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contribution of genetics and other factors in the pathogen-
esis of PDAC provide opportunities to advance early detec-
tion and treatment of pancreatic neoplasia.

Historically, the general presumption had been that 
PDAC is largely a sporadic, rather than hereditary, disease.

However, with advances in next generation sequenc-
ing technologies and expanded use of genomic profiling 
of tumor and germline DNA, germline pathogenic variants 
(GPVs) in a broad array of cancer susceptibility genes are 
identified in approximately 5–20% of PDAC patients, many 
of whom do not meet classic criteria for the correspond-
ing hereditary cancer syndrome [4–8]. As genetic diagno-
ses have significant implications for management of PDAC 
patients and their family members, clinical guidelines in the 
U.S. recommend universal germline genetic testing for all 
individuals with PDAC [9, 10].

Pathogenesis of pancreatic ductal 
adenocarcinoma (PDAC)

Chronic inflammation, immune response, genetic suscep-
tibility, and behavioral risk factors contribute to risk for 
PDAC. Comprehensive genomic profiling classifies PDAC 

Introduction

Pancreatic ductal adenocarcinoma (PDAC) is the tenth most 
common cancer diagnosed in the United States, with inci-
dence increasing globally, especially in Western countries 
[1, 2]. Although the median age of diagnosis is 70 years, 
recent trends have shown increases in pancreatic cancer 
diagnoses among young individuals, particularly those 
assigned female at birth [3].

Pancreatic cancer is the third leading cause of cancer 
death in the U.S. with a 5-year survival rate of 12.5% [1]. 
Although survival is better for individuals presenting with 
early-stage disease, most individuals with PDAC are diag-
nosed at advanced stages. Improved understanding of the 
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Abstract
Pancreatic ductal adenocarcinoma (PDAC) is often diagnosed at an advanced stage, resulting in poor prognosis and low 
5-year survival rates. While early evidence suggests increased long-term survival in those with screen-detected resectable 
cancers, surveillance imaging is currently only recommended for individuals with a lifetime risk of PDAC ≥ 5%. Iden-
tification of risk factors for PDAC provides opportunities for early detection, risk reducing interventions, and targeted 
therapies, thus potentially improving patient outcomes. Here, we summarize modifiable and non-modifiable risk factors 
for PDAC. We review hereditary cancer syndromes associated with risk for PDAC and their implications for patients and 
their relatives. In addition, other biologically relevant pathways and environmental and lifestyle risk factors are discussed. 
Future work may focus on elucidating additional genetic, environmental, and lifestyle risk factors that may modify PDAC 
risk to continue to identify individuals at increased risk for PDAC who may benefit from surveillance and risk reducing 
interventions.
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into distinct tumor subtypes characterized by dysregulation 
of specific molecular pathways (e.g. DNA damage repair, 
cell cycle regulation, TGF-beta signaling, chromatin regu-
lation, and axonal guidance) which have implications for 
disease prognosis and response to treatment [11]. Pancre-
atic intraepithelial neoplasia (PanIN), intraductal papillary 
mucinous neoplasms (IPMNs), and mucinous cystic neo-
plasms (MCNs) are precursors to PDAC, however, only a 
small proportion of these lesions will acquire the specific 
somatic aberrations in oncogenes and tumor suppressor 
genes to transform into invasive PDAC [12]. Activating 
somatic mutations in KRAS are found in > 90% of PDAC 
tumors and are thought to be early drivers of PDAC [13, 
14]. The tumor suppressor genes CDKN2A, TP53, and 
SMAD4 are somatically mutated in 90%, 75%, and 50% of 
PDAC tumors, respectively [15]. Homologous recombina-
tion is essential to the repair of DNA double-stranded breaks 
and somatic mutations in the homologous recombina-
tion DNA damage repair (HR-DDR) pathway genes ATM, 
BRCA1, BRCA2, and PALB2 are found in 10–20% of PDAC 
tumors [16, 17]. Up to 10% of individuals diagnosed with 
PDAC were born carriers of GPVs in BRCA1 or BRCA2, 
with genetic predisposition to hereditary breast and ovar-
ian cancer syndrome (HBOC) [4, 6]. PDAC patients who 
have alterations in HR-DDR genes in their germline and/or 
tumor DNA may benefit from targeted therapy with a poly 
ADP ribose polymerase (PARP) inhibitor, which has been 
shown to increase progression-free survival in patients with 
BRCA-mutated PDAC [18]. Specific genetic, environment, 
and lifestyle factors associated with risk for PDAC are dis-
cussed in detail below.

Genetic susceptibility to pancreatic cancer

The lifetime risk to develop PDAC in the general popula-
tion is 1.7% [1]. “Familial pancreatic cancer”, which refers 
to families with two or more relatives with PDAC, accounts 
for a minority (< 10%) of cases. Approximately 5–10% of 
patients with PDAC have a first-degree relative with the 
same diagnosis and even in the absence of a known genetic 
GPV, individuals who have multiple family members diag-
nosed with PDAC are at increased risk [19–21]. Large 
cohort studies of individuals with familial pancreatic cancer 
have shown that the risk to develop PDAC is increased in 
individuals with a family history of PDAC (approximately 
two-fold for those with an affected first-degree relative), 
with even higher risk increases for those with two or more 
first-degree affected relatives [21, 22]. It has also been sug-
gested that PDAC diagnoses occur at younger ages in these 
families [23]. The multi-site Pancreatic Cancer Genetic 
Epidemiology (PACGENE) Consortium, created in 2002 

with the goal of identifying genetic risk factors in famil-
ial pancreatic cancer [23], identified germline alterations 
in highly penetrant cancer genes in only 1 in 10 of these 
familial pancreatic cancer families, with GPVs most com-
monly identified in ATM, BRCA1, BRCA2, PALB2, and 
CDKN2A [5, 24, 25]. The finding that prevalence of GPVs 
in “the usual suspects” is similar among familial PDAC and 
sporadic PDAC cases suggests other factors may contribute 
to familial PDAC, such as low-penetrance genetic variants, 
epigenetic changes, and shared environmental or lifestyle 
exposures [26].

Germline genetic testing in unselected patients with 
PDAC has identified GPVs in 5–20%, with GPVs most 
commonly identified in ATM, BRCA1, BRCA2, CDKN2A, 
PALB2, and CHEK2 [4–8, 25, 27, 28]. Rates of GPVs and 
findings differ among studies, in part due to differences in 
clinic populations. For example, clinics with a high propor-
tion of individuals with Ashkenazi Jewish ancestry report 
higher rates of BRCA1 and BRCA2 GPVs [7, 8], as well 
as higher rates of common low penetrance alleles such as 
APC I1307K, which is a well-known founder mutation in 
the Ashkenazi Jewish population. Certain variants in the 
CHEK2 gene also appear to be overrepresented in oncology 
patient cohorts due to the high prevalence of GPVs in this 
gene among individuals with specific European ancestries; 
however, at this time, GPVs in CHEK2 have not been estab-
lished as a risk factor for PDAC [7, 29, 30]. Among early 
onset PDAC (diagnosed < 45 years) rates of GPVs appear to 
be higher, approximately 30%, with GPVs primarily occur-
ring in the BRCA1, BRCA2, PALB2, CDKN2A, and ATM 
genes [31]. Given that rates of GPV detection in PDAC 
patients does not meaningfully differ based on whether or 
not there is a family history of PDAC, U.S.-based guide-
lines recommend that all individuals with a PDAC diag-
nosis undergo germline genetic testing due to the potential 
implication of a genetic diagnosis on the cancer treatment 
plan and the management of at risk family members [9, 10]. 
Clinicians in other countries, including Canada, Japan, and 
Israel, have suggested universal germline testing for PDAC, 
although barriers may exist to instituting this in practice 
[32, 33]. The European Society for Medical Oncologists 
(ESMO) does not currently recommend universal germline 
testing for patients with PDAC, but does acknowledge the 
potential value of targeted therapy based on germline find-
ings [33, 34]. Expanded use of tumor mutation profiling in 
PDAC and other solid tumors provides opportunities not 
only to identify therapeutic targets, but also to offer germ-
line testing to individuals whose tumors exhibit somatic 
variants in these genes of interest [35].
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Hereditary cancer syndromes associated with risk 
for PDAC (Table 1)

Hereditary breast and ovarian cancer syndrome (HBOC) – 
BRCA1, BRCA2, PALB2

Pathogenic variants in the BRCA1 and BRCA2 genes, which 
are involved in the HR-DDR complex, cause the autosomal 
dominant condition hereditary breast and ovarian cancer 
syndrome (HBOC) and the autosomal recessive condition 
Fanconi anemia. The risk of developing PDAC is estimated 
at 4–5% in those with pathogenic variants in BRCA1 and 

5–8% in those with pathogenic variants in BRCA2 [36, 37]. 
Pathogenic variants in these two genes make up the major-
ity of germline findings in individuals with PDAC [38]. 
HBOC occurs in approximately 1/300-1/400 individuals, 
with a higher prevalence of about 1/40 in individuals with 
Ashkenazi Jewish ancestry [39]. Individuals with patho-
genic variants in these genes are also at increased risk for 
breast (> 60% risk), ovarian (13–58% risk), and prostate 
(7–61% risk) cancers in addition to pancreatic cancer [9]. 
While some recommendations require a family history of 
PDAC for individuals with BRCA1 or BRCA2 pathogenic 
variants to qualify for pancreatic cancer screening, recent 

Gene(s) Hereditary cancer/
risk syndrome 
(autosomal 
dominant)

Lifetime 
risk for 
PDAC

Population 
prevalence

Age to start screening

ATM Cancer risk 5–10%
 [9, 43]

1 in 100 • Age 50 (or 10 years younger than the 
earliest PDAC diagnosis in the family, 
whichever is earlier)
• Consider screening for all individuals 
or only in the setting of family history of 
PDAC [9, 36]

BRCA1, 
BRCA2

Hereditary breast 
and ovarian cancer 
syndrome (HBOC)

4% 
(BRCA1)
5–8% 
(BRCA2)
 [36, 37]

1 in 300 to 1 
in 400
(1 in 40 
with Ashke-
nazi Jewish 
Ancestry)

• Age 50 (or 10 years younger than the 
earliest PDAC diagnosis in the family, 
whichever is earlier) [36]
• Consider screening for all individuals 
or only in the setting of family history of 
PDAC [9]

CDKN2A Familial atypical 
multiple mole mel-
anoma syndrome 
(FAMMM)

> 15–20%
 [9, 37, 45]

Unknown • Age 40 (or 10 years younger than the 
earliest PDAC diagnosis in the family, 
whichever is earlier)
• Screen all GPV carriers, even if no 
family history of PDAC [9, 36]

MLH1, 
MSH2, 
MSH6, 
EPCAM

Lynch syndrome 
(LS)

4–6%
 [48, 49]

1 in 279 • Age 50 (or 10 years younger than the 
earliest PDAC diagnosis in the family, 
whichever is earlier).
• Consider screening only in setting of 
family history of PDAC [9, 36]

PALB2 Cancer risk 2–5%
 [9]

Unknown • Age 50 (or 10 years younger than the 
earliest PDAC diagnosis in the family, 
whichever is earlier) [36]
• Consider screening for all individuals 
or only in setting of family history of 
PDAC [9]

PRSS1, 
SPINK1, 
CTRC, 
CPA1, 
CPB1

Hereditary 
pancreatitis

10–50%
 [57, 119]

Less than 1 in 
100,000

• Age 40 [36] (or 20 years after onset of 
pancreatitis, whichever is earlier) [9]
• Consider screening only for individuals 
with GPV and a clinical phenotype con-
sistent with hereditary pancreatitis [9]

STK11 Peutz-Jeghers 
syndrome (PJS)

> 15%
 [9]

1 in 25,000 to 
1 in 300,000

• Age 30–35 (or 10 years younger than 
the earliest exocrine pancreatic cancer 
diagnosis in the family, whichever is 
earlier) [9, 36]
• Screen all GPV carriers, even if no 
family history of PDAC

TP53 Li Fraumeni syn-
drome (LFS)

~ 5%
 [9]

1 in 5,000 to 1 
in 20,000

• Age 50 (or 10 years younger than the 
earliest PDAC diagnosis in the family, 
whichever is earlier)
• Screen individuals with a family his-
tory of PDAC [9]

Table 1 Hereditary cancer 
syndromes associated with risk 
for PDAC
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CDKN2A are associated with a > 15–20% lifetime risk for 
pancreatic cancer and 28–76% lifetime risk for melanoma 
[9, 37, 45]. GPVs in CDKN2A are identified in less than 
1% of patients with PDAC, possibly because the incidence 
of GPVs in CDKN2A is lower than in genes such as ATM, 
BRCA1/2, and the mismatch repair genes [4–6, 46]. The 
Netherlands has a relatively high prevalence of FAMMM 
due to a CDKN2A founder mutation, and a Dutch cohort of 
347 CDKN2A GPV carriers undergoing pancreatic imaging 
reported an incidence of PDAC of 20.7% by age 70, with 
83.3% of these PDACs considered surgically resectable at 
the time of diagnosis [45]. The rate of CDKN2A GPVs may 
be higher in familial pancreatic cancer kindreds, with the 
prevalence estimated at 1.5-3% [9, 44]. The exact preva-
lence of FAMMM in the general population is unknown 
[47].

Lynch syndrome – MLH1, MSH2, MSH6, PMS2, EPCAM

The DNA mismatch repair genes excise base pair mis-
matches during DNA replication, with dysfunction of DNA 
mismatch repair typically resulting in hypermutated tumors. 
GPVs in the DNA mismatch repair genes MLH1, MSH2, 
MSH6, PMS2, and EPCAM are implicated in Lynch syn-
drome, which is associated with increased risk for specific 
cancers including colorectal, endometrial, ovarian, and 
pancreatic cancer (MLH1, MSH2, MSH6, EPCAM only), 
among others. Lynch syndrome is relatively common and 
is estimated to affect 1 in 279 individuals in the general 
population. Cancer risk estimates vary widely based on the 
gene affected, but are highest for colorectal and endome-
trial carcinomas, with lifetime risks of 40–60%. Cumulative 
lifetime risk for PDAC is estimated at 4% [48], and may be 
stratified by the gene affected, with the highest risks being in 
individuals with GPVs in MLH1 and MSH2, while individu-
als with GPVs in PMS2 do not appear to be at increased risk 
compared to general population risk [49, 50]. GPVs asso-
ciated with Lynch syndrome are identified in up to 1% of 
patients with PDAC [4–6].

A genetic diagnosis of Lynch syndrome can have impli-
cations for the oncologic treatment plan as immunothera-
pies (specifically immune checkpoint inhibitors) have 
shown promise in leveraging patients’ immune systems to 
recognize unique cancer antigens in hypermutated tumors. 
Reports of individuals with microsatellite unstable and/
or mismatch repair deficient PDAC showing response to 
immune checkpoint inhibitors suggest a possible role for 
this therapy for individuals with Lynch syndrome [51, 52]; 
however, variability in patient response emphasizes the 
need to determine which individuals may be more likely to 
respond favorably to immune-based PDAC treatments [53].

guidelines have recommended screening for all individu-
als whose lifetime risk for PDAC is estimated at ≥ 5%, and 
have suggested that all individuals with BRCA1 or BRCA2 
GPVs should be offered PDAC screening regardless of fam-
ily history [9, 36, 40]. As clinical trials have demonstrated 
that treatment with PARP inhibitors improves progression-
free survival for PDAC patients with GPVs in BRCA1 and 
BRCA2, the genetic diagnosis of HBOC has immediate 
implications for oncologic treatment [18, 41].

Pathogenic variants in PALB2 (Partner and Localizer 
of BRCA2), another gene involved in HR-DDR, confer an 
increased risk for breast (41–60%) and ovarian (3–5%) can-
cer in addition to PDAC (2–5%) in the autosomal dominant 
setting [9]. PALB2 GPVs are found in approximately 3–4% 
of familial PDAC cases and in about 1% of individuals with 
breast cancer, however, the general population incidence is 
unknown [42]. The impact of PALB2 GPVs for PDAC treat-
ment implications are less well-defined than for the more 
commonly mutated BRCA1 and BRCA2 genes. GPVs in 
PALB2 are also implicated in autosomal recessive Fanconi 
anemia.

ATM

ATM is also involved in HR-DDR and is considered a mod-
erate risk cancer susceptibility gene. Biallelic GPVs in ATM 
are implicated in the autosomal recessive neurologic con-
dition ataxia telangiectasia. GPVs in ATM are relatively 
common, with approximately 1–2% of individuals in the 
general population being monoallelic carriers of a GPV in 
ATM. Lifetime risk for PDAC has been estimated at 5–10% 
[9, 43]. In cohorts of PDAC patients undergoing germline 
sequencing, GPVs in ATM are identified in 1–3% of patients 
[43]. ATM GPV heterozygotes also have an increased life-
time risk for breast (20–30% risk) and ovarian (2–3% risk) 
cancers with emerging evidence for possible increase in 
prostate cancer risk [9]. Despite its involvement in HR-
DDR, patients with ATM PGV and PDAC do not appear to 
have the same response to PARP inhibitor therapy as those 
with PGVs in BRCA1 and BRCA2 [41].

Familial atypical multiple mole melanoma syndrome 
(FAMMM) – CDKN2A

Familial atypical multiple mole melanoma syndrome 
(FAMMM) is caused by GPVs in CDKN2A, a tumor sup-
pressor gene involved in regulation of the cell cycle. 
Functioning CDKN2A genes assist in the cell division 
and apoptosis processes. CDKN2A inactivation is a well-
known driver in PDAC development; somatic mutations 
in CDKN2A play a major role in pancreatic tumorigenesis 
and are found in 90% of PDAC tumors [15, 44]. PGVs in 
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ampullary adenomas which can undergo malignant trans-
formation. While PDAC is not a common diagnosis in indi-
viduals with FAP, it can be difficult to distinguish between 
cancers of the ampulla and a primary pancreatic cancer. One 
study of 615 PDAC patients treated at a tertiary care center 
in New York City reported finding APC GPVs in 2.1% of 
cases; however, it is important to note that the APC I1307K 
variant accounted for all the reported APC GPVs, which 
could be explained by the high prevalence of individuals 
with Ashkenazi Jewish ancestry in this PDAC cohort [7]. 
APC I1307K is a common polymorphism in individuals 
in Ashkenazi Jewish ancestry (population prevalence of 
1–2/100), is not associated with a classic FAP phenotype, 
and does not appear to confer increased risk for PDAC [58, 
59].

Unmeasured genetic factors

The fact that clinical genetic testing is uninformative for 
many families affected with familial pancreatic cancer 
has prompted search for novel genetic or epigenetic fac-
tors which might explain familial risk. GPVs in the PALLD 
gene were identified in affected members of a large famil-
ial pancreatic cancer family via linkage analysis and isola-
tion of a susceptibility locus [60]. PALLD was suggested 
as a potential novel hereditary PDAC gene, however later 
studies have not replicated this finding in additional famil-
ial pancreatic cancer kindreds [61, 62]. Although CDK4 
interacts with CDKN2A, studies have not supported a role 
of CDK4 in PDAC development [63, 64]. Whole exome and 
genome sequencing have been employed for the identifica-
tion of candidate genes. Several genes identified via whole 
exome/genome studies in familial pancreatic cancer cohorts 
play a role in the HR-DDR pathway, including many in 
the Fanconi anemia complementation (FANC) group, a 
group of genes associated with Fanconi anemia to which 
BRCA1 (also called FANCS), BRCA2 (also called FANCD1) 
and PALB2 (also called FANCN) belong. While evidence 
of autosomal dominant PDAC risk related to genes in this 
FANC group is limited outside of the BRCA1, BRCA2, and 
PALB2 genes, several, including ERCC4, FANCA, FANCC, 
FANCM, RAD51D, and XRCC2, have been proposed as 
candidate genes based on whole exome/genome studies in 
familial pancreas cancer families [26, 65–68].

Large, genome-wide association studies (GWAS) have 
identified more than 20 single nucleotide polymorphisms 
(SNPs) related to pancreatic cancer risk [69]. These common 
SNPs are estimated to account for 13% of pancreatic can-
cer hereditability with those with fewer risk alleles having 
a below general population risk to develop pancreatic can-
cer and those with a greater number of risk alleles having a 

Peutz-Jeghers syndrome (PJS) – STK11

Peutz-Jeghers syndrome (PJS) is caused by pathogenic vari-
ants in STK11 and is associated with increased risk for gas-
trointestinal hamartomatous polyps and increased lifetime 
risk for multiple types of cancer, including breast, gastro-
intestinal, and gynecologic tumors. Lifetime risk for pan-
creatic cancer is increased by > 10 fold (11–36%) with an 
average age of PDAC diagnosis of around 40 years [54]. 
Guidelines recommend pancreatic screening for individu-
als with PJS beginning at age 35–40 [9, 36, 54]. PJS is a 
rare condition; prevalence estimates range from 1/25,000–
1/300,000 and STK11 GPVs are identified in less than 1% of 
patients with PDAC [4, 5, 55, 56].

Li Fraumeni syndrome (LFS) – TP53

Li Fraumeni syndrome (LFS) is caused by pathogenic vari-
ants in the TP53 tumor suppressor gene. Lifetime risks for 
cancer are > 80% for individuals with GPVs in TP53, and 
the associated tumor spectrum includes breast cancers, soft 
tissue sarcomas, osteosarcomas, central nervous system 
tumors, adrenal carcinomas, and gastrointestinal cancers. 
PDAC diagnoses appear to be overrepresented among LFS 
families, with the risk for PDAC estimated to be about 5% 
[9]. LFS is a rare condition and is identified in less than 1% 
of patients with PDAC and in 1 in 5,000 to 1 in 20,000 indi-
viduals in the general population [4–6].

Hereditary pancreatitis – PRSS1, SPINK1, CASR, 
CFTR, CPA1, CTRC

Hereditary pancreatitis is inherited in an autosomal domi-
nant manner, primarily due to GPVs in PRSS1, and most 
information about hereditary pancreatitis is derived from 
families with GPVs in this gene. Clinical presentation of 
this condition can vary greatly and published estimates of 
pancreatic cancer risk range from 10 to 70%, with more 
recent consensus suggesting risks may be on the lower end 
of this range [57]. Some guidelines support pancreatic can-
cer screening in individuals with PRSS1 pathogenic variants 
after the age of 40 years; however other guidelines suggest 
surveillance only in those with a GPV in a gene associated 
with hereditary pancreatitis and a personal history consis-
tent with pancreatitis, or were not able to reach a consensus 
on this recommendation [9, 36, 40].

Familial adenomatous polyposis (FAP) – APC

Pathogenic variants in APC, a tumor suppressor gene, are 
associated with familial adenomatous polyposis (FAP), with 
affected individuals developing colorectal, duodenal, and 
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blood groups A, AB, or B, although the mechanism by 
which blood type may influence risk is unknown [82]. It 
has been suggested that a genetic variant affecting cancer 
risk may be linked to the locus determining blood type [83]. 
GPV in genes related to pancreatic secretory enzymes may 
also be linked to pancreatic cancer development [84].

Other factors impacting risk of PDAC

Precursor lesions to PDAC

Precursor lesions for PDAC include intraductal papillary 
mucinous neoplasms (IPMNs), pancreatic intraepithelial 
neoplasia (PanIN), and mucinous cystic neoplasms (MCNs). 
Of these, progression to PDAC most commonly occurs in 
PanIN, of which > 90% of lesions have a somatic KRAS 
mutation [15]. PanIN are not detectable with current imag-
ing modalities, and once a mass is identifiable by imaging, 
the progression to advanced disease occurs rapidly [85, 86]. 
Increased use of imaging has resulted in increased detec-
tion of incidental cystic lesions, with approximately 15% 
of individuals undergoing imaging of the pancreas having a 
cyst identified [87, 88]. Only a small number of these cystic 
lesions will progress to PDAC, and the size and characteris-
tics of these pancreatic lesions dictate clinical management 
[87, 88].

Smoking

Current cigarette smokers have an approximately 2-fold 
increase in PDAC risk compared to never smokers, with 
risk highest in those who smoke the highest number of ciga-
rettes per day [2]. It has been suggested that smoking cessa-
tion can decrease risk; 10–20 years after smoking cessation 
the risk of PDAC may be similar to that of never smokers 
[2]. The global population attributable risk of PDAC due to 
smoking ranges from 11 to 32% [2].

Pancreatitis (Acute vs. Chronic)

Individuals with chronic pancreatitis are at increased risk 
to develop pancreatic cancer due to inflammation of the 
pancreas, and pancreatic cancer has been reported both in 
individuals who are symptomatic and those with no known 
history of pancreatitis-related symptoms [57]. In cases of 
chronic pancreatitis, tissue damage occurs over decades, and 
it is though that the scope of tissue injury, fibrosis, inflam-
mation, and cellular DNA damage may increase the risk for 
PDAC. For individuals with chronic pancreatitis, PDAC 
risk has been reported to be as high as 50–70%, although 
more recent reports estimate the risk as closer to 10%, and 
it has been suggested that genetic modifiers beyond known 

higher risk of pancreatic cancer development [69]. While it 
has been suggested that polygenic risk scores (PRS), which 
take SNPs into account, might assist in identifying those 
with new-onset diabetes at highest risk to develop PDAC, 
PRS tests for PDAC are not clinically available and are lim-
ited by lack of racial and ethnic diversity of the cohorts with 
which these were developed [70].

An emerging area for potential genetic cancer risk is 
epigenetic changes that affect gene expression but do not 
affect the gene DNA sequence. It has been suggested that 
epigenetic changes including DNA methylation, chromatin 
remodeling factors, miRNAs, and histone post-translation 
modification may play a role in PDAC progression [71]. 
CpG methylation in CDKN2A has been identified in a sig-
nificant number of patients with PDAC, further highlight-
ing the significant role this gene plays in tumorigenesis 
[72]. Identification of epigenetic changes consistent with 
hypoxia in PDAC cancer cells supports a potential role for 
the hypoxia-inducible factor (HIF) genes in PDAC devel-
opment [73]. Work is ongoing to determine the potential 
impact of epigenetic changes as diagnostic and prognostic 
markers as well as potential therapeutic targets [74].

Other biologically relevant pathways

Associations between genes playing roles in multiple 
pathways and diseases have been suggested to contrib-
ute to PDAC development based on large GWAS studies. 
These include those related to maturity-onset diabetes of 
the young, regulation of beta-cell development, epidermal 
growth factor receptor transactivation in cardiac hypertro-
phy pathways, cellular response to UV, and multiple gas-
trointestinal tissues [75, 76]. In particular, multiple SNPs 
in the HNF1A and HNF1B genes (which are causative of 
maturity-onset diabetes of the young when an autosomal 
dominant GPV is present) have been linked to PDAC risk 
[75–77]. HNF1A and HNF1B have been noted as candidate 
genes for regulation of pancreatic differentiation and may 
play a role in tumor suppression in PDAC, with transcrip-
tome analysis revealing a tumor suppression function for 
HNF1A and PDAC samples showing little to no HNF1B 
expression on immunohistochemistry [78–80].

Examination of the tumor microenvironment has 
revealed immunosuppression as a unifying characteristic 
across tumors, with metabolism and obesity, infection and 
inflammation, host immune state, host genetics, environ-
mental factors, and microbiota all potentially contributing to 
this [81]. However, immunotherapy has had limited effect in 
controlling disease progression in PDAC, even for individu-
als with hypermutated microsatellite instable tumors [81].

Several population-based studies have also identified 
an increased risk for pancreatic cancer for individuals with 
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only reached statistical significance for individuals assigned 
male at birth [99]. This association was not observed in indi-
viduals with light-to-moderate alcohol consumption (≤ 4 
drinks/day) [100]. Alcohol use may compound the negative 
effects of other risk factors such as tobacco smoking and 
pancreatitis [101]. Alcohol may also cause direct damage to 
the pancreas through release of toxic metabolites like acet-
aldehyde into the bloodstream, and acetaldehyde has been 
shown to bind to DNA repair proteins and promote DNA 
damage [101].

Nutrition

While associations between diet and PDAC have been sug-
gested, randomized trials are needed to better evaluate this 
relationship due to confounding factors such as smoking 
and obesity [102]. High dietary intake of fruits, vegetables, 
and whole grains has been shown to reduce pancreatic can-
cer risk and a possible protective role of dietary folate con-
sumption has also been suggested [102, 103]. Red meat and 
high-fat diets have been proposed as risk factors for PDAC 
[102].

Environmental exposures

Exposure to chemicals used in common products may also 
contribute to PDAC risk. Exposures to arsenic, cadmium, 
and lead have been identified as risk factors for PDAC in 
a study which examined trace elements in toenail samples 
[101]. A case-control study also identified exposure to ben-
zene, asbestos, and chlorinated hydrocarbons as risk factors 
for PDAC [104]. In vitro experiments on human cell lines 
and tissues show increased proliferation and DNA dam-
age when exposed to Bis[2-ethylhexyl]phthalate (DEHP), 
a compound present in many plastics [101]. The expan-
sion of pesticide use has been posited as an explanation for 
increasing PDAC rates; while exact relationships are com-
plex to discern, pesticides may be a direct (oxidative stress, 
cell damage) or indirect (fatty pancreas, diabetes) cause of 
PDAC [105].

Microbiome

The microbiome has more recently been implicated in 
PDAC, with potential roles in PDAC risk, tumorigenesis, 
impact on tumor microenvironment, and treatment response 
[106]. Dysbiosis of the gut microbiome has been associated 
with risks for cancer and other diseases, and higher alpha 
diversity of the microbiome has been used to differentiate 
PDAC patients with good prognosis from those with poor 
survival [107]. Intra-tumoral bacteria composition has been 
shown to affect host immune response toward cancers, as 

genetic risk factors may contribute to risk [57]. In cases of 
acute pancreatitis, PDAC risk is highest within a year of 
the pancreatitis episode, as some cases of pancreatitis can 
be a manifestation of obstructive pancreatitis caused by a 
tumor [89]. For this reason, follow up pancreatic imaging 
is recommended after resolution of an episode of acute pan-
creatitis [90].

Diabetes

Increased risk for pancreatic cancer has been described in 
individuals with new-onset and long-standing diabetes. The 
risk of pancreatic cancer in those with type II diabetes is 
approximately two times that of the general population, 
with significantly higher risk for cancer development within 
the first three years of diagnosis [91–93]. It has been sug-
gested that in the case of new-onset diabetes and pancre-
atic cancer, the diabetes may be a symptom of the cancer 
rather than a cause; diabetes is more likely to resolve after 
pancreaticoduodenectomy in those with new-onset disease 
rather than a long-standing diagnosis [92]. Experimental 
studies in cell lines and animal models have also suggested 
that pancreatic cancer cells impair glucose metabolism via 
beta cell dysfunction and insulin resistance, supporting this 
theory [92, 94]. Due to the high incidence of diabetes in 
the population, it is not feasible to subject every individual 
with diabetes to pancreatic surveillance, however, work is 
ongoing to develop models for risk stratification to iden-
tify those most likely to develop pancreatic neoplasia who 
would benefit from surveillance [95]. The Consortium for 
the study of Chronic Pancreatitis, Diabetes, and Pancreatic 
Cancer (CPDCP), an NIH-funded prospective cohort study 
of 10,000 adults with new onset diabetes, aims to quantify 
the incidence of PDAC among individuals with new-onset 
diabetes, identify biomarkers for early detection of pan-
creatic neoplasia, and establish algorithms for clinical risk 
stratification and operationalizing pancreatic surveillance 
[96].

Obesity

Multiple studies have found an associated between obesity 
and PDAC risk [97, 98]. It has been suggested that increas-
ing rates of obesity may be linked to increasing incidence 
of PDAC [2]. For overweight individuals, physical activity 
may lower PDAC risk [97].

Alcohol

A large prospective study identified a positive association 
between heavy alcohol consumption (~ 6 drinks/day) and 
pancreatic cancer development, although this relationship 
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for improving detection of pancreatic neoplasia [117]. Real-
world testing of risk stratification and surveillance strate-
gies, through prospective follow up of large cohorts of 
individuals at increased risk for PDAC, including Cancer of 
the Pancreas Screening Study (CAPS), Pancreatic Cancer 
Early Detection (PRECEDE) Consortium, and CPDCP will 
pave the way for clinical implementation and dissemination 
[40, 96, 118].
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