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1. Introduction

Understanding the implied volatility skews that are characteristic of index options
has challenged financial mathematicians for nearly three decades. Typically re-
searchers seek to explain these effects by assuming that the return distribution
for an index does not follow the lognormal diffusion dynamics that underpin the
Black-Scholes model. For instance, volatility skews and smiles can be obtained
from local volatility function models developed by Dupire (1992–1994). Other re-
searchers have focused on stochastic volatility function models (see Derman and
Kani, 1994), and jump diffusion models (see Kou, 2002). Some other contributions
to equity index modeling are contained in Renault and Touzi (1996), Musiela and
Rutkowski (1997), Rebonato (1999), Schönbucher (1999), Fouque et al. (2000),
Lewis (2000), Rosenberg (2000), Heath et al. (2001), Balland (2002), Barndorff-
Nielsen and Shephard (2002), Carr and Wu (2003) and Brigo et al. (2004).

A number of empirical studies have been undertaken on the dynamics of in-
dices and corresponding implied volatility surfaces. Black (1976) documented
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empirically the leverage effect, which for an index states that volatility is nega-
tively correlated to the level of the index. Rubinstein (2000) examined observed
S&P500 index implied volatilities and discovered that the implied volatility sur-
face was nearly flat for periods before the 1987 stock market crash, but has shown
consistent negative skews for the decade after the crash. In a recent paper (Heath
and Platen, 2004) found a pronounced negative skew with small smile features for
S&P500 index call options. Other interesting empirical studies have been under-
taken by Franks and Schwartz (1991), Heynen (1993), Heynen et al. (1994), Bakshi
et al. (1997), Dumas et al. (1997), Das and Sundaram (1999), Skiadopolous et al.
(2000), Tompkins (2001) and Cont and da Fonseca (2002).

It is widely accepted that the negative volatility skew observed for index options
is related to the leverage effect. This itself can at least be partly explained by the
so-called wealth effect. That is, if the level of an index declines wealth is reduced
leading to greater risk aversion and thus higher volatility. Other economic reasons
that have been cited to provide justification for the leverage effect include for
example what (Rubinstein, 1985) calls the diversification effect, where correlation
among index constituents increases for falling index values, leading to greater index
volatility.

In this paper we present a two-factor model for a diversified index that provides
a structural explanation as to why large indices show negative implied volatility
skews. Our formulation is established using global properties of the market and
avoids specific assumptions regarding the return distributions. Rather, these follow
as a consequence of other more fundamental analysis. The framework established
in this paper is important because it provides not only intuition on the causes of
the leverage effect, but also on how to quantify this effect and why the implied
volatility patterns observed for index options can be different from those for stock
and FX markets.

Our treatment starts with an examination of the properties of the growth optimal
portfolio (GOP) introduced by Kelly (1956). The GOP is the portfolio that max-
imizes expected log-utility. Using basic diffusion dynamics for securities and the
GOP optimality criterion, it is possible to characterize the GOP. It turns out that
with respect to a certain time transformation, the GOP can be expressed precisely
as a squared Bessel process of dimension four. The corresponding random time
transformation can be obtained directly from the quadratic variation of the square
root of the discounted GOP.

It is then argued that this analysis can be extended to any diversified portfolio
because by applying results in Platen (2004) it follows that such a portfolio ap-
proximates the GOP. Combining these two arguments means that the underlying
dynamics for a diversified index are visible and can be directly calibrated from ob-
served market data. This formulation is therefore based on an underlying squared
Bessel process and provides a precise quantification of both the degree of leverage
and corresponding implied volatility skews that can be expected for a diversified
index and its derivatives.
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Principal component analysis indicates that a one-factor model can capture
approximately 75–95% of the movements of an index and its implied volatilities, see
for example (Cont and da Fonseca, 2002). However, a two-factor model is required
to increase these percentages to say 90–99%. Also, at present it is not possible to
implement a model containing more than two factors with reliable, fast and accurate
pricing and hedging tools (see Brigo and Mercurio, 2001). Therefore, choosing
a two-factor model represents a reasonable compromise between accuracy and
tractability. In this paper our proposed two-factor model is based on the above GOP
analysis and is a generalization of the minimal market model (MMM) described in
Platen (2001, 2002). For this model the factors are the GOP together with a random
scaling component constructed from the random time transformation. These factors,
together with the short rate, determine the overall dynamics of the GOP and thus,
by extension, of a diversified index.

For most current index models the existence of an equivalent risk neutral mar-
tingale measure is assumed. However, for the dynamics considered here such a
measure does not exist, because the corresponding Radon-Nikodym derivative is
a strict local martingale. This is related to the fact that for the MMM, volatilities
become unbounded as the index approaches zero. Consequently, in this paper the
existence of an equivalent risk neutral martingale measure is not assumed. Rather,
to obtain a consistent derivative pricing and hedging framework, we employ the
benchmark approach described in Platen (2002, 2004). The benchmark approach
is characterized by choosing the GOP as the numeraire portfolio. This provides
a natural choice because this portfolio achieves optimal long term growth and is
independent of the denomination. Furthermore, it leads to pricing formulae with
respect to the real world probability measure. Also as the benchmark approach ex-
tends risk neutral pricing, it can accommodate a wider class of model formulations
including the MMM.

This paper is organized as follows: In Section 2 the GOP and benchmark ap-
proach are described. Section 3 considers the MMM with a random scaling factor.
Using the benchmark approach the pricing of zero coupon bonds and European
put options are examined in Section 4. These calculations are used to compute
implied volatility term structures and to compare them to surfaces observed in real
markets. At the end of Section 4 a brief account of the pricing of path dependent
binary options is given with emphasis on the differences between these prices and
corresponding Black-Scholes prices.

2. A Benchmark Model

2.1. PRIMARY SECURITY ACCOUNTS

Consider a financial market with d + 1 primary assets with a corresponding set
S(0), S(1), . . . , S(d) of primary security account processes. The primary assets could
be shares, indices, commodities, foreign currencies or even derivatives. It is assumed
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that accrued income or loss from holding a primary asset is always reinvested. Let
S( j)

t be the price of the j th primary security account, j ∈ {0, 1, . . . , d}, denominated
in units of the domestic currency at time t ∈ [0, T ] for some finite time horizon
T ∈ (0, ∞). It is assumed that S( j)

t is the strong, unique solution of the stochastic
differential equation (SDE)

d S( j)
t = S( j)

t

(
a j

t dt +
d∑

k=1

b j,k
t dW k

t

)
(2.1)

for t ∈ [0, T ] and j ∈ {0, 1, . . . , d} with S( j)
0 > 0. Here the vector W = {Wt =

(W 1
t , . . . , W d

t ), t ∈ [0, T ]} of independent Wiener processes is defined on a filtered
probability space (�,AT ,A, P) that satisfies the usual conditions, see (Protter,
1990). The filtration A = (At )t∈[0,T ] is the P-augmentation of the natural filtration
AW under P , where P is the real world probability measure.

The j th appreciation rate a j = {a j
t , t ∈ [0, T ]} and ( j, k)th volatility b j,k =

{b j,k
t , t ∈ [0, T ]} are considered to be A-adapted stochastic processes for j ∈

{0, 1, . . . , d} and k ∈ {1, 2, . . . , d}, see (Protter, 1990). We set a0
t = rt and b0,k

t = 0
for k ∈ {1, 2, . . . , d} so that S(0)

t is the value of the savings account at time t , where
rt is the short term interest rate at time t . Furthermore, it is assumed that the volatility
matrix bt = [b j,k

t ]d
j,k=1 is for Lebesgue-almost-every t ∈ [0, T ] invertible.

By introducing the appreciation rate vector at = (a1
t , . . . , ad

t )�, where A�

denotes the transpose of a vector or matrix A, and the unit vector 1 = (1, . . . , 1)�,
the market price for risk vector is given by

θt = (
θ1

t , . . . , θd
t

)� = b−1
t [at − rt 1] (2.2)

for t ∈ [0, T ]. This expression allows us to rewrite the SDE (2.1) in the form

d S( j)
t = S( j)

t

(
rt dt +

d∑
k=1

b j,k
t

[
θ k

t dt + dW k
t

])
(2.3)

for t ∈ [0, T ] and j ∈ {0, 1, . . . , d}.

2.2. STRATEGIES

Let us now consider portfolios of primary assets. We say that a predictable stochastic
process δ = {δ(t) = (δ(0)(t), δ(1)(t), . . . , δ(d)(t))�, t ∈ [0, T ]} is a strategy if δ is S-
integrable, see (Protter, 1990). Here the j th component δ( j)(t) denotes the number
of units of the j th primary security account that are held at time t ∈ [0, T ] in the
corresponding portfolio, j ∈ {0, 1, . . . , d}. For a strategy δ we denote by S(δ)

t the
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value of the corresponding portfolio at time t , measured in units of the domestic
currency. This means that

S(δ)
t =

d∑
j=0

δ( j)(t) S( j)
t (2.4)

for t ∈ [0, T ]. A strategy δ and the corresponding portfolio process S(δ) are called
self-financing if

d S(δ)
t =

d∑
j=0

δ( j)(t) d S( j)
t (2.5)

for all t ∈ [0, T ]. For a self-financing strategy no outflow or inflow of funds occur
in the corresponding portfolio. That is, all changes in the value of the portfolio
are due to corresponding gains from trade resulting from random movements of
the primary security accounts. In what follows, only self-financing strategies and
corresponding self-financing portfolios are considered. Therefore, from now on we
omit the phrase “self-financing”.

Using (2.5) and (2.3) for a given strategy δ, the corresponding portfolio value
S(δ)

t satisfies the SDE

d S(δ)
t = S(δ)

t rt dt +
d∑

k=1

d∑
j=0

δ( j)(t) S( j)
t b j,k

t

(
θ k

t dt + dW k
t

)
(2.6)

for t ∈ [0, T ].

2.3. GROWTH OPTIMAL PORTFOLIO

We now introduce the growth optimal portfolio (GOP) (see Kelly, 1956; Long,
1990; Karatzas and Shreve, 1998; Platen, 2002). This is defined as the portfolio
that maximizes the growth rate, that is the drift of ln(S(δ)

t ), for all t ∈ [0, T ]. The
optimal strategy δ∗ = {δ∗(t) = (δ(0)

∗ (t), δ(1)
∗ (t), . . . , δ(d)

∗ (t))�, t ∈ [0, T ]} follows
in a straightforward manner by solving the first order conditions for the quadratic
growth rate maximization problem (see Karatzas and Shreve, 1998; Platen, 2004).
It can be shown that the GOP satisfies the SDE

d S(δ∗)
t = S(δ∗)

t

(
rt dt +

d∑
k=1

θ k
t

(
θ k

t dt + dW k
t

))
(2.7)

for t ∈ [0, T ] with

S(δ∗)
0 > 0. (2.8)
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Note that the GOP dynamics are fully characterized by the market price for risk
vector process θ = {θt , t ∈ [0, T ]} and the short rate process r = {rt , t ∈ [0, T ]}.
In particular, inspection of (2.7) reveals that the GOP volatilities are determined by
the market price of risk process.

Let the discounted GOP value S̄(δ∗)
t be defined by

S̄(δ∗)
t = S(δ∗)

t

S(0)
t

. (2.9)

By application of the Itô formula and using (2.7) and (2.1), the discounted GOP
value S̄(δ∗)

t satisfies the SDE

d S̄(δ∗)
t = S̄(δ∗)

t

d∑
k=1

θ k
t

(
θ k

t dt + dW k
t

)
(2.10)

for t ∈ [0, T ]. Let the total market price for risk |θt | be given by the expression

|θt | =
√√√√ d∑

k=1

(
θ k

t

)2
(2.11)

for t ∈ [0, T ]. Combining (2.10) and (2.11) yields the SDE

d S̄(δ∗)
t = S̄(δ∗)

t |θt |
(|θt | dt + dŴt

)
(2.12)

with

dŴt = 1

|θt |
d∑

k=1

θ k
t dW k

t (2.13)

for t ∈ [0, T ] (see Platen, 2002). Using Levy’s theorem (see Karatzas and Shreve,
1991), it can be shown that Ŵ = {Ŵt , t ∈ [0, T ]} is a standard Wiener process
on (�,AT ,A, P). We have therefore established in (2.12) a simple but powerful
characterization of the discounted GOP dynamics.

Let us now introduce a new parameter process α = {αt , t ∈ [0, T ]}, called the
discounted GOP drift, with

αt = S̄(δ∗)
t |θt |2 (2.14)

for t ∈ [0, T ] so that

|θt | =
√

αt

S̄(δ∗)
t

. (2.15)
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By (2.14) and (2.15) the SDE (2.12) for the discounted GOP can be rewritten in
the form

d S̄(δ∗)
t = αt dt +

√
αt S̄(δ∗)

t dŴt (2.16)

for t ∈ [0, T ].
Applying the Itô formula using (2.16) yields

d
√

S̄(δ∗)
t = 3 αt

8
√

S̄(δ∗)
t

dt + 1

2

√
αt dŴt (2.17)

for t ∈ [0, T ]. The quadratic variation of
√

S̄(δ∗)
t can be directly computed from

(2.17) as

〈√
S̄(δ∗)

〉
t
= 1

4

∫ t

0
αs ds (2.18)

for t ∈ [0, T ]. Hence the discounted GOP drift takes the form

αt = 4
d

dt

〈√
S̄(δ∗)

〉
t (2.19)

for t ∈ [0, T ]. Therefore, we now have a rather complete characterization of
the dynamics for the discounted GOP via Equations (2.16) and (2.19). A precise
quantification of the GOP risk premium or expected excess return |θt |2 is given in
(2.7) together with (2.15). Furthermore, the parameter process α can be directly
observed from market data using (2.19). Note that usually drift parameters can
only be reliably estimated on the basis of unrealistically long observation periods.
However, (2.19) reduces the problem to one of estimating a quadratic variation,
which can be done even over very short time periods if high-frequency data is used.

To see how the corresponding GOP time process ϕ can be formulated, let ϕ =
{ϕt , t ∈ [0, T ]} be a random time transformation given by

ϕt = 1

4

∫ t

0
αs ds (2.20)

with

Xϕt = S̄(δ∗)
t (2.21)

and

dŴ ∗
ϕt

= √
αt dŴt (2.22)
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for t ∈ [0, T ]. It can be shown by application of Levy’s theorem (see Karatzas and
Shreve, 1991), that in ϕ-time Ŵ ∗ is a Wiener process. The corresponding SDE for
the process X in ϕ-time is then

d Xϕ = dϕ + √
Xϕ dŴ ∗

ϕ (2.23)

for ϕ ∈ [0, ϕT ]. Therefore, viewed from the perspective of ϕ-time, the process X
is a squared Bessel process of dimension four (see Revuz and Yor, 1999).

As is shown in Platen (2004) the dynamics for any diversified portfolio will
approximate that of the GOP. This important result allows us to use the above
structure to model any well diversified index.

2.4. BENCHMARKED PRICES

Throughout the following we use the GOP as numeraire or benchmark and call
prices, expressed in units of S(δ∗)

t , benchmarked prices. The j th benchmarked pri-
mary security account price at time t is then

Ŝ( j)
t = S( j)

t

S(δ∗)
t

(2.24)

for t ∈ [0, T ] and j ∈ {0, 1, . . . , d}. The benchmarked value of a portfolio S(δ) is
similarly given by

Ŝ(δ)
t = S(δ)

t

S(δ∗)
t

(2.25)

for t ∈ [0, T ]. By application of the Itô formula using (2.6) and (2.7), the SDE for
Ŝ(δ)

t is given by

d Ŝ(δ)
t =

d∑
k=1

d∑
j=0

δ( j)(t) Ŝ( j)
t

(
b j,k

t − θ k
t

)
dW k

t (2.26)

for t ∈ [0, T ]. The right hand side of (2.26) is driftless and therefore Ŝ(δ) is an
(A, P)-local martingale.

2.5. FAIR PRICING

As explained previously, for the model considered in this paper, there is no equiv-
alent risk neutral martingale measure. Hence we use the benchmark approach de-
scribed in (Platen, 2002), which employs the concept of fair pricing.
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A value process U = {U (t), t ∈ [0, T ]}, with

E

( |U (t)|
S(δ∗)

t

)
< ∞

for t ∈ [0, T ], is called fair if the corresponding benchmarked value process Û =
{Û (t) = U (t)

S(δ∗)
t

, t ∈ [0, T ]} is an (A, P)-martingale, that is

Û (t) = E
(
Û (T̄ ) |At

)
(2.27)

for 0 ≤ t ≤ T̄ ≤ T .
We define a contingent claim HT̄ that matures at a stopping time T̄ ∈ [0, T ] as

an AT̄ -measurable random variable with

E

( |HT̄ |
S(δ∗)

T̄

∣∣∣∣At

)
< ∞ (2.28)

for all t ∈ [0, T̄ ]. The corresponding fair price process UHT̄
= {UHT̄

(t), t ∈ [0, T̄ ]}
for this contingent claim satisfies the payoff condition

UHT̄
(T̄ ) = HT̄ . (2.29)

Thus, the corresponding fair derivative price process, when benchmarked, is an
(A, P)-martingale, see (2.27). Consequently, its benchmarked value ÛHT̄

(t) is at
time t ∈ [0, T̄ ] given by the conditional expectation

ÛHT̄
(t) = UHT̄

(t)

S(δ∗)
t

= E
(
ÛHT̄

(T̄ )
∣∣At

)
. (2.30)

Therefore, the fair contingent claim price UHT̄
(t) at time t , when expressed in units

of the domestic currency, is given by the fair pricing formula

UHT̄
(t) = S(δ∗)

t E

(
HT̄

S(δ∗)
T̄

∣∣∣∣At

)
(2.31)

for t ∈ [0, T̄ ]. We point out that in formula (2.31) pricing is performed under the real
world probability measure by using the GOP S(δ∗) as numeraire. It is straightforward
to show that if an equivalent risk neutral martingale measure exists, then the fair
pricing formula coincides with the well-known risk neutral pricing formula (see
Platen, 2002).
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3. MMM with Random Scaling

3.1. MODEL FORMULATION

The version of the MMM described here is governed by a particular choice of
the parameter process α, which characterizes the discounted GOP drift and equals
by (2.20) four times the slope of the GOP time. By (2.19) it can be seen that
αt can be observed and, as shown in Platen (2004), is a non-decreasing slowly
varying stochastic process. If we take αt to be deterministic, then we are forced
to a squared Bessel process of dimension ν = 4. One could interpret this as an
ideal market dynamics, where αt expresses the average discounted wealth that is
transferred per unit of time into the stock market. In order to capture perturbed
market dynamics we allow a generalized dynamics with dimension ν above two.
This is achieved by defining the process Z = {Zt , t ∈ [0, T ]} via the power
transformation

Zt = (
S̄(δ∗)

t

) 2
ν−2 (3.1)

for t ∈ [0, T ] and ν ∈ (2, ∞). The Itô formula applied to (2.16) and (3.1) yields

d Zt = ν

4
γt dt +

√
γt Zt dŴt (3.2)

where the scaling process γ = {γt , t ∈ [0, T ]} is given by

γt = αt

(
2

ν − 2

)2

(Zt )
2− ν

2 (3.3)

for t ∈ [0, T ]. This means that Z is a time transformed squared Bessel process of
dimension ν. As we will see in what follows, structuring the model equations in this
form has the advantage that the reduced one-factor formulation with a deterministic
γt can capture via the dimension ν different degrees of slope in the implied volatility
surface for European call and put options. Note that for ν = 4 the scaling γt does
not depend on Zt .

Using the Itô formula together with (2.1), (3.1) and (3.2), the GOP S(δ∗)
t can be

shown to satisfy the SDE

d S(δ∗)
t = S(δ∗)

t

([
rt +

(
ν

2
− 1

)2

γt

(
S(δ∗)

t

S(0)
t

) 2
2−ν

]
dt

+
(

ν

2
− 1

)√
γt

(
S(δ∗)

t

S(0)
t

) 1
2−ν

dŴt

)
(3.4)
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for t ∈ [0, T ]. The GOP volatility or total market price for risk is therefore by
(2.12) of the form

|θt | =
(

ν

2
− 1

)√
γt

(
S(δ∗)

t

S(0)
t

) 1
2−ν

(3.5)

for t ∈ [0, T ]. This means that the index volatility is stochastic and depends at time
t on both the level of the index S(δ∗)

t and the scaling γt .
Furthermore, the discounted GOP drift is by (2.14) and (3.5) given by

αt =
(

ν

2
− 1

)2

γt
(
S̄(δ∗)

t

) 2
2−ν

+1
(3.6)

for t ∈ [0, T ].

3.2. RANDOM SCALING

Motivated by empirical findings in Breymann et al. (2004) on the observable scaling
or market activity, let us assume that the scaling process γ = {γt , t ∈ [0, T ]} is a
nonnegative, adapted stochastic process that satisfies the SDE

dγt = a(t, γt ) dt + b(t, γt )
(
�t dŴt +

√
1 − �2

t dW̃t
)

(3.7)

for t ∈ [0, T ] with a random initial value γ0 > 0. Here W̃ is a Wiener process that
models trading activity and is independent from W 1, . . . , W d and therefore also Ŵ .
The scaling correlation � = {�t , t ∈ [0, T ]} is assumed to be a given deterministic
function of time. The scaling drift function a(·, ·) and scaling diffusion function
b(·, ·) are given functions of time t and scaling level γt . This formulation for the
dynamics of the random scaling as a diffusion process is chosen to provide the
freedom to match empirical evidence (see Breymann et al., 2004).

For this two-factor model the main stochastic volatility effect is produced by
the time transformed squared Bessel process Z of dimension ν, see (3.1) and (3.2).
However, derivative security prices and corresponding implied volatilities are also
influenced by the scaling process γt and its random initial value γ0 > 0. The effects
from random scaling, which captures random trading activity, are seen mainly in
short term derivative prices. As we will see below for European call and put options,
increased stochastic scaling increases the curvature of the implied volatility surface
for short dated options. As shown in Breymann et al. (2004), the scaling models
short term fluctuations in the volatility of the GOP dynamics.

To be specific, let us provide an example that matches closely the intraday
empirical results obtained in Breymann et al. (2004) for the denomination of the
GOP in US Dollars. There it was found that the scaling can be modeled by a product
of the type

γt = ξt mt (3.8)
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with

ξt = ξ0 exp

{∫ t

0
ηs ds

}
(3.9)

for t ∈ [0, T ], where ξ0 > 0 is some constant. The parameter process η = {ηt , t ∈
[0, T ]} is called the net market growth rate process and reflects the average long
term growth rate of the discounted GOP. Here, for simplicity, it is assumed to be
deterministic. The market activity process m = {mt , t ∈ [0, T ]} is designed to
model normalized trading activity. The market activity process is assumed to be a
nonnegative ergodic process that satisfies the SDE

dmt = A(mt ) β2
t dt + βt mt

(
�t dŴt +

√
1 − �2

t dW̃t
)

(3.10)

for t ∈ [0, T ] with m0 ≥ 0. Empirical support for such a model is presented in
Breymann et al. (2004). In this SDE we have used multiplicative noise, where βt is
the deterministic time dependent activity volatility, which also appears in the drift
of (3.10). The function A(·) controls the feedback behavior or mean reversion of
market activity. Breymann et al. (2004) find that a good choice for this function is
of the form

A(m) =
(

p

2
− g

2
m

)
m (3.11)

with speed of adjustment parameter g and reference level p. These parameters are
set so that the expected value of market activity is about one. This market activity
process has a stationary density of the form

pm(y) = g p−1

�(p − 1)
y p−2 exp{−g y} (3.12)

for y ∈ [0, ∞), where �(·) is the gamma function. This is a gamma density with
mean p−1

g and variance 1
g for parameters p > 1 and g > 0.

Figure 1 shows the stationary density (3.12) for different values of y and g with
p = g + 1 to ensure that the mean of the displayed family of stationary densities
always equals one.

Applying the Itô formula and using (3.8)–(3.10), the drift and diffusion functions
a(·, ·) and b(·, ·) appearing in (3.7) take the form

a(t, γ ) = ξt β2
t A

(
γ

ξt

)
+ γ ηt (3.13)

and

b(t, γ ) = βt γ, (3.14)

respectively, for t ∈ [0, T ].
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Figure 1. Stationary density as a function of market activity y and speed of adjustment param-
eter g.

Note that at any time t ∈ [0, T ] the actual value of the market activity mt , and
thus the random scaling γt , cannot be directly observed, since it changes very rapidly
and can only be estimated after sufficient time has passed. However, its stationary
density can be observed (see Breymann et al., 2004). Therefore, the initial value m0

of the market activity is modeled as a random variable with the stationary density
(3.12) as its probability density.

4. Derivative Pricing

4.1. ZERO COUPON BONDS

In Platen (2004) it has been shown under general assumptions that any globally
diversified portfolio approximates for increasing number of securities the GOP. A
globally diversified portfolio is one where the fractions invested in each primary
security decline sufficiently fast as the number of securities increases. Based on
these results we will henceforth use the GOP as a proxy for the index. To study
index derivatives we consider first a zero coupon bond that pays one unit of the
domestic currency at the maturity date T̄ ∈ [0, T ]. In a risk neutral framework one
would not consider this to be an index derivative. However, we will see that since
an equivalent risk neutral martingale measure does not exist, a zero coupon bond
turns out to be a genuine index derivative. More precisely, according to (2.30) and
by using (3.1) the fair benchmarked price P̂T̄ (t, Zt , γt ) for a zero coupon bond at
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time t with maturity T̄ is given by the conditional expectation

P̂T̄ (t, Zt , γt ) = E

(
1

S(δ∗)
T̄

∣∣∣∣At

)
= E

(
1

S(0)
T̄ (ZT̄ )

ν
2 −1

∣∣∣∣At

)
(4.1)

for t ∈ [0, T̄ ]. Hence the corresponding price PT̄ (t, Zt , γt ) in domestic currency is

PT̄ (t, Zt , γt ) = S(δ∗)
t P̂T̄ (t, Zt , γt ) = S(0)

t (Zt )
ν
2 −1 P̂T̄ (t, Zt , γt ) (4.2)

for t ∈ [0, T̄ ]. Let us introduce the diffusion operator L0, which when applied to a
sufficiently smooth function f : (0, T̄ ) × (0, ∞)2 → 
 gives

L0 f (t, Z , γ ) =
[

∂

∂t
+ ν γ

4

∂

∂ Z
+ a(t, γ )

∂

∂γ
+ 1

2
γ Z

∂2

∂ Z2

+ �t b(t, γ )γ
1
2 Z

1
2

∂2

∂ Z∂γ
+ 1

2
b(t, γ )2γ

∂2

∂γ 2

]
f (t, Z , γ ) (4.3)

for (t, Z , γ ) ∈ (0, T̄ ) × (0, ∞)2. Using (3.2) and (3.7), the benchmarked pricing
function P̂T̄ (·, ·, ·) satisfies the Kolmogorov backward equation

L0 P̂T̄ (t, Z , γ ) = 0 (4.4)

for (t, Z , γ ) ∈ (0, T̄ ) × (0, ∞)2 with boundary condition

P̂T̄ (T̄ , Z , γ ) = 1

S(0)
T̄ Z

ν
2 −1

(4.5)

for (Z , γ ) ∈ (0, ∞)2.
For the above two-factor model define the forward rate for maturity T̄ ∈ [0, T ]

at time t ∈ [0, T̄ ] by the formula

fT̄ (t, Zt , γt ) = − ∂

∂ T̄
ln (PT̄ (t, Zt , γt )) . (4.6)

Figure 2 shows the forward rate surface at time t = 0 as a function of Z0 ∈ [50, 150]
and T̄ ∈ [0.25, 10]. For this and subsequent plots the default parameter values used
were: ν = 4, rt = 0.05, �t = 0, ηt = 0.048, ξ = 10, p = 3 and g = 2. Note
that the forward rates are not constant and are always greater than the short rate.
These results together with those described in the remaining part of this paper were
obtained using PDE finite difference methods. It turns out that the initial density for
m0 can be conveniently approximated by a two-point distributed random variable
with mean p−1

g and variance 1
g . The fact that the realistically hump shaped forward
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Figure 2. Forward rates as a function of Z0 and T̄ .

rates, shown in Figure 2, are greater than the short rate demonstrates that the process
Ŝ(0), see (3.3), is a strict (A, P)-local martingale (see Revuz and Yor, 1999). It is
well-known that in the complete market case, when using the GOP as numeraire, �
characterizes the unique candidate risk neutral measure. This means that the Radon-
Nikodym derivative process � = {�t = Ŝ(0)

t

Ŝ(0)
0

, t ∈ [0, T ]} for such candidate risk
neutral measure Q, where d Q

d P |At = �t , is not an (A, P)-martingale. Consequently,
for the proposed model there does not exist an equivalent risk neutral martingale
measure. As is shown in Platen (2004), empirical evidence suggests that the inverse
of the benchmarked savings account, which is the Radon-Nikodym derivative, is
in reality not a true martingale and only a strict supermartingale. This forces us
to consider models of the above kind where no equivalent risk neutral martingale
measure exists. For additional commentary on these and related issues we refer to
Platen (2002).

4.2. EUROPEAN OPTIONS

Consider a European put option on the index S(δ∗) with strike K and maturity date
T̄ ∈ [0, T ]. Using the fair pricing formula (2.31), the option price pT̄ ,K (t, Zt , γt )
is given by

pT̄ ,K (t, Zt , γt ) = S(0)
t (Zt )

ν
2 −1 E

((
K

S(0)
T̄ Z

ν
2 −1

T̄

− 1

)+ ∣∣∣∣At

)
(4.7)

for t ∈ [0, T̄ ], in terms of the domestic currency.
To see the effect on implied volatilities, Figure 3 displays a term structure of

implied volatilities for European puts as a function of the maturity date T̄ and the
strike K . These results were obtained using the fair zero coupon bond price, see
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Figure 3. Implied volatilities for put options as a function of K and T̄ .

(4.2), to infer the discount factor used in the Black-Scholes formula. The implied
volatilities shown in Figure 3 are very close to those observed for European index
options in real markets, see, for example (Cont and da Fonseca, 2002). Note that the
curvature arises from the random scaling for short dated options. More precisely,
this curvature is mainly generated by the random initial value m0 of the market
activity process. If a fixed initial value m0 were used, then much of the curvature
for the short dated implied volatility surface would disappear.

It is well-known that smile and skew patterns for implied volatility surfaces, as
shown in Figure 3, can be obtained by various models (see Carr and Wu, 2003;
Brigo et al., 2004). However, most of these models have problems to calibrate with
the same parameters exotic derivatives. It will be demonstrated in Section 4.3 that
our parsimonious model does not have such problems. Furthermore, the real world
dynamics of an index under our proposed model is close to empirically observed
index dynamics, which has been documented in Breymann et al. (2004).

Our formulation of the MMM with random scaling allows for the Wiener pro-
cesses driving the components Zt and γt to be correlated. Figure 4 shows implied
volatilities for European put index options as a function of the strike K and con-
stant correlation �t = � for a fixed maturity date T̄ = 0.25. It can be seen that by
increasing � the slope of the implied volatility curve, as a function of the strike K ,
also increases. A strong negative correlation produces a strongly negatively skewed
implied volatility curve, whereas a strong positive correlation generates a strongly
positively skewed implied volatility curve. In this context it should be noted that
changing the dimension ν also affects the slope of the implied volatility surface,
similarly to Figure 4, when plotting the surface against ν instead of �. That is, for
fixed �, lowering the dimension ν produces a stronger negative skew for the implied
volatility surface.
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Figure 4. Implied volatilities for put options as a function of K and �.

Figure 5. Implied volatilities for call options as a function of K and g.

To demonstrate the effect of making the scaling process γ stochastic, Figure 5
shows implied volatilities for European puts as a function of the strike K and the
speed of adjustment parameter g for a fixed maturity date T̄ = 0.25 and with
p = g + 1. The figure indicates that an increase in g decreases the curvature of the
implied volatility curve, viewed as a function of the strike K . For different values
of g the corresponding initial random density for m0 is also adjusted to match the
mean and variance of the corresponding stationary distribution.

Figure 6 shows the term structure of implied volatilities for long dated put
options with maturities ranging between one and ten years. Note that a remarkably
sustained increase in overall implied volatilities occurs for longer maturities. This
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Figure 6. Implied volatilities for long term put options as a function of K and T̄ .

is not usually obtained from a stochastic volatility model with constant parameters,
where an equivalent risk neutral martingale measure exists. Furthermore, it can be
observed that the impact of using random scaling, which is mainly reflected in the
curvature of implied volatilities for short dated options, is not so prominent for
longer maturities.

The fair pricing formula (2.31) can also be used to compute the fair price of
a European call option. Thus, for a European call on the index with strike K and
maturity date T̄ ∈ [0, T ] the fair price in domestic currency, see (2.1), takes the
form

cT̄ ,K (t, Zt , γt ) = S(0)
t (Zt )

ν
2 −1 E

((
1 − K

S(0)
T̄ (ZT̄ )

ν
2 −1

)+ ∣∣∣∣At

)
(4.8)

for t ∈ [0, T̄ ]. Using (4.2), (4.7) and (4.8), the put-call parity relation within the
current framework takes the form

cT̄ ,K (t, Zt , γt ) = pT̄ ,K (t, Zt , γt ) + S(0)
t (Zt )

ν
2 −1 − K PT̄ (t, Zt , γt ) (4.9)

for t ∈ [0, T̄ ]. By using this result it is evident that if the fair price of a zero coupon
bond is used as the discount factor in the Black-Scholes formula, then the same
implied volatilities will be returned for both European put and call options.

4.3. BINARY OPTIONS

As an example of an important class of path-dependent contingent claims we con-
sider the pricing of up-and-out binary options on the index under the proposed
MMM with random scaling.
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For a maturity date T̄ ∈ (0, T ] and level U > S(δ∗)
t let τU be the stopping time

given by

τU = inf
{
t ≥ 0 :

(
t, S(δ∗)

t

) �∈ [0, T̄ ) × (0, U )
}
. (4.10)

Using the benchmarked fair pricing formula (2.31), the benchmarked fair price for
an up-and-out binary option with level U is then

b̂inT̄ ,U (t, Zt , γt ) = E

(
1{τU =T̄ }

S(δ∗)
T̄

∣∣∣∣At

)
(4.11)

for t ∈ [0, T̄ ].
Using (3.4) and (3.7), the benchmarked fair pricing function b̂inT̄ ,U (t, S(δ∗), γ )

satisfies the PDE

[
∂

∂t
+ S(δ∗)

(
rt +

(
ν

2
− 1

)2

γ

(
S(δ∗)

S(0)
t

) 2
2−ν

)
∂

∂S(δ∗)

+ a(t, γ )
∂

∂γ
+ 1

2

(
ν

2
− 1

)2

γ
(
S(δ∗)

)2
(

S(δ∗)

S(0)
t

) 2
2−ν ∂2

∂(S(δ∗))2

+
(

ν

2
− 1

)
b(t, γ )�tγ

1
2 S(δ∗)

(
S(δ∗)

S(0)
t

) 1
2−ν ∂2

∂S(δ∗) ∂γ

+ 1

2
(b(t, γ ))2 ∂2

∂γ 2

]
b̂inT̄ ,U

(
t, S(δ∗), γ

) = 0 (4.12)

for (t, S(δ∗), γ ) ∈ (0, T̄ ) × (0, ∞)2 with boundary conditions

b̂inT̄ ,U

(
T̄ , S(δ∗), γ

) = 1

S(δ∗)
(4.13)

for (S(δ∗), γ ) ∈ (0, ∞)2 and

b̂inT̄ ,U (t, U, γ ) = 0 (4.14)

for (t, γ ) ∈ (0, T̄ ) × (0, ∞). The corresponding Black-Scholes up-and-out binary
option price formula is given by

binBS
T̄ ,U

(
t, S(δ∗)

t , σ
) = e−r (T̄ −t)

(
N (−d2(t)) −

(
U

S(δ∗)
t

) 2r
σ2 −1

N (−d2(t))

)
, (4.15)
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Figure 7. Differences between MMM and Black-Scholes prices for up-and-out binary options
for different maturity values T̄ .

where

d2(t) = ln
( S(δ∗)

t
U

) + (
r − σ 2

2

)
(T̄ − t)

σ
√

T̄ − t

for t ∈ [0, T̄ ] (see Rubinstein and Reiner, 1991). Here N (·) is the standard Gaussian
distribution function and σ denotes the Black-Scholes volatility.

For the binary option example described here, the corresponding Black-Scholes
binary option prices are obtained by choosing implied volatilities such that the prices
of an at-the-money forward European put option for the MMM with random scaling
and the Black-Scholes model coincide. Here an at-the-money forward European
put option is one that for t = 0 has a strike K

PT̄ (0,Z0,γ0) for fixed K = 1.0.
Different Black-Scholes binary option prices are obtained by varying the level

U and the maturity date T̄ for fixed model parameters and initial value S(δ∗)
0 =

100 and subject to the constraint U > S(δ∗)
0 . Figure 7 displays price differences

obtained for up-and-out binary options as a function of the Black-Scholes price
and maturity date. It can be seen that price differences of the order of 3–5% are
obtained as the maturity date increases from one month to one year. By increasing
the value of the speed of adjustment parameter g these price differences decrease.
The incorporation of a random initial condition for m0 ensures that these price
differences are maintained for short dated options. The presented price differences
are very similar to those observed in real markets.

Consider now the impact of non-zero correlation between the index S(δ∗)
t and

the scaling factor γt . Figure 8 shows the price differences obtained between the
MMM with random scaling and corresponding prices for Black-Scholes up-and-
out binary options, as a function of the Black-Scholes binary option price and a
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Figure 8. Differences between MMM and Black-Scholes prices for up-and-out binary options
for different correlation values �.

Figure 9. Differences between MMM and Black-Scholes prices for up-and-out binaries for
different speed of adjustment values g.

constant correlation �t = �. These results were produced using a fixed maturity
date T̄ = 0.25 and speed of adjustment parameter g = 2.

Finally, we display in Figure 9 price differences between the MMM with random
scaling and corresponding Black-Scholes prices for up-and-out binary options, as
a function of the Black-Scholes binary option price and the speed of adjustment
parameter g. We also keep the maturity date fixed at T̄ = 0.25 and maintain a
constant zero correlation. Inspection of Figure 9 demonstrates that, in general,
increasing the parameter g decreases the corresponding price differences. For g =
10 the hump-shaped price difference curve becomes inverted to some degree.
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We point out that hedging can be performed under the given model if three
securities are involved in a hedge portfolio. The corresponding PDE operator for the
pricing function is shown in (4.3). By using the fair pricing formula (2.31) one can
directly obtain via the Itô formula a martingale representation for a given contingent
claim. The integrands in the martingale representation yield in a straightforward
manner the hedge ratios. For more details we refer to Platen (2002).

Conclusion

The minimal market model with random scaling can be used to price a range of short
and long dated European and path-dependent contingent claims on a diversified in-
dex. The pricing system applied is based on the benchmark approach for which the
reference unit chosen is the growth optimal portfolio. This pricing methodology is
more general than risk neutral pricing. In fact, for the model under consideration
there exists no equivalent risk neutral martingale measure. Numerical results are
presented which document the type of implied volatility term structures that are
obtained. Of particular interest are the resulting implied volatilities for long term
put and call options. Price differences between the proposed model and correspond-
ing Black-Scholes prices, for a class of up-and-out binary options, are similar to
those actually observed. This means that the proposed two-factor model naturally
generates patterns typically observed in real markets for forward rates, standard
European options and binary options.
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