Familial Cancer (2017) 16:1-16
DOI 10.1007/s10689-016-9916-2

CrossMark

@

ORIGINAL ARTICLE

Characterization of BRCAI and BRCA?2 variants found
in a Norwegian breast or ovarian cancer cohort

Elisabeth Jarhelle’? - Hilde Monica Frostad Riise Stensland' -

Lovise Mzehle* - Marijke Van Ghelue'?”

Published online: 5 August 2016
© Springer Science+Business Media Dordrecht 2016

Abstract Germline mutations in BRCAI and BRCA?2 cause
hereditary breast and ovarian cancer. Molecular screening of
these two genes in patients with a family history of breast or
ovarian cancer has revealed pathogenic variants as well as
genetic variants of unknown significance (VUS). These VUS
may cause a challenge in the genetic counseling process
regarding clinical management of the patient and the family.
We investigated 32 variants previously detected in 33 sam-
ples from patients with a family history of breast or ovarian
cancer. cDNA was analyzed for alternative transcripts and
selected missense variants located in the BRCT domains of
BRCAI were assessed for their trans-activation ability.
Although an extensive cDNA analysis was done, only three
of the 32 variants appeared to affect the splice-process
(BRCA1¢.213-5T>A, BRCAI ¢.5434C>G and BRCA2 c.68-
7T>A). In addition, two variants located in the BRCT
domains of BRCAIl (c.5075A>C p.Aspl692Ala and
¢.5513T>G p.Val1838Gly) were shown to abolish the BRCT
domain trans-activation ability, whereas BRCAI c.5125G>
A p.Gly1709Arg exhibited equal trans-activation capability
as the WT domain. These functional studies may offer fur-
ther insights into the pathogenicity of certain identified
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variants; however, this assay is only applicable for a subset of
missense variants.
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Introduction

The BRCAI gene consists of 23 exons and encodes a
208 kDa protein encompassing 1863 amino acids (aa) [1].
N-terminally, BRCA1 has a RING-domain (aa 8-96) and
two nuclear localization signals (aa 200-300) [2]. It also
contains a phosphorylation site for Checkpoint Kinase 2
(CHEK2) protein at Ser988, a coiled coil domain (aa
1364-1437), followed by several phosphorylation sites for
Ataxia Telangiectasia Mutated protein (ATM) (between aa
1280-1524) and two trans-activating BRCT-domains (aa
1646-1859) [2]. BRCALI has several interactions partners,
for instance BRCA1 associated RING domain 1 (BARD1)
protein, which interacts with the RING-domain during
homologous recombination repair (HRR) [2].

The BRCA2 gene consists of 27 exons and encodes a
384 kDa protein encompassing 3418 aa [1]. BRCA2 has
eight BRC-repeats spaced evenly from aa 1009-2083, a
helical domain, three oligonucleotide binding folds and a
tower domain [2]. C-terminally, BRCA2 has two nuclear
localization signals and a Cyclin Dependent Kinase 2
(CDK?2) phosphorylation site at Ser3291 [2]. N-terminally,
BRCA2 has the ability to interact with Partner And
Localizer of BRCA2 (PALB2) at aa 21-39, overlapping
with exon 3 (aa 23-106) [3]. The physical connection
between BRCA2 and PALB2 is important because PALB2
links BRCA2 and BRCA1 during HRR, at the coiled coil
domain of BRCAL1 [2].
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Together, mutated BRCAI and BRCA2 are responsible
for about 15-25 % of familial breast and ovarian cancer
cases [4, 5]. Pathogenic variants in BRCAI and BRCA2 are
estimated to give a 40-87 % risk of breast cancer and a
11-68 % risk of ovarian cancer by age 70 [6]. Since the
identification of BRCAI and BRCA2, many pathogenic
variants have been reported in these two genes. The Breast
cancer information core (BIC) database includes over 1700
distinct variants in BRCAI and approximately 2000 in
BRCA2 (https://research.nhgri.nih.gov/projects/bic/). How-
ever, many of these variants are classified as variants of
unknown significance (VUS) and include synonymous, mis-
sense, intronic and in-frame deletions/insertions. Missense
mutations have the capacity to affect protein function; addi-
tionally they may also disturb mRNA splicing. Similarly,
synonymous variants, intronic variants outside the consensus
splice sites (ss) and deletions/insertions may also cause
aberrant splicing. This has been reported for several genes
including BRCAI and BRCA2 [7-9].

Several normal alternative transcripts have been reported
both for BRCAI and BRCA2 [10-13]. The Evidence based
Network for the Interpretation of Germline Mutation Alleles
(ENIGMA) consortium reported 63 splicing events in
BRCAI and 24 in BRCA2 [11, 13]. Ten of the 63 BRCAI
alternative splicing events and four of the BRCA2 alternative
splicing events were considered major splicing events, thus
complicating the investigation of aberrant splicing [11, 13].
In this study we assessed the consequences of some of the
variants detected in a Norwegian breast and ovarian cancer
cohort, by performing cDNA analysis and evaluating the
functional consequences of variants located in the BRCAL1
C-Terminal (BRCT) domains (aa 1646—1859) using a trans-
activation assay [14, 15].

Materials and methods
Patients and samples

Thirty-three whole-blood samples collected in RNA pre-
serving tubes (PAXgene tubes) were obtained from the
University Hospital of Oslo, Norway. The samples were
collected from unrelated patients who were carriers of
sequence variants in BRCAI or BRCA2 (Table 1). All
patients had a family history of breast or ovarian cancer.
Complete sequencing of the coding regions, corresponding
exon—intron borders and parts of the 5’ and 3’ untranslated
regions in BRCAI and BRCA2 as well as multiplex liga-
tion-dependent probe amplification (MLPA) were previ-
ously performed for all patients. In total, these patients
carried 18 variants in BRCAI and 14 variants in BRCA2
(Table 1). As controls, samples from individuals without a
family history of breast and ovarian cancer were used.
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RNA isolation and ¢cDNA synthesis

RNA was isolated from the PAXgene tubes using the
PAXgene Blood RNA Kit (PreAnalytiX, Hombrechtikon,
Switzerland) according to the manufacturer’s protocol.
cDNA was synthesized using the SuperScript® VILO™
cDNA Synthesis Kit (Invitrogen, Waltham, MA USA).

Nomenclature

Variants were named following recommendations from the
Human Genome Variation Society (HGVS) [16]. Refer-
ence sequences for BRCAI and BRCA2 were NM_0072
94.3 and NM_000059.3, respectively. Custom numbering
was used for BRCAI.

Bioinformatic tools

Primers were designed using the Primer 3 software (http://
bioinfo.ut.ee/primer3-0.4.0/) [17, 18]. In silico evaluation
of the variants was done with Alamut Visual version 2.7
(Interactive Biosoftware, Rouen, France), which includes
the missense prediction programs Align GVGD, SIFT,
MutationTaster and PolyPhen-2 and the the splice predic-
tion tools SpliceSiteFinder-like (SSF), MaxEntScan
(MES), NNSPLICE, GeneSplicer (GS) and Human
Splicing Finder (HSF). Thresholds were set to zero for all
splice prediction tools. The Alamut Visual software also
provides results and/or links to the following databases
the Exome Aggregation Consortium (ExAC), the Exome
Variant Server (EVS), the Single Nucleotide Polymor-
phism Database (dbSNP), ClinVar and Human Gene
Mutation Database (HGMD). In addition, information
from the Breast Cancer Information Core (BIC database
was utilized.

c¢DNA analysis

The variants were investigated for their effect on splicing.
Primers were positioned in flanking exons, preferentially so
PCR-products covered at least one exon on either side of
the exon containing the variant of interest (Table 2). Due to
the size of the large exons 11 of BRCAI and BRCA2,
alternative strategies were used. For these exons, the cor-
responding PCR-products did not contain the entire exon
11, as one of the primers in each set was located in exon 11
(Table 2). The PCR-products were visualized on agarose
gels, sequenced using Sanger sequencing and evaluated in
Sequencher® version 5.3 (Gene Codes Inc. [19]). All
exonic variants were used as markers for biallelic expres-
sion. All PCR-reactions were repeated using a second
cDNA preparation as template (prepared from the same
RNA sample).
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Table 1 Variants/samples

investigated in this study Mutation Location Protein Patient  Final classification
BRCAI
c.-20 + 521_-20 4 525de]lAAAAA Intron 1 - 1 2—Ilikely benign
c.140G>T Exon 5 p.Cys47Phe 2 4—1likely pathogenic
c.213-5T>A* Intron 5 - 3 4—1likely pathogenic
c.486G>T Exon 8  p. = (p.Vall62Val) 4 2—Ilikely benign
¢.548-17G>T Intron 8 - 5 2—Tlikely benign
c.734A>T Exon 11  p.Asp245Val 6 3—VusS
c.1419C>T Exon 11  p.=(p.Asn473Asn) 7 3—VUS
c.1487G>A Exon 11  p.Arg496His 8 2—Ilikely benign
c.2521C>T Exon 11  p.Arg841Trp 9 2—1likely benign
c.3418A>G" Exon 11  p.Ser1140Gly 10 1—benign
¢.3708T>G Exon 11  p.Asnl1236Lys 11 3—VusS
¢.5075A>C¢ Exon 18 p.Aspl692Ala 12 3—VusS
¢.5096G>A Exon 18  p.Argl699GIn 13 4—Ilikely pathogenic
c.5117G>C Exon 18  p.Glyl1706Ala 9 2—Ilikely benign
¢.5123C>T Exon 18 p.Alal708Val 14 3—VuS
c.5125G>A° Exon 18 p.Glyl709Arg 15 3—VuS
€.5434C>G* Exon 23 p.Prol812Ala 16 4—1likely pathogenic
¢.5513T>G"° Exon 24  p.Vall838Gly 17 3—VuS
BRCA2
c.40A>G Exon 2  pJlel4Val 18 3—VvusS
c.68-TT>A? Intron 2 - 19 2—Ilikely benign
c.750G>A Exon 9 p-=(p.Val250Val) 20, 33 2—likely benign
¢.2680G>A Exon 11  p.Val894lle 21 2—Ilikely benign
¢.3568C>T¢ Exon 11  p.Argl190Trp 22 2—likely benign
c.4068G>A" Exon 11 p. = (p.Leul356Leu) 23,10 1—benign
c.4828G>A Exon 11  p.Vall610Met 24 3—VusS
¢.5272_5274delAAT Exon 11  p.Asn1758del 25 3—VuS
¢.6100C>T Exon 11  p.Arg2034Cys 26 2—Ilikely benign
c.6821G>T Exon 11  p.Gly2274Val 27 2—Tlikely benign
c.7301A>C Exon 14  p.Lys2434Thr 28 3—VUS
c.8177A>G Exon 18  p.Tyr2726Cys 29 3—VUS
c.8323A>G Exon 18 p.Met2775Val 30 3—VuUS
c.9116C>T Exon 23 p.Pro3039Leu 31,32 3—VUS

VUS = Variant of unknown clinical significance

? Affects pre-mRNA splicing

" Reported homozygote in EXAC

¢ Included in the BRCT dual luciferase reporter assay

4 Not able to confirm biallelic expression

Trans-activation (TA) assay
Plasmids, mutagenesis and transformation

A fusion construct containing GAL4 DBD:BRCA1 (amino
acids 1396-1863) WT and the known neutral variant
c.4837A>G (p.Ser1613Gly) sub-cloned into pcDNA3 were
kindly provided by Alvaro N. A. Monteiro [15]. As an

internal transfection control, the phRG-TK vector was
used. The phRG-TK contains a Renilla-luciferase gene
under the control of a constitutive TK-promoter. The
pGAL4-elb-Luc containing the Firefly-luciferase gene was
used as a reporter for measuring the trans-activating
ability (Fig. 2a). Variants c.5075A>C (p.Aspl692Ala),
c.5125G>A (p.Gly1709Arg), c.5513T>G (p.Vall838Gly),
and the pathogenic control ¢.5324T>G (p.Metl775Arg)
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[15], were introduced in pcDNA3 GAL4 DBD:BRCAl
(amino acid 1396-1863) WT using the QuikChange XL
Site-directed mutagenesis kit (Agilent Technologies, Santa
Clara, CA USA) according to the manufacturer’s protocol.
Mutant plasmids were transformed into XL-10 Gold or
Topl0 competent cells and successful mutagenesis was
confirmed by Sanger sequencing.

Transfection and harvesting

Both BHK-21 and HEK293 cells (ATCC, www.atcc.org)
were grown in Dulbecco’s Modified Eagle’s Medium
(DMEM) (Life Technologies, Waltham, MA USA) with
10 % Fetal Bovine Serum (Life Technologies) and 60 U/
ml Penicillin—Streptomycin (Life Technologies). Approxi-
mately 150,000 BHK-21 and 300,000 HEK293 cells were
transferred to each well of a 6-well plate and grown
overnight before transfection. One pg of pcDNA3 GAL4
DBD:BRCA1 was co-transfected with one pg of pGAL4-
elb-Luc and 100 ng phRG-TK (internal transfection con-
trol). Fugene® HD Transfection Reagent (Promega,
Madison, WI USA) was used as transfecting agent
according to the protocol recommended by the supplier.
Untransfected cells, cells transfected exclusively with the
reporter plasmids (pGAL4-elb-Luc and phRG-TK) and
cells transfected with the plasmid containing the BRCAI
WT, the p.Serl613Gly (neutral) and p.Metl775Arg
(pathogenic) variants, were used as controls. Cells were
harvested 24 h post-transfection. The transfection experi-
ments were repeated three times.

Luciferase measurements

The Dual-Luciferase Assay System (Promega) was used to
measure the trans-activation activity. In short, 50 pl Luci-
ferase Assay Reagent II (LARII) was injected into wells
containing 20 pl cell lysate. The amount of light produced
was measured and subsequently 50 pl Stop & Glo Reagent
was injected. A CLARIOstar (BMG LABTECH, Orten-
berg, Germany) was used for injections and recordings. For
each lysate, both Renilla- and Firefly-luciferase activities
were measured in triplicates. The data are presented as
ratios of Firefly- to Renilla-excitation values. The activity-
ratios obtained from cells transfected with only the reporter
plasmid were defined as background and thus subtracted
from the activity-ratios obtained from the BRCT-contain-
ing plasmids. For each WT lysate/triplicates, the average
was calculated. All luciferase measurements within the
same transfection set-up were then calculated as the per-
centage of the corresponding WT average. Values were
combined, before the average and standard deviations were
calculated.

Western blot

Lysates from one of the HEK293 transfections and one of
the BHK-21 transfections were used for western blot
analysis to confirm the presence of fusion proteins. The
amount of light produced by the internal transfection
control (Renilla luciferase) was used for normalization of
samples. Samples were loaded on NuPAGE 4-12 % Bis—
Tris pre cast gels (Life Technologies) and the proteins were
separated for 1.5 h at 200 V and 120 mA. Proteins were
subsequently transferred to polyvinylidene difluoride
(PVDF) membranes (Life Technologies) (1.5 h at 25 V and
160 mA), blocked for 1 h in phosphate buffered saline
(PBS) with 5 % nonfat dried milk powder (PanReac
AppliChem, Darmstadt, Germany) and incubated overnight
with 1:200 dilution of BRCA1 (C-20) primary antibodies
(Santa Cruz Biotechnology, Dallas, Texas USA). Mem-
branes were incubated for 1 h with HRP-Chicken anti-
rabbit secondary antibodies (1:50,000) (Santa Cruz
Biotechnology) followed by treatment with Signal® West
Dura Extended Duration Substrate (Thermo Scientific,
Waltham, MA USA). The ImageQuant Las4000 (GE
Healthcare Life Sciences, Buckinghamshire, UK) was used
to capture images.

Results
c¢DNA analysis

Eighteen BRCA variants, comprising three intronic and 15
exonic variants, and 14 BRCA2 variants, comprising one
intronic and 13 exonic variants were investigated
(Tables 1, 3). All variants, except BRCAI c.3418A>G and
BRCA2 ¢.4068G>A (which were earlier identified as
benign variants [20, 21]), were screened for their effect on
splicing. In addition, all exonic variants (including BRCAI
c.3418A>G and BRCA2 c. 4068G>A) were used as
markers to investigate biallelic expression.

In the performed cDNA analysis, three variants
appeared to cause alterations in the normal splicing.
BRCAI ¢.213-5T>A (intron 5) resulted in inclusion of 59
nucleotides of the 3’-end of intron 5, leading to a frame-
shift introducing an early stop-codon (r.212_213ins213-
59_213-1 p.Arg71Serfs*11) (Fig. 1a). BRCAI ¢.5434C>G
(exon 23) induced skipping of exon 23, also leading to a
frame-shift and subsequently an early stop-codon
(r.5407_5467del p.Gly1803GInfs*11) (Fig. 1b). BRCA2
c.68-7T>A (intron 2) appeared to increase skipping of
exon 3 (Fig. 1c). Skipping of exon 3 is an in-frame deletion
(r.68_316del p.Asp23_Leul05del) which was also detected
in controls. Splice site predictions for these three variants
are shown in Table 4.
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Fig. 1 cDNA analysis. At the a

top of each image the wild type Exon 6

(WT) sequenceis shown, ATATAAC CAAAAGIGAGCCTACAA Wlldtype
followed by the alternative

sequences observed in the 59 nucleotides of the 3’-end of intron 5

patient samples. At the bottom ATATAAC CAAAAG [ TGTCCTTAAA c213-5T>A

the electropherograms are

displayed. a BRCAI c.213-

5T>A resulted in an inclusion -

of 59 nucleotides from the 3’ ] A v - 51 5

fi
end of intron 5 Sample with BRCA1

(r.212_213ins213-59_213-1 /\ 1B ToA variant
p.Arg71Serfs*11). b BRCAI /\ /\ A/\ /\/\ /\ /\ 213-
¢.5434C>G resulted in skipping /\ /\ / \ A L\A/\/\

of exon 23 (r.5407_5467del t adr e Salry
p-Gly1803GInfs*11).
Electropherogram displayed

/_\/\/.\/_\/\/.\A/\AA/\ AN A/\/\A/\/Mm

resulted in increased skipping of

exon 3 (1.68_316del b

p-Asp23_Leul05del), which is a Exon 22 Exon 23 Exon 24

normal altemative splicing TGGCACA|GGTG //CCATG|CAATTG widtype
event

Exon 24
ACCCTTGGCACA|CAATTGGGCAGA €.5434C>G

\ Skipping of exon 23

ALY Yy 1.1 A Y R A T 1 A A

Sample with BRCA1
¢.5434C>G variant

oty =

¢ Exon 2 Exon 3 Exon 4

AGCAG|ATTTA//ICTTAG|GAAGG wildtype

Exon 2 Exon 4

AACAAAGCAG|GAAGGAATGTT c.68-7TT>A

\ Skipping of exon 3

W130)-29 agment . e 125 of 485

Sample with BRCA2
C.68-7T>A variant

Control

Heterozygous positions identified in gDNA that appear  in the investigated region. The majority of patients with an
homozygous when cDNA is investigated suggest the loss  exonic variant were confirmed to have both alleles tran-
of expression from one of the alleles or alternative splicing  scribed (exception marked in Table 1).
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Table 4 Splice prediction information for variants with abnormal splicing

Variant Location Patient number Pos. ss  Splice predictions
SSF [0-100] MES [0-16] NNSPLICE [0-1] GS [0-15] HSF [0-100]
BRCAI ¢.213-5T>A  Intron 5 3 +4 —-7.6 % —-52.1 % Lost 0.1 NP —4.0 %
—54 - - - +3.3 % -
BRCAI ¢.5434C>G  Exon23 16 —0 +7.1 % +20.9 % New 0.6 - +52 %
+3 NP 200 % NP NP 0.7 %
BRCA2 c.68-TT>A Intron2 19 +6 —5.7 % —239 % —27.3 % - —2.7 %

Predictions were gathered from the nearest predicted splice site (ss) change where predictions from several programs (at least two) were made.
For these three variants, only 3'ss were identified. An exception was made for ¢.213-5T>A, where also the ss at ¢.213-59 was included in the
table. Threshold was set to zero for all four programs. “Pos. ss” = Position of splice site in regards to sequence variant. Numbers are nucleotides
to the splice junction, meaning —O0 is right upstream of the variant, while 40 is right downstream. “NP” = Not predicted, “~” = No change in
prediction, “New” = not predicted in the WT sequence and “Lost” = Not predicted in the variant sequence

Trans-activation assay

Seven patients were carriers of variants in the BRCT
domains of BRCAI (c.5075A>C, c.5096G>A, ¢.5117G>C,
c.5123C>T, ¢.5125G>A, ¢.5434C>G and ¢.5513T>G). Of
these, three variants were novel (c.5075A>C p.Asp1692Ala,
c.5125G>A p.Gly1709Arg and ¢.5513T>G p.Val1838Gly).
These three variants were further investigated for their trans-
activating ability. For the remaining variants c¢.5434C>G,
¢.5096G>A, ¢.5117G>C and c.5123C>T, we were able to
confirm that the sequence variant ¢.5434C>G caused aber-
rant splicing, hence this variant was not included in the TA
assay. Variants ¢.5096G>A (p.Argl699GIn), c¢.5117G>C
(p-Gly1706Ala) and ¢.5123C>T (p.Alal708Val) have pre-
viously been evaluated by trans-activation assays and were
accordingly not included in the TA assay [22-24].

BRCA1 p.Aspl692Ala and p.Vall838Gly were unable
to induce transcription of the firefly luciferase, equal to the
known pathogenic variant p.Metl775Arg, which was
apparent in both BHK-21 and HEK293 cells (Fig. 2b).
BRCA1 p.Gly1709Arg however, showed trans-activation
activity similar to the WT and the known benign variant
p-Ser1613Gly (Fig. 2b).

Western blot results indicated an equal expression of the
plasmid constructs in the BHK-21 cells, but showed some
variation in HEK293 cells despite adjusting the protein
concentrations according to the transfection -control,
Renilla luciferase (Fig. 2c). However, the BRCT mutants
were expressed in both cell types, indicating that the
reduced values were due to reduced trans-activation ability
and not due to variations in expression/stability.

Discussion
Prophylactic mastectomy and salphingo-oophorectomy are

potent, but invasive risk reducing managements for carriers
of pathogenic BRCA1/2 variants. Accordingly, identifying

@ Springer

a VUS pose a considerable challenge for genetic counsel-
lors and medical geneticists in advising clinical manage-
ment. In this study, we characterized some of the variants
detected in a Norwegian breast and ovarian cancer cohort,
both by cDNA analysis and analysis of the trans-activation
ability of variants located in the BRCT domains.

c¢DNA analysis

Alternative splicing allows for a more diverse expression
of genes, and can regulate localization, enzymatic proper-
ties and different interaction properties of proteins [25].
The majority of variants located in the consensus ss (GT-
AG in position £ 1, 2) lead to abnormal splicing [26], but
the effects of variants at positions further away from the
exon—intron border are more difficult to predict. In addi-
tion, both missense variants and silent exonic variants
might affect splicing [27], either by creating cryptic ss,
remove binding sites for exonic splicing enhancers (ESE)
or create binding sites for exonic splicing silencers (ESS).
However, normal alternative splicing can counteract the
effect of some variants leading to aberrant splicing [28]. de
la Hoya et al. [28] recently reported a variant causing an
out-of-frame deletion of BRCAI exon 10. The potential
effect of this variant, however, was counteracted by a
normal in-frame alternative splice event deleting exons
9-10 from the transcript [28].

In the current study, three of the 32 variants had
a consequence on pre-mRNA splicing

BRCA1I ¢.213-5T>A, a novel variant located in intron 5,
resulted in usage of a cryptic ss 59 nucleotides upstream of
the original site. Three splice prediction tools, SSF, MES
and HSF anticipated a 3'ss at the original position. The
variant led to reduced predictions of the original ss
(Table 4) and the cryptic ss 59 bases upstream was strongly
predicted by all prediction programs (also in the WT
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W BHK-21
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Fig. 2 Trans-activation assay. a A simplified view of the assay set- controls: wild type (WT) BRCAI, a neutral polymorphism

up. Plasmids with constructs encoding a DNA binding domain (DBD)
and the C-terminal of BRCA1 (amino acids 1396-1863) were co-
transfected into HEK293 and BHK-21 cells with a reporter plasmid
containing firefly luciferase. If the plasmids with the C-terminal part
of BRCA1 have trans-activation activity, they will activate transcrip-
tion of firefly luciferase, luciferase activity is then measured and
quantitated. b The dual luciferase reporter assay (Promega) was used
to evaluate the trans-activation activity of BRCA! BRCT variants in
BHK-21 cells and HEK293 cells. The first three columns represent

sequence). Inclusion of 59 nucleotides caused a frame-shift
and introduced a premature stop-codon after 75 codons.
Another variant in this region, BRCAI c.213-11T>G, has
previously been shown to lead to the use of the same
cryptic ss [8]. The presence of a premature stop-codon
likely activates the nonsense-mediated mRNA decay
pathway [29]. However, variants in BRCAI, which intro-
duce a stop-codon before position ¢.297, are presumed to
allow re-initiation of translation at the AUG at this position
[30]. A re-initiation at ¢.297 would lead to BRCA1 proteins
lacking the RING-finger motif located at the N-termini
(amino acids 8-96) [14]. Binding of the BRCA1 RING-
domain to BARDI1 protein seems to be essential for tumor
suppression [31], accordingly, variants lacking this domain
are expected to be of clinical importance.

BRCA1 ¢.5434C>G in exon 23 was the only exonic
sequence variant introducing exon skipping in our cancer
cohort. This variant was previously reported by Gaildrat
et al. [7] to cause skipping of exon 23, possibly by affecting
a splice regulatory element (SRE), by removing an ESE or

(p-Ser1613Gly) and a pathogenic variant (p.Metl775Arg), respec-
tively. p.Aspl692Ala (BRCAI c.5075A>C) and p.Vall838Gly
(BRCAI ¢.5513T>G) had no trans-activation activity, whereas
p-Glyl709Arg (BRCAI ¢.5125G>A) showed normal activity.
¢ Western blot results from proteins isolated from one of the
transfections in BHK-21 cells and HEK293 cells. Samples were
normalized according to renilla expression measured by CLARIOstar
(BMG LABTECH)

by introducing an ESS [7]. This demonstrates the impor-
tance of experimentally assessing the effect of exonic
variants on splicing.

BRCA2 ¢.68-7T>A in intron 2 had previously been
reported by Vreeswijk et al. [32] and Sanz et al. [33], who
performed mini-gene assays that revealed partial skipping of
exon 3 (p.Asp23_LeulO5del). Prediction programs sug-
gested a reduced strength of the downstream original 3'ss in
the presence of the variant (Table 4), and cDNA analysis
indicated that the variant led to increased exon 3 skipping.
However, the skipping of exon 3 resulted in an in-frame
alternative transcript, also present in normal controls (albeit
at lower levels). Exon 3 in BRCA2 encodes the part of
BRCAZ2 that interacts with PALB2 [34], however, the con-
sequence (if any) of reduced interaction with PALB2 is
currently unknown. Santos and colleagues have shown that
in two families, BRCA2 c.68-7T>A did not segregate with
the disease, suggesting that the variant is neutral [34].

Recently, Hoya et al. [28] suggested that variants in
BRCAI not leading to more than 70-80 % loss of

@ Springer
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functional transcripts from one of the alleles still can show
tumor suppressor haplosufficiency, implicating the impor-
tance of knowing normal alternative splicing events in the
genes investigated.

Splice predictions as cDNA analysis inclusion
criteria

In 2012, Houdayer et al. introduced specific criteria for
selection of variants which should be tested for splicing
[36]. They concluded that as long as the original splice site
in BRCAI or BRCA2 has a prediction value over three for
the MES prediction tool and over 60 for the SSF prediction
tool, a reduction of 15 and 5 %, respectively, was sufficient
to include variants for cDNA analysis. Both BRCAI c.213-
5T>A and BRCA2 c.68-7T>A would have been included
using these criteria. However, BRCAI ¢.5434C>G would
have been omitted from cDNA analysis, since this variant
most likely affects an SRE. In summary, although predic-
tion programs can indicate that some variants can cause
aberrant splicing, the true outcome can only be identified
experimentally.

Trans-activation assay

We investigated three novel BRCAI variants for their effect
on BRCA1’s trans-activation activity (Table 1). Two of the
three variants (BRCAI c.5075A>C p.Aspl692Ala and
¢.5513T>G p.Vall1838Gly) showed a clear loss of activity
(Fig. 2b). BRCA1 p.Aspl692Ala exchanging the highly
conserved aspartate to an alanine and BRCAI
p-Val1838Gly, substituting the highly conserved valine to a
glycine, are both predicted to be pathogenic by the mis-
sense prediction tools Align GVGD, SIFT and Muta-
tionTaster. However, PolyPhen-2 only predicts
p-Vall838Gly to be damaging. Both these variants result in
changes in the BRCT domains and our functional study
indicated their pathogenicity by loss of trans-activation
activity (Fig. 2b). Other variants changing aspartate at
position 1692 and valine at position 1838 (p.Asp1692His,
p-Aspl692Asn, p.Aspl692Tyr and p.Vall838Glu), which
have all previously been shown to have a functional impact
using the TA-assay, indicating the importance of the con-
served amino acids at these positions [37, 38]. BRCAI
c.5125G>A p.Gly1709Arg however, substituting the
highly conserved glycine with arginine, is predicted dif-
ferently by Align GVGD, SIFT, Mutation taster and
PolyPhen-2 (Table 3). Even though some of the prediction
programs indicated pathogenicity, p.Gly1709Arg displayed
normal trans-activation activity.

Although the in vitro trans-activation studies suggest the
pathogenicity of BRCAI ¢.5075A>C and c.5513T>G, we
only investigated a limited part of the BRCA1 protein.

@ Springer

Further assessment including segregation studies in fami-
lies with these variants are needed to establish their
classification.

Several BRCAI variants in our cohort are classified as
either likely pathogenic, likely benign or benign based on
cDNA analysis, functional studies, segregation analysis,
frequency in control populations, among others (Tables 1,
3). However, some remain classified as VUS. Two variants
identified in our cohort (BRCAI c¢.734A>T and
¢.1419C>T) have not been previously reported in the lit-
erature and both are reported with a low frequency in the
ExAC database [39], accordingly, their clinical signifi-
cance is uncertain (Table 1). BRCAI ¢.3708T>G and
¢.5123C>T were previously reported in both the literature
and with low frequencies in databases (Table 3).

In BRCA2 none of the variants identified in our cohort
were classified as likely pathogenic. One variant
(c.4068G>A) was classified as benign and five variants
(c.750G>A, ¢.2680 G>A, c.3568C>T, c¢.6100C>T and
c.6821G>T) were classified as likely benign (Table 1).
Eight variants remained classified as VUS; The BRCA2
variant ¢.40A>G has not been previously reported in the
investigated databases nor in the literature (Table 3) and
¢.8323A>G has not earlier been reported in the literature
but is reported with low frequency in the ExXAC database
(Table 3). The five remaining variants, c.4828G>A,
c.5272_5274delAAT, c¢.7301A>C, ¢.8177A>G and
c.9116C>T, have been reported in the literature and all
except ¢.8177A>G are reported with low frequencies in the
investigated databases (Table 3). Our current study was
unable to disclose new variants located in regulatory
sequences, potentially affecting the expression of one of
the alleles.

Conclusion

In the current study, we identified three variants leading to
abnormal splicing of pre-mRNA; Two variants located
intronically, BRCAI ¢.213-5T>A and BRCA2 c.68-TT>A,
and one exonic variant, BRCAI ¢.5434C>G. In addition,
functional studies assessing the trans-activation activity of
the BRCT domains resulted in identification of two variants,
¢.5075A>C p.Aspl1692Ala and ¢.5513T>G p.Vall838Gly,
which lacked trans-activation activity. The use of partial
proteins can lead to further understanding of how variants
may affect protein function, however, the use of full-length
proteins would be preferable in functional studies.
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