one using the wind derivative in the case where the loss and the payoff functions are
both linear.

Now, we apply GAMs to compute an optimal payoff function. The solid line in
Fig. 10 shows the optimal payoff curve obtained by solving the optimization problem
(3.5) when φ(·) is linear. In this case, the VRR is computed as

VRR = Var
(
εp,n + ψ∗ (

εw,n
))

Var
(
εp,n

) � 0.407. (5.14)
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Fig. 9 Wind speed prediction error (εw,n ) vs. Power output prediction error (εp,n )

whereψ∗ (·) is the optimal payoff function. Moreover, the variance of the hedged loss
εp,n + ψ∗ (

εw,n
)

is computed as

Var
(
εp,n + ψ∗ (

εw,n
)) � 103. (5.15)

The above variance is actually lower than that of the hedged loss using (5.5) with the
optimal wind derivative, which is computed as “119.” Therefore, we see that, even
though the variance of the original loss might be larger, it can be reduced more effec-
tively by combining it with the wind derivative if we define the prediction error by
(5.6) instead of (5.5).

5.2.2 Piecewise Linear Function’s Case

Next, we will consider the case in which the loss function φ(·) = φ(·) is given as
shown in Fig. 1 with zero mean constraint (2.1), i.e.,

φ
(
εp,n

) := 4
∣∣εp,n

∣∣+ + 10
∣∣εp,n

∣∣− − µ (5.16)

where

µ := Mean
(

4
∣∣εp,n

∣∣+ + 10
∣∣εp,n

∣∣−
)
.

and |·|+ and |·|− are defined as

|x |+ := max (x, 0) , |x |− := min (x, 0)
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for x ∈ �. The solid line in Fig. 11 shows the optimal payoff function to solve the
problem (3.5). In this case, VRR in (3.6) is computed as

VRR = 0.5461946 · · · (5.17)

whereas the right hand side of (3.9) is found to be

1 − [
Corr

(
φ

(
εp,n

)
, ψ∗ (

εw,n
))]2 = 0.5461927 · · · . (5.18)

From this example, we see that VRR can be approximated by (3.9) with high accuracy.

5.3 Optimal Loss Function and Simultaneous Optimization

In this subsection, we first provide an illustrative example of solving P3 to com-
pute an optimal loss function, and then solve the simultaneous optimization problem
of P4.

Since the linear correlation between εp,n and εw,n is high in this example, it
would be more interesting to consider the case where a payoff function is non-lin-
ear with respect to εw,n . Therefore, we assume that there already exists a derivative
contract with the payoff being proportional to the size of the wind speed predic-
tion error,

∣∣εw,n
∣∣. Noting that ψ

(
εw,n

)
satisfies (2.2), such a payoff function may be

given as

ψ
(
εw,n

) = ψ
(
εw,n

) := ∣∣εw,n
∣∣ − Mean

(∣∣εw,n
∣∣), (5.19)

Figure 12 shows the payoff function with respect to εw,n given in (5.19).
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Fig. 11 Optimal payoff function on the wind speed prediction error εw,n

Fig. 12 Given payoff function with respect to the wind speed prediction error εw,n

Now we will solve P3 with the given payoff function in (5.19). Assume that the
sample variance of the loss, φ

(
εp,n

)
, satisfies

Var
(
φ

(
εp,n

)) = Var
(
εp,n

)
(5.20)

and we solve the problem (4.3) with the assumption that the optimal loss function
satisfies the above variance constraint. The solid line in Fig. 13 shows the optimal loss
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Fig. 13 Optimal loss function on the power output prediction error εp,n

function, which is obtained by applying GAM and scaling the minimizing function as
in (4.4). In this case, VRR is found to be

VRR � 0.56. (5.21)

Next, we demonstrate the simultaneous optimization of P4. Here we also introduce
a nonlinearity using the absolute value of εw,n . Assume that the payoff of the wind
derivative is a function of

∣∣εw,n
∣∣, and consider a maximization problem of

Corr
(
φ

(
εp,n

)
, ψ

(∣∣εw,n
∣∣)). (5.22)

We apply the iterative algorithm for a fixed loss functionφ (·) or a fixed payoff function
ψ (·) at each step to maximize (5.22). Assume that the payoff function is initially set
to the one given in (5.19) and we solve the loss function optimization problem. The
initial loss function in this case is given by the one shown in Fig.13. We repeatedly
apply Steps 1 and 2 in the iterative algorithm until the objective function does not
change or the relative change of the values of the objective function is less than a
sufficiently small number. In this example, we obtained

VRR = 0.53, (5.23)

after the 8th iteration. Figure 14 shows the optimal loss function after the 8th iteration,
where the loss function is scaled to satisfy the variance constraint (5.20). We see that
the loss function became smoother compared to the one given in Fig. 13.
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Fig. 14 Optimal loss function after the 8th iteration

6 Extension to Multi-period Case

In the previous sections, we have implicitly assumed that the same contract volume
and/or payoff functions may be used at each time period in a day, i.e.,� is independent
of time period in a day. On the other hand, if we carry out a wind derivatives contract
based on the multiple time periods in a day (e.g., the prediction errors for 1 pm, 2 pm,
and 3 pm), we might need to consider a different contract volume for each time period.
Since these volume may also depend on the correlation between prediction errors of
different time periods, another new problem formulation in a multi-period framework
is required. With this consideration in mind, here we consider the multi-period case
where the wind derivative contract is carried out based on prediction errors of multiple
time periods.

We will introduce a special notation to define the multi-period case as follows, where
n denotes a daily time index and i an hourly time index satisfying i = 0, 1, . . . , 23.

P(i)n : The average power output between i o’clock and i + 1 o’clock at day n
P̂(i)n : Prediction of P(i)n , which is computed by 12 o’clock at day n − 1.
W (i)

n :The average wind speed between i o’clock and i + 1 o’clock at day n
Ŵ (i)

n :Prediction of W (i)
n , which is computed by 12 o’clock at day n − 1.

6.1 Contract Volume Optimization Problem of Wind Derivatives

Let ε(i)p,n and ε(i)w,n be prediction errors of the power output and the wind speed (with day
and time indices, n and i), respectively. Here the prediction errors may be computed
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similar to the previous sections. For instance, ε(i)w,n is obtained by regressing W (i)
n with

respect to Ŵ (i)
n , e.g.,

W (i)
n = a(i)w Ŵ (i)

n + b(i)w + ε(i)w,n (6.1)

where a(i)w and b(i)w are regression coefficients.
Also, let φ(i) (·) and ψ(i) (·) be loss and payoff functions which define the loss on

the prediction error ε(i)p,n of the power output and the payoff of wind derivative on ε(i)w,n ,
respectively. Then, we can formulate the contract volume optimization problem for
the multi-period case as follows, where s is a start time and u is an end time of the
contract satisfying 0 ≤ s ≤ u ≤ 23:

Contract volume optimization problem (multi-period case):

min
�s ,...,�u

Var

[
u∑

i=s

φi

(
ε(i)p,n

)
+

u∑

i=s

�iψi

(
ε(i)w,n

)]

(6.2)

Note that the contract volume optimization problem may be solved by applying the
linear multiple regression to find the optimal volume

�∗
i ∈ �, i ∈ {s, . . . , u}.

Similarly, we can formulate the payoff function optimization problem by applying
GAM.

6.2 Autocorrelation of the Errors and Illustrative Example

At first, we examine the daily auto-correlation of wind speed prediction errors. Let us
consider the wind speed in the period of i = 12, 13, 14, 15. In these periods, we
can suppose that the electricity consumption would be maximum in a day. Given the
same data set as in Sect. 5, we compute the prediction errors of the wind speed for
i = 12, 13, 14, 15 using the linear regression as follows,

W (i)
n = a(i)w Ŵ (i)

n + b(i)w + ε(i)w,n, i = 12, 13, 14, 15. (6.3)

where a(i)w and b(i)w are regression coefficients and are given as

a(12)
w = 0.872, a(13)

w = 0.881, a(14)
w = 0.880, a(15)

w = 0.844

b(12)
w = 0.794, b(13)

w = 0.771, b(14)
w = 0.677, b(15)

w = 0.793.

Figures 15–18 show the (daily) autocorrelation functions (ACFs) for ε(12)
w,n , ε

(13)
w,n ,

ε
(14)
w,n and ε(15)

w,n , where the dashed lines denote the 95% confidence intervals. From
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these figures, we see that the autocorrelations of the prediction errors for wind speed
are very small and within the confidence intervals (except for lags 8 of ε(13)

w,n and 1 of
ε
(14)
w,n ).

We solve the contract volume optimization problem for the simplest case in which
the loss and the payoff functions are given as

φ
(
ε(i)p,n

)
= ε(i)p,n, φ

(
ε(i)w,n

)
= ε(i)w,n, i = 12, 13, 14, 15.

In this case, the total loss is defined by the sum of ε(i)p,n and the problem can be rewritten
as follows:

min�12,...,�15∈� Var
[

Ln +�12ε
(12)
w,n +�13ε

(13)
w,n +�14ε

(14)
w,n +�15ε

(15)
w,n

]
,

Ln :=
15∑

i=12
ε
(i)
p,n

(6.4)

Here we computed the prediction errors of the power outputs, ε(i)p,n , by using the
linear regression,

P(i)n = a(i)p Ŵ (i)
n + b(i)p + ε(i)p,n, i = 12, 13, 14, 15. (6.5)

similar to the numerical experiments in Sect. 5. After solving the problem (6.4), we
obtained

Lag

A
C

F

Fig. 15 ACF for ε(12)
w,n
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Lag

A
C

F

Fig. 16 ACF ε(13)
w,n

Lag

A
C

F

Fig. 17 ACF for ε(14)
w,n

VRR = 0.414. (6.6)

Note that we can extend the above results to address more sophisticated loss and payoff
functions, although we omit the details for brevity.

7 Concluding Remarks

In this work, we have proposed a new type of weather derivatives based on the pre-
diction errors for wind speeds and estimated their hedge effect on wind power energy
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Lag

A
C

F

Fig. 18 ACF for ε(15)
w,n

businesses. At first, we explained some properties of the loss for a WF caused by
prediction errors of the power output, and characterized it using a loss function on the
error. We then formulated four types of optimization problems: (1) Contract volume
optimization problem, (2) Payoff function optimization problem, (3) Loss function
optimization problem, and (4) Simultaneous optimization problem. It was shown that
the contract volume optimization problem may be reduced to the standard minimum
variance hedge and is solved by applying linear regression. The idea of standard min-
imum variance hedging was generalized to the payoff function optimization problem
by introducing a non-parametric regression technique based on smooth splines (or
GAMs). We also showed that the loss function optimization problem may be solved
by applying GAMs, and a simultaneous optimization technique of the loss and payoff
functions for wind derivatives was demonstrated by applying GAMs iteratively. An
empirical analysis and numerical experiments were performed to illustrate the hedge
effect of the proposed wind derivatives.

The main contribution of this paper is summarized as follows:

• The paper is the first to provide a type of weather derivative contracts based on the
prediction errors, which might be applicable for other situations (or businesses)
and/or other indices such as temperature, rain falls, and so on.

• The paper provides an application of non-parametric regression techniques in the
context of minimum variance hedge using smooth functions, which can be thought
of a generalization of the standard minimum variance hedge based on linear regres-
sion.

Although we assumed that the payoff functions are just smooth, the approximation of
these functions using the standard payoff functions for puts or calls may be required
in practice when the standardized derivative contracts are only available. Also, the
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convergence of the iterative algorithm for simultaneous optimization is an important
issue. These are interesting topics to be discussed further in the future work.

Acknowledgements The author would like to thank H. Fukuda, R. Tanikawa, and N. Hayashi from Earth
Science Department, ITOCHU Techno-Solutions Corporation, for their helpful comments and discussions.

Appendix:

A Solution method and selection of smoothing parameters

It is known that the smoothing spline function that minimizes PRSS is given by a cubic
natural spline of the following form (Takezawa 2006, Wood 2006):

h(x) = c0 + c1x + 1

12

N∑

n=1

wn |x − xn|3 , (A.1)

where c0, c1, and wn, n = 1, . . . , N are parameters to be found by minimizing PRSS
for given λ > 0.

Let

y := [y1, y2, . . . , yN ]� ∈ �N , Q :=

⎡

⎢⎢⎢
⎣

x1 1
x2 1
...
...

xN 1

⎤

⎥⎥⎥
⎦

∈ �N×2,

R :=

⎡

⎢⎢⎢⎢
⎣

0 |x1−x2|3
12

|x1−x3|3
12 · · · |x1−xN |3

12|x2−x1|3
12 0 |x2−x3|3

12 · · · |x2−xN |3
12

...
...

...
. . .

...
|xN −x1|3

12
|xN −x2|3

12
|xN −x3|3

12 · · · 0

⎤

⎥⎥⎥⎥
⎦

∈ �N×N .

Then PRSS in (3.2) may be recast as follows:

PRSS = (y − Qc − Rw)� (y − Qc − Rw)+ λ

∫ ∞

−∞
(
h′′(x)

)2 dx, (A.2)

where

c := [c0, c1]� ∈ �2, w := [w1, . . . , wN ]� ∈ �N .

We see that the first term of the right hand side of Eq. A.2 is quadratic with respect to
c ∈ �2 and w ∈ �N .
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Moreover, as shown in Takezawa (2006), the second term (related to the smoothing
condition) may also be represented as a quadratic function, i.e.,

λ

∫ ∞

−∞
(
h′′(x)

)2 dx = λw�Rw.

As a result, PRSS is given by

PRSS = (y − Qc − Rw)� (y − Qc − Rw)+ λw� Rw. (A.3)

Therefore, for any given λ > 0, the minimization of PRSS may be solved as a convex
quadratic optimization problem.

For choosing the smoothing parameter λ, the cross validation criteria may be con-
structed by leaving points (xn, yn) out one at a time and estimating the smooth at xn

based on the remaining N − 1 points as

CV (λ) = 1

N

N∑

n=1

(
yn − ĥ−n

λ (xn)
)2

(A.4)

where ĥ−n
λ (xn) indicates the fit at xn , computed by leaving out the nth data point as

shown in Hastie and Tibshirani (1990). We can use CV(λ) for searching the minimiz-
ing λ and set it as a candidate of optimal λ in the sense of cross validation. Note that in
the algorithm implemented in “R,” the so-called generalized cross validation criteria
is used for computing an optimal λ more efficiently.
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