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Abstract Lévy processes are popular models for stock price behavior since
they allow to take into account jump risk and reproduce the implied vola-
tility smile. In this paper, we focus on the tempered stable (also known as
CGMY) processes, which form a flexible 6-parameter family of Lévy processes
with infinite jump intensity. It is shown that under an appropriate equivalent
probability measure a tempered stable process becomes a stable process whose
increments can be simulated exactly. This provides a fast Monte Carlo algorithm
for computing the expectation of any functional of tempered stable process. We
use our method to price European options and compare the results to a recent
approximate simulation method for tempered stable process by Madan and Yor
(CGMY and Meixner Subordinators are absolutely continuous with respect to
one sided stable subordinators, 2005).

Keywords Monte Carlo · Option pricing · Lévy process · Tempered stable
process · CGMY model

1 Introduction

Lévy processes are stochastic processes with stationary and independent
increments. That is to say, if (Xt)t≥0 is a Lévy process, then Xt − Xs with t > s is
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independent of the history of the process up to time s, and its law only depends
on t − s.

Exponentials of Lévy processes constitute the simplest model of stock price
behavior allowing to take into account price discontinuities and the implied
volatility smile phenomenon (Cont and Tankov 2004). Despite this simplicity,
unlike the Black-Scholes model, closed option pricing formulas are not available
in exponential Lévy models and one must use either deterministic numerical
methods (partial integro-differential equations (Cont and Voltchkova 2005) or
Fourier methods (Carr and Madan 1999)) or Monte Carlo methods which form
the object of the present paper.

For Monte Carlo methods, finite-intensity (compound Poisson) Lévy
processes can be easily simulated on a computer, but for infinite intensity
processes the situation is more difficult: explicit simulation methods are only
available for stable processes (Chambers et al. 1976) and a few other para-
metric classes (see Cont and Tankov (2004) for a comprehensive survey). For
other processes, approximate methods are available (Asmussen and Rosiński
2001; Rosiński 2001), which are basically reduced to truncating small jumps and
replacing them with something easy to simulate. These methods are not adapted
for Monte Carlo pricing of European options and other options with discrete
observation of stock price trajectory since they require a complete simulation
of the process trajectory even if only the terminal value is used for the final
computation.

For the tempered stable process (also known as CGMY model), an approx-
imate simulation method based on Brownian subordination and a rejection
method by Rosiński (2001) was recently proposed by Madan and Yor (2005)
but, to the best of our knowledge, no exact simulation method for the incre-
ments of this process is known. In Sect. 3 of this paper, we propose a method for
Monte Carlo evaluation of any functional of the tempered stable process which
avoids direct simulation of the increments of this process. Instead, we construct
an equivalent probability measure under which the original tempered stable
process becomes a stable process. Since the method for direct simulation of
stable random variables is well-known (Chambers et al. 1976) and the measure
change is explicit, this provides the desired algorithm.

After describing the theoretical framework of our method in Sect. 3, we
apply it to the pricing of European options in Sect. 4 and compare the results
with the ones obtained using the approximate simulation method by Madan
and Yor. A strong point of the latter method is that it is easily generaliz-
able to multiple dimensions via Brownian subordination, whereas in our set-
ting a multidimensional extension is not straightforward. On the other hand,
an important advantage of our method is that it provides unbiased estima-
tors of option prices, while the approximate method introduces a bias, due
to the truncation of small jumps, which is not easy to quantify. More impor-
tantly, for the parameter sets used in this paper, our method required 16 to 50
times less computer time to achieve the same precision than the approximate
method.
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2 Basic Tools and Definitions

In this section we review important properties of Lévy processes, stable pro-
cesses and tempered stable processes that are used in the sequel. Unless other-
wise mentioned, all proofs can be found in Sato (1999). We concentrate on the
one-dimensional case.

2.1 Lévy-Khintchine Representation

Let h : R → R be a measurable function such that for every z,
∫ |eizx − 1 −

izh(x)|ν(dx) < ∞. Such a function h is called a truncation function. The Levy-
Khintchine representation with the truncation function h takes the form:

E[eizXt ] = etψ(z), z ∈ R, (2.1)

ψ(z) = −1
2

zAz + iγhz +
∫

Rd
(eizx − 1 − izh(x))ν(dx). (2.2)

A and ν do not depend on the choice of h but γh depends on this choice. If
γ is the value of γh for the standard truncation function h(x) = x1|x|≤1, γh for
arbitrary h can be computed with

γh = γ +
∫ ∞

−∞
(h(x)− x1|x|≤1)ν(dx).

In the sequel, the value of γh corresponding to the truncation function h ≡ 0
(drift) will be denoted by γ0 and the value corresponding to h ≡ x (center) will
be denoted by γc.

In the sequel, we will use the following result on exponential moments of
Lévy processes (see Sato 1999, Theorem 25.17).

Proposition 2.1 Let X be a Lévy process with characteristic triplet (A, ν, γh)with
respect to a truncation function h and let λ ∈ R. Then E[eλXt ] < ∞ for some
t > 0 or equivalently for all t > 0 if and only if

∫

|x|≥1
eλxν(dx) < ∞.

In this case, E[eλXt ] = etψ(−iλ) with ψ as in Eq. 2.2.

2.2 Equivalent Measure Changes for Lévy Processes

Proposition 2.2 (see Sato 1999, Theorems 33.1 and 33.2) Let (Xt, P) and (Xt, P′)
be two Lévy processes on R with characteristics triplets (A, ν, γ ) and (A′, ν′, γ ′).
Then P|Ft and P′|Ft are equivalent for all t (or equivalently for one t > 0) if and
only if the three following conditions are satisfied:
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1. A = A′
2. The Lévy measures are equivalent with

∫ ∞

−∞
(e�(x)/2 − 1)2ν(dx) < ∞

where �(x) = ln(
dν′

dν
)

3. If A = 0 then we must in addition have

γ ′
h = γh +

∫ ∞

−∞
h(x)(ν′ − ν)(dx)

When P and P′ are equivalent, the Radon-Nikodym derivative is

dP′

dP
|Ft = eUt

with

Ut = ηXc
t − η2At

2
− ηγht + lim

ε→0

( ∑

|�Xs|>ε
�(�Xs)− t

∫

|x|>ε
(e�(x) − 1)ν(dx)

)

Here (Xc
t ) is the continuous part of (Xt), i.e. the Lévy process with generating

triplet (A, 0, γ ) and η is such that

γ ′
h − γh −

∫ ∞

−∞
h(x)(ν′ − ν)(dx) = Aη if A > 0

and zero if A = 0.
Ut is a Lévy process with characteristic triplet (AU , νU , γU) given by:

AU = η2σ 2

νU = ν ◦�−1

γU = −1
2

Aη2 −
∫ ∞

−∞
(ey − 1 − h(y))(ν�−1)(dy)

2.3 Stable Processes

Real valued α-stable processes with 0 < α < 2 are Lévy processes with no
continuous martingale part and Lévy measure of the form

ν(x) = A

|x|α+1
1x>0 + B

|x|α+1
1x<0.
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If 1 < α < 2, the process has finite mean and its characteristic function has the
following form:

�Xt(z) = exp t
{

iµz +
∫

R

(eizx − 1 − izx)ν(dx)
}

for some center µ ∈ R. In the case 0 < α < 1, the process has finite variation
and we can write

�Xt(z) = exp t
{

iµz +
∫

R

(eizx − 1)ν(dx)
}

,

i.e., µ is now the drift. The characteristic function of a stable process may also
be expressed as (see Sato 1999)

�Xt(z) = exp
{
−σα|z|αt

(
1 − iβ sgn z tan

πα

2

)
+ iµzt

}
, if α 	= 1,

�Xt(z) = exp

{

−σ |z|t
(

1 + iβ
2
π

sgn z log |z|
)

+ iµzt
}

, if α = 1, (2.3)

where α ∈ (0, 2], σ ≥ 0, β ∈ [−1, 1] and µ ∈ R. A stable law with parameters
α, σ ,β, ν is denoted by Sα(σ ,β, ν).

In the case α < 2 the two parametrizations are linked by the following
relations:

σ =
[
−(A + B)(−α) cos

(πα

2

)] 1
α when α 	= 1,

σ = π

2
(A + B) when α = 1,

β = A − B
A + B

.

Furthermore, when α 	= 1 and γ is the third parameter of the characteristic
triplet of X for the standard truncation function h(x) = x1|x|≤1 then

µ = γ + B − A
1 − α

.

2.4 Simulation of Stable Random Variables

Proposition 2.3 (see Chambers et al. 1976) Let � and W be independent with
� uniformly distributed on (−π

2 , π2 ) and W exponentially distributed with mean
1, and let 0 < α ≤ 2.
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• The symmetric random variable

Z =
⎧
⎨

⎩

sin(α�)

(cos(�))1/α

[
cos(α−1)�

W

](1−α)/α
, α 	= 1

tan�, α = 1

has a Sα(1, 0, 0) distribution.
• In the nonsymmetric case, for any −1 ≤ β ≤ 1, define

�0 = arctan(β tan(πα/2))/α

when α 	= 1. Then

Z =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

sin(α(�+�0))

(cos(α�0) cos(�))1/α

[
cos(α�0 + (α − 1)�)

W

](1−α)/α
, α 	= 1

π

2

[(π

2
+ β�

)
tan�− β log

( π
2 W cos(�)
π
2 + β�

)]

, α = 1,

has a Sα(1,β, 0) distribution.

Stable random variates with σ 	= 1 and µ 	= 0 may be obtained from Sα(1,β, 0)
by scaling and translation.

2.5 Tempered Stable Processes

A one-dimensional tempered stable process is obtained by taking a
one-dimensional stable process and multiplying the Lévy measure with a decreas-
ing exponential on each half of the real axis. Thus, a tempered stable process
is a Lévy process on R with no Gaussian component and Lévy density of the
form:

ν(x) = c+e−λ+x

x1+α 1x>0 + c−e−λ−|x|

|x|1+α 1x<0,

with parameters satisfying c− > 0, c+ > 0, λ− > 0, λ+ > 0 and 0 < α < 2. For
greater generality one can allow different values of α for positive and negative
half-lines and speak of a generalized tempered stable process with Lévy measure
of the form

ν(x) = c+e−λ+x

x1+α+
1x>0 + c−e−λ−|x|

|x|1+α−
1x<0.

Tempered stable processes have been studied by many authors including
Boyarchenko and Levendorskiı̆ (2002), Carr et al. (2002), Cont et al. (1997),
and Koponen (1995) under different names. In particular, the version when
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c+ = c− and α+ = α− was studied in Carr et al. (2002) under the name CGMY
process with Lévy measure

νCGMY(x) = C

[
e−Mx

x1+Y
1x>0 + e−G|x|

|x|1+Y
1x<0

]

.

A multidimensional generalization of tempered stable processes is proposed in
Rosiński (2004).

Because of the exponential tempering, in the case of the tempered stable pro-
cess big jumps need not be truncated and one can use the truncation function
h(x) = x. In the general case (α± 	= 1 and α± 	= 0) the characteristic exponent
ψ(u) = t−1 log E[eiuXt ] then becomes

ψ(u) = iuγc + (−α+)λα++ c+
{(

1 − iu
λ+

)α+
− 1 + iuα+

λ+

}

+(−α−)λα−− c−
{(

1 + iu
λ−

)α−
− 1 − iuα−

λ−

}

. (2.4)

In the sequel we will also need the characteristic exponent of the tempered
stable process for 0 < α < 1 with h ≡ 0 as the truncation function:

ψ(u) = iuγ0 + (−α)[c+((λ+ − iu)α − λα+)+ c−((λ− + iu)α − (λ−)α)]. (2.5)

3 Monte Carlo Evaluation of Functionals of CGMY Process Using Measure
Change

The following theorem is the main result of this paper and shows that under an
appropriate change of measure the tempered stable process becomes a sum of
two one-sided stable processes.

Theorem 3.1 Let (Xt) be a (generalized) tempered stable Lévy process on the
probability space (�, F , P) with Lévy density

ν(x) = c+e−λ+x

x1+α+
1x>0 + c−e−λ−|x|

|x|1+α−
1x<0,

and let (X+
t ) and (X−

t ) be tempered stable Lévy processes such that X = X++X−
with characteristic triplets (0, ν+, γ+) and (0, ν−, γ−) where

ν+(x) = c+e−λ+x

x1+α+
1x>0 and ν−(x) = c−e−λ−|x|

|x|1+α−
1x<0.

Then the following holds:
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1. There exists a unique constant c such that eUt is a P-martingale, where Ut =
λ+X+

t − λ−X−
t + ct. c is given by1

• for 0 < α < 1,

c = −λ+γ+
0 + (−α+)λα++ c+ + λ−γ−

0 + (−α−)λα−− c−.

• for 1 < α < 2,

c = −λ+γ+
c + (−α+)λα++ c+(α+ − 1)+ λ−γ−

c + (−α−)λα−− c−(α− − 1).

2. One can define a probability measure Q on (�, F) such that Q|Ft ∼ P|Ft for
every t by dQ

dP |Ft = eUt .
3. Under Q, the processes (X+

t ) and (X−
t ) are stable processes with characteristic

triplets (0, ν̃+, γ̃+) and (0, ν̃−, γ̃−) where

ν̃+(x) = c+
x1+α+

1x>0 and ν̃−(x) = c−
|x|1+α−

1x<0,

and
• for 0 < α < 1

γ̃+
0 = γ+

0 (3.1)

γ̃−
0 = γ−

0 (3.2)

• for 1 < α < 2

γ̃+
c = γ+

c + c+
∫ ∞

0

1 − e−λ+x

xα+ dx = γ+
c − c+λα+−1

+ (1 − α+), (3.3)

γ̃−
c = γ−

c + c−
∫ 0

−∞
1 − e−λ−|x|

|x|α− dx = γ−
c − c−λα−−1

− (1 − α−). (3.4)

Remark 3.1 The processes X+ and X− are unique up to a linear function: we
can freely choose a constant k and put X+′ = X+ + kt and X−′ = X− − kt.
It is easy to see that the value of −λ+X+

t + λ−X−
t − ct does not depend on k

and therefore, the quantities that we want to compute, that is, expectations of
functionals of X, do not depend on k.

Proof 1. By Proposition 2.1, E[eλ+X+
1 ] < ∞, E[e−λ−X−

1 ] < ∞ and, since X+
and X− are independent,

E[eλ+X+
1 −λ−X−

1 ] = E[eλ+X+
1 ]E[e−λ−X−

1 ] < ∞.

1 Here and below 0 < α < 1 means that both 0 < α+ < 1 and 0 < α− < 1 and similarly
for 1 < α < 2. The formulas for the other cases when, say 0 < α+ < 1 and 1 < α− < 2 are
straightforward generalizations.
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Let

c = − ln E[eλ+X+
1 −λ−X−

1 ] ≡ −(ln E[eλ+X+
1 ] + ln E[e−λ−X−

1 ]).

Since λ+X+
1 − λ−X−

1 is a Lévy process,

eλ+X+
t −λ−X−

t +ct = eλ+X+
t −λ−X−

t

E[λ+X+
t − λ−X−

t ]
is a martingale. The constant c can be computed as follows:
• If 0 < α < 1 we can use the truncation function h ≡ 0 and Eq. 2.5 yields

c = −λ+γ+
0 + (−α+)λα++ c+ + λ−γ−

0 + (−α−)λα−− c−

• If 1 < α < 2 we can use the truncation function h(x) = x and Eq. 2.4
yields:

c = −λ+γ+
c + (−α+)λα++ c+(α+ − 1)+ λ−γ−

c + (−α−)λα−− c−(α− − 1)

2. Let

�(x) = λ+x1x>0 − λ−x1x<0.

Since, as is easily seen,
∫ ∞
−∞(e

�(x)/2 − 1)2)ν(dx) < ∞, by Proposition 2.2, we
can define a new probability Q ∼ P by:

dQ
dP

|Ft = eUt

with

Ut = lim
ε→0

⎛

⎝
∑

|�Xs|>ε
�(�Xs)− t

∫

|x|>ε
(e�(x) − 1)ν(dx)

⎞

⎠

= lim
ε→0

( ∑

|�Xs|>ε
(λ+�Xs1�Xs>0 − λ−�Xs1�Xs<0)

−t
∫

|x|>ε
(eλ+x1x>0−λ−x1x<0 − 1)ν(dx)

)

= lim
ε→0

⎛

⎝
∑

�Xs>ε

λ+�Xs − t
∫

x>ε
(eλ+x − 1)ν(dx)

⎞

⎠

+ lim
ε→0

⎛

⎝
∑

�Xs<−ε
(−λ−)�Xs − t

∫

x<−ε
(e−λ−x − 1)ν(dx)

⎞

⎠ . (3.5)
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The first term in the right-hand side can be rewritten as follows:

lim
ε→0

λ+

⎛

⎝
∑

ε≤�Xs

�Xs − t
∫

ε<x
h(x)ν(dx)

⎞

⎠

− lim
ε→0

(

t
∫

x>ε
(eλ+x − 1 − λ+h(x))ν(dx)

)

.

By the Lévy-Itô decomposition, the first term above equals

λ+X+
t − λ+γ+

h t,

and by the Lévy-Khintchine representation (2.1), the second term gives

ln E[eλ+X+
1 ] − λ+γ+

h .

Treating the second term on the same way the right-hand side of (3.5) in the
same way and assembling all terms, we finally get

Ut = λ+X+
t − λ−X−

t + ct.

3. By Proposition 2.2, we can express the Lévy densities of X+ and X− under
Q as follows:

ν̃+(dx) = e�(x)ν+(dx) = eλ+xν+(dx) = c+
x1+α+ 1x>0,

ν̃−(dx) = e�(x)ν−(dx) = e−λ−xν−(dx) = c−
x1+α− 1x<0.

Moreover, once again by Proposition (2.2),

γ̃+
h − γ+

h =
∫ ∞

−∞
h(x)(ν̃+ − ν+)(dx),

γ̃−
h − γ−

h =
∫ ∞

−∞
h(x)(ν̃− − ν−)(dx).

Treating the cases 0 < α < 1 and 1 < α < 2, separately, we obtain Eqs.
3.1–3.4. ��

The expectation of any FT-measurable random variable HT can be evaluated
via

EP[HT] = EQ[HTe−λ+X+
T +λ−X−

T −cT].
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In particular, if HT = f (XT), then

EP[HT] = EP[f (XT)] = EQ[f (XT)e−λ+X+
T +λ−X−

T −cT].

The Monte Carlo estimator H̄ of E[HT] is given by

H̄ = 1
N

N∑

i=1

Hi
T exp(−λ+X+,i

T + λ−X−,i
T − cT),

where (Xi
T) for i = 1, . . . , N are independent realizations of XT under Q and

Hi
T are corresponding realizations of HT .
We conclude this section with an upper bound for the variance of H̄.

Proposition 3.2 Suppose that in Theorem 3.1, (Xt) is such that α+ 	= 1 and
α− 	= 1 and that the random variable HT is bounded: |HT | ≤ K. Then:

√
VarQ H̄ =

√
1
N

VarQ (
HTe−λ+X+

T +λ−X−
T −cT)

≤ K√
N

exp[(−α+)λα++ c+T(2α+−1 − 1)

+(−α−)λα−− c−T(2α−−1 − 1)].

Proof We have that

VarQ HTe−λ+X+
T +λ−X−

T −cT ≤ EQ
[
f (XT)

2 exp(−2λ+X+
T + 2λ−X−

T − 2cT)
]

≤ K2EQ[exp(−2λ+X+
T + 2λ−X−

T − 2cT)].

But since X+
T and X−

T are independent:

EQ[exp(−2λ+X+
T + 2λ−X−

T − 2cT)] = e−2cTEQ[exp(−2λ+X+
T )]EQ

[exp(2λ−X−
T )].

Moreover,

EQ[exp(−2λ+X+
T )] = EP[exp(−λ+X+

T + λ−X−
T + cT)]

= ecTEP[exp(−λ+X+
T )]EP[exp(−λ−X−

T )]

and

EQ[exp(2λ−X−
T )] = ecTEP[exp(λ−X−

T )]EP[exp(λ+X+
T )].
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Thus

EQ[exp(−2λ+X+
T + 2λ−X−

T − 2cT)]
= EP[exp(−λ+X+

T )]EP[exp(λ−X−
T )]EP[exp(−λ−X−

T )]EP[exp(λ+X+
T )]

= exp(T(ψ+(iλ+)+ ψ+(−iλ+)+ ψ−(iλ−)+ ψ−(−iλ−)))
= exp

(
(−α+)λα++ c+T(2α+ − 2)+ (−α−)λα−− c−T(2α− − 2)

)
. �

4 Numerical Results

4.1 Overview of the Direct Simulation Method

Let us briefly review the approximate simulation method for the tempered sta-
ble process, introduced in Madan and Yor (2005). This method applies to the
4-parameter CGMY family (tempered stable process with c− = c+ = c and
α− = α+ = α). It is based on the fact that such a process can be represented
as a time-changed Brownian motion with drift. Since some of the constants are
not given explicitly in Madan and Yor (2005), we provide a short proof of this
result here.

Proposition 4.1 Let c > 0, α ∈ (0, 2), γ+ > 0 and γ− > 0, and Z be a subordi-
nator with zero drift and Lévy density

νZ(t) = ce
t
2 A2− t

4 B2
D−α(B

√
t)

t
α
2 +1

,

where D is the parabolic cylinder function (see Gradshetyn and Ryzhik 1995),
A = λ−−λ+

2 and B = λ++λ−
2 . Then the process

Xt = AZt + W(Zt),

where W is a standard Brownian motion, is a tempered stable process with Lévy
density

ν(x) = ce−λ+x1x>0 + ce−λ−|x|1x<0

|x|1+α (4.1)

and center

γc =
∫

R

x(1 − e−Ax)ν(x)dx.

In the case 0 < α < 1, the drift of X is equal to zero.

Remark 4.1 In the case α 	= 1 the center is given explicitly by

γc = c(1 − α)(λα−1+ − λα−1− ).
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Proof By Sato (1999, Theorem 30.1), the Lévy density of X is given by

νX(x) =
∫ ∞

0
pt(x)νZ(t)dt

where

pt(x) = 1√
2π

e− (x−At)2
2t .

This integral corresponds to integral 7.728 in (Gradshetyn and Ryzhik, p. 837)
and is equal to (4.1).

Once again, by Sato (1999, Theorem 30.1), the center of X (third component
of the characteristic triplet with respect to the truncation function h(x) ≡ x) is
given by

∫ ∞

0
νZ(t)dt

∫

R

xpt(x)dx = A
∫ ∞

0
tνZ(t)dt.

On the other hand, by Fubini’s theorem,

∫

R

x(1 − e−Ax)ν(x)dx =
∫

R

x(1 − e−Ax)

∫ ∞

0
pt(x)νZ(t)dtdx

=
∫ ∞

0
νZ(t)dt

∫

R

x(1 − e−Ax)pt(x)dx = A
∫ ∞

0
tνZ(t)dt.

The last statement of the theorem follows directly from Sato (1999,
Theorem 30.1). ��

The paper (Madan and Yor 2005) further shows that the density of the time
change Z can be written as

νZ(t) = f (t)ν0(t),

where f (t) ≤ 1 and ν0(t) is the Lévy density of an α
2 -stable subordinator:

f (t) = 2
α
2 (α2 + 1

2 )e
t
2 A2− t

4 B2

√
π

D−α(B
√

t),

ν0(t) = 2− α
2
√
π
λα−2+ + λα−2−
(α2 + 1

2 )

c

t1+ α
2

1t>0 ≡ K

t1+ α
2

1t>0.

This allows us to simulate paths of Z on the interval [0, T] using the Rosiński
(2001) rejection method as follows.
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4.2 Description of the Algorithm

1. Approximate a trajectory of a stable subordinator with Lévy density ν0
on [0, T]. This approximation consists of replacing this subordinator with a
compound Poisson subordinator with Lévy density

K

t1+ α
2

1t>ε

and drift

d =
∫ ε

0
y

K

y
α
2 +1

dy = Kε1− α
2

1 − α
2

.

This amounts to replacing small jumps with their expectation. Note that
an approximation bias is introduced at this stage. Denote by (Ti) the jump
times and by (yi) the jump sizes of the compound Poisson approximation
(we do not give details since their simulation is straightforward).

2. Approximate the trajectory of the CGMY time change Z using the rejection
method. In this setting this amounts to accept every jump yi of the stable
subordinator for which f (yi) is greater than an independent uniform random
variable on [0, 1]. The approximated time change is given by

Ẑt = td +
∑

i

yi1i≤t1f (yi)>Ui ,

where (Ui) is an independent sequence of uniforms on [0, 1].
3. Approximate the CGMY process by

X̂t = AẐt + W(Ẑt),

where W is a standard Brownian motion.

4.3 Financial Model Setup

To compare the performance of the algorithm introduced in Sect. 3 with that of
the approximate simulation algorithm of Madan and Yor (2005), we use both
methods to compute the prices of European put options in an exponential Lévy
model driven by a tempered stable process. The European options were cho-
sen because their reference prices can be computed analytically, which allows
to estimate the bias in the approximate simulation method. In this model, the
stock price is given by

St = S0ert+Xt ,
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where X is a tempered stable process and r is the interest rate supposed con-
stant. The European put option is a contract which pays to its holder (K − ST)

+
at a future date T, where K is a fixed amount (strike). By the fundamental the-
orem of asset pricing, absence of arbitrage in a financial market is equivalent to
the existence of a probability Q equivalent to the historical probability P, such
that discounted prices of all assets are Q-martingales. In this paper we place
ourselves directly under the probability Q. The process X must therefore satisfy
the martingale condition E[eXt ] = 1 and the price of a European put option at
time t = 0 is

P(T, K) = e−rTEQ[(K − ST)
+].

4.4 Results and Comparisons

For numerical computations, we used the following artificial parameters of the
tempered stable process: α = 0.5, c = 0.5, λ+ = 3.5 and λ− = 2. The initial
stock price was taken equal to 100, the option’s maturity was T = 0.25, and
the interest rate was 4%. The first step was to compute the reference prices
using the Fourier transform method, described in Cont and Tankov (2004). The
prices are given in Table 1. The implied volatility smile corresponding to these
prices is shown in the graph next to this table. This is a typical shape of implied
volatility observed for options on stocks.

Next we study the bias of the approximate simulation method. To reduce the
number of simulations, we only treat the strike K = 100. The results are shown
in Table 2. We see that for the parameter values used, the bias decreases rapidly
to zero as ε → 0. Moreover, since the computational complexity is proportional
to 1

εα/2
, decreasing ε by a factor of 10 reduces the bias by roughly the same factor

but will only increase the complexity by a factor of 101/4 ≈ 1.77. Therefore, in

Table 1 Reference option prices computed using the Fourier transform method and the corre-
sponding implied volatilities

80 85 90 95 100 105 110 115 120
0.34

0.36

0.38

0.40

0.42

0.44

0.46

0.48
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Table 2 Bias of the approximate simulation method

ε Price (std.dev) Bias (std.dev) Time (107 traj.)

10−1 8.4608 (0.004) 2.090 (0.004) 61 s
10−2 6.5834 (0.004) 0.2123 (0.004) 91 s
10−3 6.3784 (0.004) 0.0073 (0.004) 144 s
10−4 6.3658 (0.004) -0.0053 (0.004) 233 s

Table 3 Option prices computed using the approximate simulation method. The computation time
is about 23 s for each price

Strike Price Std. dev.

80 1.745 0.007
85 2.378 0.008
90 3.278 0.009
95 4.544 0.011

100 6.349 0.012
105 9.131 0.013
110 12.765 0.014
115 16.855 0.015
120 21.192 0.016

this case it is sufficient to take ε = 10−4 and the Monte Carlo error will play the
dominant role.

Armed with this knowledge, we set ε = 10−4, the level at which the bias is
insignificant compared to Monte Carlo error for 106 trajectories, and compute
the option prices using the approximate simulation method over 106 trajecto-
ries. This number of trajectories allows to estimate option prices with a precision
of about one cent. The prices, standard deviations, and computation times are
shown in Table 3.

Next, we use the Monte Carlo method described in Sect. 3 to price the same
options. With 106 trajectories we obtain roughly the same variance for strike
K = 100 as with the approximate method, whereas the computational time is
reduced by a factor of 16. The results are shown in Table 4. We also compute the
theoretical bound on variance, given by Proposition 3.2. The theoretical bound
is quite far from the true variance since the option pay-off is estimated from
above by the strike value (a very rough estimate).

As our last example, we compare the two algorithms in an infinite variation
model with parameters α = 1.5, c = 0.1, λ+ = 3.5, γ− = 2. This corresponds to
roughly the same unit variance as in the previous case. We fix the strike equal
to 100 and leave all other parameters unchanged. The true price of the option
(computed by Fourier transform) is equal to 8.3014 in this case.

First we analyze the bias of the approximate simulation algorithm. The results
are shown in Table 5. In this case, the computational time is much more sensitive
to ε and the bias is, roughly, inversely proportional to the computational effort.
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Table 4 Option prices computed using the method of Sect. 3. The theoretical bound is that given
in Proposition 3.2. The computation time for one price is about 1.43 s. The errors are all of the same
sign compared to Table 1 because they have been computed over the same set of trajectories

Strike Price Std. dev. Theor. bound

80 1.751 0.005 0.12
85 2.403 0.006 0.13
90 3.299 0.008 0.14
95 4.560 0.010 0.15

100 6.397 0.012 0.15
105 9.168 0.015 0.16
110 12.789 0.019 0.17
115 16.867 0.023 0.18
120 21.207 0.028 0.18

Table 5 Approximation bias, infinite variation case

ε Price (std. dev) Bias (std. dev) Time (106 traj.)

10−1 10.081 (0.013) 1.780 (0.013) 1.5 sec
10−2 8.683 (0.012) 0.381 (0.012) 5.17 sec
10−3 8.368 (0.011) 0.067 (0.011) 24 sec
10−4 8.304 (0.011) 0.002 (0.011) 132 sec

With the method of Sect. 3, the standard deviation of about 0.011 is obtained
for 1.8×106 trajectories, which requires about 2.62 s of machine time. Therefore,
in this case our algorithm is about 50 times faster than approximate simulation,
for the same precision.

To conclude, let us sum up the advantages and drawbacks of the two algo-
rithms. First of all, we want to emphasize the fundamental difference between
the two approaches: whereas the method of Madan and Yor (2005) is a sim-
ulation algorithm, our method is an algorithm for evaluating expectations, it
cannot be used to, say, plot a trajectory of the tempered stable process for given
parameter values.

The approximate simulation method by Madan and Yor (2005)

• Can be easily generalized to multiple dimensions by taking a multidimen-
sional Brownian motion.

• Provides access to the entire trajectory of the process.
• Involves an approximation bias which may be important and is difficult to

quantify.

On the other hand, our algorithm presented in Sect. 3

• Is more general (in one dimension) in the sense that we allow different values
of α+ and α− and different values of c+ and c−, which is not possible with
Brownian subordination.

• Provides unbiased Monte Carlo estimates.
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• Runs 16 to 50 times faster for the parameter values used in this paper (for
pricing European options).
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