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newly discovered genes with suspected associated risks at 
or above 20%, the use of breast MRI should be considered 
for their management as well.
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Introduction

The majority of breast cancers will occur sporadically 
and are believed to be influenced by various risk factors, 
including advancing age, reproductive factors, lifestyle, 
and possible environmental exposures. During the 1990s, 
researchers identified variants in BRCA1 and BRCA2 which 
predispose patients to a significantly elevated lifetime risk 
of breast cancer [1, 2], with initial estimates as high as 90% 
for BRCA1 and 84% for BRCA2 [3, 4]. A meta-analysis 
subsequently found the breast cancer risks at 57% (95% CI, 
47–66%) for women with pathogenic BRCA1 variants and 
49% (95% CI, 40–57%) for BRCA2 variants [5]. Due to this 
risk, the first breast cancer genetic screening test was devel-
oped and became commercially available for these two 
genes in 1996 [6].

Management recommendations for this high-risk pop-
ulation has evolved over time. The advent of magnetic 
resonance imaging (MRI) of the breast has proven to sig-
nificantly improve the detection of breast cancer when com-
bined with mammography versus mammography alone, 
with a combined sensitivity of 94% [7]. In 2007, the Amer-
ican Cancer Society recommended the addition of annual 
MRI to annual mammography in women with an elevated 
lifetime risk of breast cancer [8]. They specifically defined 
this risk to include women with known pathogenic BRCA1, 
BRCA2, TP53 or PTEN variants, untested first degree 
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heavily researched and have well-established manage-
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bination has been proven to be more effective at detecting 
breast cancer than mammography alone, with a combined 
sensitivity of 94% (Leach et al. in Lancet 365(9473):1769–
1778, 2005). Women with a lifetime risk of breast cancer 
of 20% and higher have been recommended to have both 
breast MRI and mammography performed (Saslow et  al. 
in CA Cancer J Clin 57(2):75–89, 2007). For women with 
pathogenic variants detected in moderate risk genes with 
lifetime breast cancer risks of at least 20%, breast MRI 
should be offered as part of their management. For more 
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relatives of individuals with pathogenic BRCA1/2, PTEN, 
or TP53 variants, those who received radiation to the chest 
for lymphoma between ages 10 and 30, and those with a 
lifetime risk of at least 20% based on certain breast cancer 
risk assessment models that incorporate family history [8]. 
The specific models referenced at that time were the Tyrer-
Cuzick model, Claus model, cancerGene, BRCAPro, and 
online versions of the BOADICEA model.

Since that time, options for genetic testing have 
expanded. Next-generation sequencing (NGS) became 
available, allowing the analysis of multiple different genes 
at once with a significant reduction in time and cost. In 
addition, the 2013 Supreme Court decision that disallowed 
patenting of genetic material opened the commercial mar-
ket for genetic testing. Laboratories such as Ambry Genet-
ics, GeneDx and others have joined Myriad Genetics in 
offering larger panels to those with a personal and/or fam-
ily history of breast cancer. These panels now assess for a 
variety of genes beyond BRCA1 and BRCA2. Gene panels 
include a spectrum of genes that have been associated with 
a hereditary risk for cancer, but some are newer and have 
less associated evidence that can provide robust estimates 
of risk. This leaves both patients who test positive and their 
providers without clear guidelines for surveillance. This 
paper will discuss the role of high-risk screening MRI for 
women with pathogenic variants in genes with moderate 
penetrance.

Rationale for supplemental screening MRI in high 
risk women

Breast MRI is a study using a magnetic field designed to 
produce detailed images of the breast. Cross sectional 
images are captured that allow for good soft tissue con-
trast with visualization of parenchyma, fat and lesions. A 
paramagnetic intravenous contrast agent using gadolinium 
is utilized to detect abnormal patterns of enhancement that 
may be reflective of underlying malignancy. The use of 
breast MRI in high-risk women is intended to reduce breast 
cancer mortality by allowing cancers to be diagnosed at an 
earlier stage, when tumors are more likely to be amenable 
to treatment.

Several studies have shown superior sensitivity with 
breast MRI compared to mammography or other screening 
tests. MRI sensitivity can range between 77–91% compared 
to mammography which is 40% or less [7, 9]. However, 
mammography has remained a more sensitive tool for the 
detection of ductal carcinoma in  situ with a sensitivity of 
83 versus 17% for MRI [10]. The positive predictive value 
of mammogram has been estimated to range from 48 to 100 
and 28% of all biopsies performed based on a suspicious 
mammogram return benign [10]. The sensitivity of breast 

MRI combined with mammogram is highest, at 94% [7]. 
When other imaging modalities, such as breast sonogra-
phy, have been included in the surveillance of women with 
BRCA1/2 mutations, sensitivity is similar to that of mam-
mography [11].

The specificity of MRI is lower than mammogram, 
resulting in more call backs and false positives. Kriege 
evaluated the efficacy of mammogram and MRI in women 
at moderate risk (15–29% risk), high risk (30–49% risk), 
and high-penetrance gene mutation carriers (50–85% risk) 
[10]. They reported the overall detection at 9.5 cancers 
per 1000 woman-years at risk, with the highest levels of 
detection at 26.5 cancers per 1000 woman-years in known 
mutation carriers. MRI also resulted in a significant num-
ber of call-backs, with a two-fold increase in the number of 
unneeded exams and a three-fold increase in the number of 
unneeded biopsies. Approximately 43% of biopsies occur-
ring as a result of MRIs with a Breast Imaging Reporting 
and Data System classification of 3, 4, or 5 (correspond-
ing to an interpretation of probably benign, suspicious, and 
malignant until proven otherwise) were reported as benign. 
The positive predictive value (PPV) of MRI in this study 
was estimated at 60% or less, which suggests that false pos-
itive rate could be 40% or higher [10]. Kuhl also reported 
the results of screening MRI in high-risk women and noted 
the PPV to be at 50% for all high-risk women. MRI’s in 
known BRCA mutation carriers were found to have the 
highest PPV at approximately 67% [9].

Effect of breast MRI on high risk patients

Various studies have identified the benefit of MRI screening 
in addition to mammography. Warner et al. followed 1275 
women with a pathogenic BRCA1/2 variant for a mean of 
3.2 years and found that those who completed a high risk 
annual MRI as part of their routine mammographic screen-
ing were 70% more likely to be diagnosed with a Stage 0 or 
Stage I cancer than those without MRI surveillance [12]. 
There was no documented reduction in the risk of breast 
cancer in these patients, although MRI was successful in 
identifying disease at earlier stages. Kurian et  al. evalu-
ated the effect of prophylactic surgeries or surveillance on 
overall survival in women with BRCA1/2 variants [13]. 
Although prophylactic oophorectomy at age 40 and pro-
phylactic mastectomy at age 25 improved overall survival 
more than any other strategy, prophylactic oophorectomy 
and high-risk surveillance using both mammography and 
MRI showed a similar benefit in overall survival [13].

Kriege et  al. also reported on the effect of MRI 
and mammogram screening in high-risk women [10]. 
Approximately 43% of cancers detected by MRI were 
small, at 10  mm or less in size, compared to <15% for 
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mammogram-detected cancers. 35% of cancers in gene-
mutation carriers were measured at >2  cm in size com-
pared to those with a moderate or high risk, where large 
tumors were identified in <20% of patients. Lymph node 
involvement was also less likely in MRI-detected cancers 
than those detected by mammogram (21 versus >50%). 
There was no significant difference in histology amongst 
the three groups studied (moderate risk, high risk and gene 
carriers) but women at moderate risk and high risk were 
more likely to have grade 1 disease compared to mutation 
carriers, whose tumors were noted to be a grade 3 on 63% 
of cases.

Long-term results of screening women with BRCA1/2 
variants with MRI were published in 2012 [14]. In a cohort 
of 496 women with harmful BRCA1/2 variants prospec-
tively evaluated with MRI and mammography, 57 breast 
cancers were detected [14]. Three of the four cancers with 
lymph node-positive disease were detected on the patient’s 
first MRI screen [14]. Of the 34 cancers identified on 
subsequent imaging, 97% were a Stage 0 or Stage I [14]. 
Twenty-eight invasive breast cancers were diagnosed in 
women with no prior history of breast or ovarian cancer; of 
these, only one died from recurrent disease during a mean 
follow-up of 8.4  years, reflecting an overall distant recur-
rence rate of 3.6% and a yearly breast cancer-specific mor-
tality of 0.5% [14]. Kuhl also reported that 92% of tumors 
identified by MRI only were considered minimal (ductal 
carcinoma in  situ and/or invasive tumors <10  mm with 
negative lymph nodes) [9]. Of 19 cancers identified by MRI 
only, four were non-invasive and an additional 14 were 
invasive tumors of 7.5 mm in size or less.

NGS and new breast cancer risk genes

Previous genetic testing was limited by the ability to 
sequence only one gene at a time. This has changed with 
the advent of NGS, which allows for DNA sequencing of 
multiple genes at once. High-throughput sequencing of 
multiple genes enables rapid, cheaper testing, leading to 
faster test turnaround times. Most laboratories offering 
NGS for hereditary cancer syndromes organize gene panels 
based on cancer risks. This strategy increases test specific-
ity by cutting down on discovery of variants of uncertain 
significance (VUS), which are genetic test results with 
uncertain impact on health [15–17]. Variants of uncertain 
significance are challenging to incorporate into medical 
management as they have the potential to be reclassified 
as benign or pathogenic, and generally a VUS should not 
be managed the same as a pathogenic result [18]. When 
patients with breast cancer were tested using a 25 gene 
cancer susceptibility panel, around one-third of women 
(33.2%) were detected to carry at least one variant of 

uncertain significance [19]. Increasing the number of genes 
tested increases the likelihood of detecting a VUS.

Clinical application is increased with targeted panels 
as well, because healthcare providers have greater abil-
ity to incorporate the result into the understanding of 
the case [15]. Utilizing larger gene panels over BRCA1/2 
analysis alone increases the number of pathogenic variants 
detected. It allows for inclusion of other high risk breast 
cancer genes, such as PTEN, TP53, STK11, and CDH1, 
and moderately penetrant variants in genes, such as PALB2, 
CHEK2, and ATM, and can be easily analyzed as well 
[19, 20]. When over 35,000 women with a single diagno-
sis of breast cancer were molecularly tested, around half 
(48.4%) of the pathogenic variants detected were present 
in BRCA1/2 [20]. The other half were in other more estab-
lished, high-risk genes, like TP53, or newer, moderate-risk 
genes, such as CHEK2 [20].

Clinical interpretation can be a challenge with patho-
genic variants in some of the newly identified genes [20]. 
Well-established guidelines have been created for manage-
ment of individuals with pathogenic changes in high risk 
genes, like BRCA1/2, due to the extensive evidence that 
has accumulated over time [21]. For example, the National 
Comprehensive Cancer Network (NCCN) Guidelines out-
line when and what surveillance should be completed for 
men and women with BRCA1/2 variants. Alternatively, 
evidence of risk with newly-discovered genetic variants 
is limited currently (Table  1). This is a rapidly changing 
field though, and understanding of the impact these vari-
ants have on health is refined as evidence evolves over time. 
BRIP1 (BRCA1 interacting protein C-terminal helicase1) 
has been included on breast cancer gene panels, with ini-
tial reports that truncating variants were associated with a 
20% risk of breast cancer and missense variants not associ-
ated with an elevated risk [22]. Newer evidence, however, 
now suggests that truncating variants do not significantly 
increase risk for breast cancer [23]. Additional research 
will continue to refine our knowledge of these genes.

Breast cancer risks

The research that has been completed demonstrates 
that aside from BRCA1/2, pathogenic variants increas-
ing risk for breast cancer are most commonly identified 
in CHEK2, ATM, and PALB2 [20]. Most research on the 
cancer risk associated with CHEK2 has been completed 
on the c.1100delC variant. A meta-analysis of individuals 
with this variant determined that women have a 37% risk 
to develop breast cancer by age 70 [24]. The cumulative 
risk for breast cancer for women with pathogenic variants 
in ATM is estimated at 33% by age 80 [25]. Pathogenic 
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variants in PALB2 are estimated to create a risk of 35% for 
female breast cancer by age 70 [26].

There are many more high and moderate risk genes 
associated with increased risk for breast cancer that are 
frequently included on NGS panels. Risk for breast can-
cer for women with pathogenic variants in TP53 has been 
reported as 6.4 times higher than women in the general 
population [27]. TP53-associated breast cancer risk by 
age 60 has also been reported much lower at 49% [29]. 
PTEN variants may increase breast cancer risk as high 
as 85% [30], but lower risks, around 25–50%, were com-
monly cited previously [31]. CDH1 mutations, which 
are known to confer an increased risk of gastric cancer, 
have also been reported to raise risk of breast cancer, 

specifically lobular carcinoma [32]. Reported lifetime 
risks for breast cancer have ranged from 39% [33] to 52% 
[34]. STK11, the gene associated with Peutz-Jegher syn-
drome, has been noted to carry a 32–54% risk of breast 
cancer by age 70 [35, 36].

Women with neurofibromatosis type 1 (NF1) have been 
reported to have an elevated risk for breast cancer up until 
around age 50 [37, 38]. Relative breast cancer risk for 
women with NF1 has been reported as 6.5 between ages 
30–39 and 4.4 for women aged 40–49 [38]. For women 
with NF1 in the age group of 20–49, the unadjusted stand-
ardized incidence ratio for breast cancer was reported 
as 2.68 [37]. Another newly characterized breast cancer 
gene is NBN. It is believed that the NBN*657del5 variant 

Table 1   Breast cancer 
susceptibility genes and 
associated risks

*95% Confidence interval presented if available
^ Values based on relative risk multiplied by general population risk for breast based on SEER Cancer Sta-
tistics Review (Howlader et al. [28])
1 Breast cancer risk by age 60
2 Breast cancer risk by age 70
3 Breast cancer risk by age 75
4 Breast cancer risk by age 80
5 Lifetime risk
a ATMc.7271T>G variant
b CHEK2p.I157T variant
c CHEK2*1100delC variant
d NBN*657del5 variant

Gene Breast cancer risk 
(95% CI)*

Comment References

ATM 33% (24–40)4

52% (28–80)2a
Marabelli et al. [25]
Bernstein et al. [46]

BRCA1 57% (47–66)2 Chen and Parmigiani [5]
BRCA2 49% (40–57)2 Chen and Parmigiani [5]
CHEK2 20% (18–22)5^b No affected 1st or 2nd degree relative

Affected 2nd degree relative
Affected 1st degree relative
Affected 1st and 2nd relative

Han et al. [43]
20%5 Cybulski et al. [44]
28%5

34%5

44%5

37% (26–56)2c Weisher et al. [24]
CDH1 52% (29–94)3

39% (12–84)5
Kaurah et al. [34]
Pharoah et al. [33]

NBN 33% (22–48)5d^ Zhang et al. [41]
PALB2 35% (26–46)2 Antoniou et al. [26]

33% (25–44)2 No affected relatives
58% (50–66)2 Two 1st degree relatives affected at age 50

PTEN 77% (59–91)2

85% (71–99)5

25–50%5

Bubien et al. [42]
Tan et al. [30]
Pilarski [31]

STK11 32–54%2

45% (27–68)2
van Lier et al. [36]
Hearle et al. [35]

TP53 49%1

79% (53–115)5^
Masciari et al. [29]
Ruijs et al. [27]
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increases risk for breast cancer, but risks for other variants 
have not been studied as much [39–41].

It is difficult to apply blanket management guidelines for 
each gene as cancer risks can differ based on the specific 
genetic variant. For example, the ATM c.7271T>G variant 
is expected to increase for breast cancer more significantly 
than the majority of pathogenic variants in ATM. Also, 
many genetic risk studies have been completed on trun-
cating variants; clinical interpretation for some suspected 
pathogenic missense variants could create new challenges 
for clinicians [24, 25]. Missense variants sometimes affect 
gene function differently than truncating variants which 
could increase or decrease associated cancer risk. The risk 
for a second primary breast cancer is also unknown for 
many of these genes. In some instances, multiple genetic 
changes may be required to result in greatly increased risk 
for breast cancer [45]. This would differ from the high 
breast cancer risk that is gained by having a single patho-
genic variant in a high risk gene, like BRCA1. A low risk 
allele could be much harder to interpret and more difficult 
to incorporate into medical management.

Conclusion

Mammography remains the screening tool of choice among 
women at general-population risk for breast cancer. Fol-
lowing the identification of a subset of women at particu-
larly high risk, clinicians questioned whether this limited-
sensitivity screening modality should be acceptable as 
the only surveillance option for this particular population, 
especially given the newer availability of breast MRI. Stud-
ies have documented that while MRI has a superior sensi-
tivity to mammography, the combination of mammography 
and MRI has the greatest ability to detect disease [7, 9, 11].

Studies of MRI screening in high-risk women have con-
firmed an improvement in the ability to diagnose cancer; 
however, the data also raise several additional questions. 
The specificity of MRI is lower than that of mammogra-
phy and the PPV has been estimated around 60% or less 
(except in mutation carriers). Studies have confirmed that 
although there is an improvement in diagnosis, this comes 
at a cost of additional imaging and biopsies, many of which 
are benign but still contribute to the cost of medical care 
and the patient’s overall anxiety.

In addition, many of the cancers detected are smaller in 
size and more likely to be associated with negative lymph 
nodes. While this may reflect an ability to downgrade the 
staging at diagnosis (and thus improve mortality), there 
is a predominance of grade 1 tumors in moderate-to-high 
risk, non-mutation carriers and an increased likelihood 
of identifying grade 3 tumors or tumors of greater size 
in known carriers of highly-penetrant genes. These data 

suggest the possibility that the additional tumors detected 
by routine MRI surveillance may not carry the same bio-
logical and pathologic implications and that improve-
ments in staging and survival may be caused not only 
by the lower stage at diagnosis but on the presence of a 
less aggressive, better prognosis tumor. The possibility of 
over diagnosis is also generated by the presence of non-
invasive disease among these MRI-detected lesions.

In 2007, the American Cancer Society recommended 
the addition of breast MRI to annual mammography for 
those women with an elevated lifetime risk of breast 
cancer based on family history. Known pathogenic vari-
ants in certain high risk genes were included in this sub-
set of women. The group also included women with a 
confirmed elevated risk (>20%) based on certain math-
ematical models that are largely based on family history, 
which affirms the belief that disease risk is at least partly 
dependent on hereditary factors [8].

Since that time, knowledge of the genetic factors that 
affect risk has expanded with newer gene panels. Stud-
ies to date suggest that BRCA1/2 pathogenic variants 
may account for approximately half of the known genetic 
cases, with the other known half caused by pathogenic 
variants in other genes including ATM, CHEK2, PALB2, 
PTEN, CDH1, STK11, and TP53 [16, 19]. The presence 
of pathogenic variants in these newer genes remains 
uncommon, with CHEK2 variants having the highest 
reported incidence (1.3%) after BRCA1/2 [16]. This com-
plicates the ability to formally assess the specific gene-
associated lifetime risks for breast cancer and increases 
the number of women who are documented to possibly 
harbor a genetic predisposition to cancer. Analysis of the 
lifetime risks associated with the more common patho-
genic gene variants, in PALB2, CHEK2, and ATM, as well 
as, the less common CDH1, NF1, NBN, and STK11, sug-
gest that their lifetime risks are comparable to the risk 
values outlined in the 2007 American Cancer Society 
publication.

Early estimates of lifetime risk associated with these 
genes are 20% or higher. If one considers the use of annual 
surveillance MRI for all carriers, there is a possibility of 
increased detection at the cost of a significant increase in 
downstream procedures (including invasive measures such 
as surgery) and increase in the phenomenon of over diag-
nosis for patients who may never go on to develop clini-
cally-significant disease. Alternatively, one can take a new 
approach by analyzing the data that is currently available, 
stratifying patients by risk, and considering alternative sur-
veillance programs for those with moderate risk mutations 
and high risk mutations. Current data on the increased like-
lihood of identifying cancer in high-penetrance mutation 
carriers and the significant likelihood of higher grade dis-
ease or larger tumor size at diagnosis all suggest that these 
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mutation carriers may benefit from shorter surveillance 
intervals than those with lower risk.

Despite advances in medical research, there are still sig-
nificant gaps in knowledge. These include the identification 
and confirmation of absolute and age-specific risks associ-
ated with newly identified and testable genes. Additional 
research is also needed to understand the role of MRI in 
patient outcomes. It is unclear whether improvements in 
detection with MRI lower mortality and recurrence rates or 
if this is reflective of other factors such as improvements in 
treatment. It should also be considered whether alternative 
screening intervals or alternative imaging modalities can be 
used for those at varying levels of risk. Furthermore, addi-
tional research to identify the optimal threshold of risk for 
high-risk screening should be completed. Creation of com-
prehensive management guidelines that incorporate other, 
non-genetic risk factors, such as atypical hyperplasia, lobu-
lar carcinoma in situ, or breast density could be beneficial 
also. This method could allow us to provide more individ-
ualized management. Investigation into the benefits, risks 
and limitations of using a multifaceted system is warranted.
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