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Abstract Pancreatic ductal adenocarcinoma (PDAC) is

nearly uniformly lethal, with a median overall survival in

2014 of only 6 months. The genetic progression of spo-

radic PDAC (SPC) is well established, with common

somatic alterations in KRAS, p16/CDKN2A, TP53, and

SMAD4/DPC4. Up to 10 % of all PDAC cases occur in

families with two or more affected first-degree relatives

(familial pancreatic cancer, FPC), but these cases do not

appear to present at an obviously earlier age of onset. This

is unusual because most familial cancer syndrome patients

present at a substantially younger age than that of corre-

sponding sporadic cases. Here we collated the reported age

of onset for FPC and SPC from the literature. We then used

an integrated approach including whole exomic sequenc-

ing, whole genome sequencing, RNA sequencing, and high

density SNP microarrays to study a cohort of FPC cell lines

and corresponding germline samples. We show that the

four major SPC driver genes are also consistently altered in

FPC and that each of the four detection strategies was able

to detect the mutations in these genes, with one exception.

We conclude that FPC undergoes a similar somatic

molecular pathogenesis as SPC, and that the same gene

targets can be used for early detection and minimal residual

disease testing in FPC patients.

Keywords Pancreatic ductal adenocarcinoma (PDAC) �
Familial pancreatic cancer (FPC) � Germline

predisposition � Cancer driver genes � Next generation

sequencing (NGS)

Introduction

While patients with several different forms of cancer survive

longer after diagnosis than in the past, the 5-year survival rate
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of patients with pancreatic ductal adenocarcinoma cancer

(PDAC) has remained relatively unchanged over the past

5 decades [1]. As many as 10 % of PDACs have a hereditary

component (familial PDAC, FPC), defined as a family with at

least two first-degree relatives with PDAC [2, 3]. Known

susceptibility genes include BRCA1, BRCA2, PALB2, ATM,

STK11, PRSS1, SPINK1, and DNA mismatch repair genes,

but all together these explain less than 20 % of familial pan-

creatic cancer cases [4–7]. PDAC is notoriously lethal because

patients present late in the disease process and the cancers are

chemorefractory. Importantly, the 9 % of cases that present

with the tumor confined to the pancreas have a 5-year survival

rate of 24 %, supporting the notion that lesions detected early

enough can be cured [1]. To focus early detection resources, it

is important to identify patients at particularly high risk, such

as those with familial predispositions.

The molecular progression of SPC is well-established

both histologically and molecularly [8]. The high-preva-

lence SPC driver genes are KRAS ([90 % of PDAC),

CDKN2A/p16 (95 %), TP53 (50-75 %), and SMAD4/DPC4

(55 %) [9–12]. PDACs commonly arise from pancreatic

intraepithelial neoplasia (PanIN) or Intraductal Papillary

Mucinous Neoplasm (IPMN) precursor lesions. While the

pathology of FPC has been shown not to differ from that of

apparently sporadic disease, FPC patients have been shown

to have significantly more precursor lesions as well as

higher grade precursor lesions when compared to patients

with sporadic disease [13–15]. Knowing the genes

involved in FPC molecular progression is essential to

designing effective early detection strategies [16].

Early onset is a hallmark of most familial cancer syn-

dromes, including hereditary breast and ovarian cancer

(BRCA1, BRCA2), familial adenomatous polyposis (APC),

hereditary non-polyposis colorectal cancer (MLH1, MSH2,

MSH6, PMS2), and familial atypical multiple mole melanoma

(FAMMM) syndrome (p16) [17–20]. In contrast, an earlier

age of onset is not an obvious hallmark of FPC [21, 22]. How

can one possibly inherit a predisposition to a cancer without an

obvious acceleration of the phenotype? This question chal-

lenges our current understanding of familial cancer syn-

dromes and the canonical two-hit hypothesis [23, 24].

In the study, we first collated the age of onset in FPC and

SPC reported in the literature to validate the general notion

that the age of onset of familial and sporadic PDAC cases was

similar. We then determined the status of known SPC driver

genes in our own FPC cohort, a unique resource of eighteen

FPC cell lines that we have generated over the past decade. We

used an integrated approach including high density SNP

microarrays, exomic sequencing, whole genome sequencing,

and RNA-sequencing to investigate those genes involved in

FPC progression. Finally, having established a consensus for

each gene in each sample, we examined the ability of each tool

to detect the mutations.

Materials and methods

Case selection

This study was reviewed and approved by the Institutional

Review Board at Johns Hopkins Medical Institutions, and

informed consent was obtained from all study participants.

Familial pancreatic cancer was defined as a pancreatic

cancer that arose in a proband with at least one first-degree

relative with pancreatic cancer (i.e. a family with two or

more affected first-degree relatives). Cancer cell lines were

established from familial pancreatic cancers and matched

normal DNA from the patients was obtained from Epstein–

Barr virus (EBV) transformed lymphoblasts or frozen tis-

sue [25]. Tumor-normal pair matching was confirmed by

STR analysis of nine loci and Amelogenin using ABI

Profiler kit (Life Technologies, Carlsbad, CA) and size-

separated on an ABI CE3130xl instrument (Life Technol-

ogies). The data from 94 SPC and 7 FPC (four from dis-

covery, three from prevalence) were previously reported

[11]. An unpaired, two-tailed t test of our cohorts was used

to determine if the mean age of onset difference between

our familial and sporadic cases was statistically significant.

Collation of reported age of onset

Literature reporting age of onset in FPC (excluding

hereditary pancreatitis) and SPC were collected from

PubMed. Only the most recent study was used when

multiple studies employed the same patient registry, on the

assumption that previous reported families would be

included in subsequent reports and therefore exclude

redundant cases. Studies were stratified based on study type

(population or referral) and statistic reported (mean or

median).

Preparation of genomic DNA and RNA

Genomic DNA was extracted from early passage cell lines

and matched normal EBV-transformed lymphoblasts or

frozen normal tissue using QIAamp DNA mini kit (Qiagen,

Valencia, CA), per manufacturer’s instruction. RNA was

extracted from cell lines using RNeasy mini kit (Qiagen),

per manufacturer’s instruction. A HPDE (human pancreatic

ductal epithelium) cell line was used as a normal control

for RNA-Sequencing [26].

High density SNP microarray

The Omni2.5 array (Illumina, San Diego, CA) was used to

analyze cancer cell lines and matched normal samples at

2,379,855 (2.5 M) SNP loci. Analysis was carried out with
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Genome Studio with the following criteria: an average

LogR Ratio (LRR) B -2.0 for homozygous deletions

(HDs); LRR of 0–0.53 and B Allele Frequency of 0 or 1 for

loss of heterozygosity (LOH); and an average LRR C 1.4,

with at least one SNP LRR C 2.0, for amplifications. At

least four SNPs must fit criteria for the region to be called

an alteration and boundaries were the first and last SNPs

that meet criteria. Adjacent deleted or amplified regions

(within 100 kb) were considered to be one alteration.

Given that half or more of the p16 and SMAD4 inactiva-

tions are HDs, we excluded the 4 FPC and 81 SPC cases

without SNP microarray data, in the analysis of p16 and

SMAD4 genes.

Genomic DNA libraries and exomic sequencing

Genomic DNA libraries were prepared using 1 lg of

genomic DNA and human exome capture was performed

following a modified protocol from Agilent’s SureSelect

Paired-End Version 2.0 Human Exome Kit (Agilent, Santa

Clara, CA) as previously described [27]. Briefly, captured

DNA libraries were sequenced with a GAIIx Genome

Analyzer, yielding 150 bp (2 9 75 bp) from the final

library fragments, to 200X coverage. Sequencing reads

were analyzed and aligned to human genome hg18 with the

Eland algorithm in CASAVA 1.7 software (Illumina). The

Database of Single Nucleotide Polymorphisms was used in

the analysis of whole-exome sequencing data (dbSNP).

Mutations were visually confirmed in the aligned files.

Whole genome sequencing

Sequencing on an Illumina HiSeq 2000 (Illumina) was

carried out at 60X coverage for cancers and 30X coverage

for matched normal by Personal Genome Diagnostics

(Baltimore, MD) using 3 lg of genomic DNA and gener-

ating 200 bp (2 9 100 bp paired reads) per fragment.

Reads were aligned to human genome (hg19) with Eland

v.2 algorithm in CASAVA 1.7 software (Illumina).

cDNA libraries and RNA sequencing

A total of 5 lg of total RNA was depleted of ribosomal

RNA using ribominus and cDNA libraries were prepared

using TruSeq Stranded Total RNA Sample Preparation

(Illumina), as per the manufacturer’s instructions. Paired-

end sequencing, resulting in 100 bp reads was carried out

on an Illumina HiSeq to a level of 50 M reads. RSEM was

used to align the sequences to human genome hg19 [28].

Alterations were visually confirmed using Integrated

Genomics Viewer [29].

Results

Previous investigations have noted a similar age of onset of

SPC and FPC. To comprehensively examine this, we culled

studies reporting FPC and SPC age of onset and published

from 1991 to 2013 (n = 15). To avoid overweighting the

same families, we used only the most recent study when

multiple studies were reported through time from the same

Fig. 1 Reported age of onset for SPC and FPC, collated from the

literature. Literature was separated based on a population-based or

b referral cohorts, reported as means (filled symbols) or medians

(empty symbols). Symbol sizes are adjusted according to the number

of individuals in the study [2*log(n)]. There are no obvious

differences in the age of onset for FPC (triangles) compared to

SPC (squares)

Table 1 FPC cohort demographics

Case Age at

diagnosis

Sex Additional family history

of pancreatic cancer

Pa007C* 80s F Father, mother

Pa009C* 60s F Brother, paternal uncle

Pa011X* 70s F Father

Pa018X* 70s F Brother

Pa101C 40s M Father

Pa102C 60s F Sister

Pa147X* 70s M Brother, mother

Pa170X* 40s M Brother

Pa212X* 60s M Mother

Pa222C 70s M Father, paternal grandfather,

paternal uncle

Pa223C 60s F Brother, cousin

Pa227C 60s F Father

Pa228C 60s F Brother

Pa229C 40s M Mother

Pa230C 60s F Father

Pa231C 60s M Father, mother, paternal

grandfather

* Samples previously reported in Jones et al. [11] Science
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institution or consortium. The collated studies have

reported mean or median ages of 60–74 for SPC patients

and 52–69 for FPC patients (Fig. 1, Supplemental

Table 1). Due to potential ascertainment bias, we separated

the studies that reported age of onset in a population

unselected based upon family history (Fig. 1a) versus those

from family registries (Fig. 1b). The mean age of PDAC

diagnosis from 1973 to 2000 SEER data is 70 years [30]. In

our small cohorts of FPC and SPC, there was no obvious

difference in age (FPC cohort: mean 64 years (range:

42–81); SPC cohort: mean 66 years (range: 36–85))

(Table 1, Supplemental Table 2). The lower age of both of

the cohorts we analyzed (FPC and SPC) compared to

SEER may be attributable to ascertainment or referral bias.

There appears to be a greater difference in the referral-

based studies, likely because the vast majority of samples

in our study underwent surgical resection. We have

intentionally omitted statistical comparison of the groups

because of the invalidity in comparing means and medians,

and the small sample size that would exist without pooling

these two statistics.

The molecular progression of SPC is well-documented,

with common somatic alterations in the four driver genes

KRAS, CDKN2A/p16, TP53, and SMAD4/DPC4, in addi-

tion to many other low prevalence genes [11, 12]. In an

attempt to identify new FPC predisposition genes, we

performed a comprehensive genomic analysis of our 16

FPC cell lines. No strong candidates for predisposition

genes were identified in these samples. We also

determined the mutational status of the four SPC driver

genes in these 16 FPC samples as assessed by each of the

four methods.

Overall, the prevalence of alterations in the four SPC

driver genes was similar in the 16 FPC PDACs and the 94

SPC PDACs (Fig. 2a, b). Activating KRAS mutations were

identified in 16/16 (100 %) of FPC PDACs, predominately

at codon 12 (94 %:63 % G12D, 19 % G12V, and 13 %

G12R) but with one case at codon 61 (6 %, Q61H)

(Fig. 2b, Supplemental Table 3). Of the 94 sporadic

PDACs, all but one had an activating KRAS mutation

(99 %). The majority of KRAS mutations in the SPC

PDACs were also at codon 12 (95 %:50 % G12D, 31 %

G12V, and 12 % G12R). Four SPC PDACs had codon 61

mutations (3 Q61H, 1 Q61R), and one SPC PDAC had two

different activating KRAS mutations (G12V and G13C).

CDKN2A/p16 was inactivated in 100 % (12/12, the four

cases without SNP microarray data were excluded) by

homozygous deletion (9/12, 75 %) or single base substi-

tution with LOH (3/12, 25 %), of the FPC PDACs, com-

pared to only 62 % (8/13, the cases without SNP

microarray data were excluded) of the SPC PDACs

(p = 0.04, Fig. 2b, Supplemental Table 4). Alterations of

the CDKN2A gene are reported to occur in 95 % of SPC

PDACs, with epigenetic silencing accounting for about

15 % of this inactivation [31]. As we did not assess epi-

genetic changes, the actual fraction of cases with somati-

cally altered CDKN2A in Supplemental Table 4 is likely an

underestimate.

Fig. 2 Summarized alterations

in PDAC molecular progression

genes, for SPC and FPC.

a PDAC molecular progression

model with reported percent

alterations of the four driver

genes in PanIN lesions, figure

modified from Iacobuzio-

Donahue, et al. Clin Cancer Res

2012 [56]. b Percent alterations

of molecular progression genes

in PDAC cancers from SPC and

FPC cohorts. As expected, the

mutation prevalence in PDACs

in panel b are higher than the

early PanIN lesions in panel a.

*CDKN2A, p = 0.04
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TP53 was mutated in 88 % (14/16) of FPC PDACs, by

single base substitution with LOH (10/14), frameshift with

LOH (2/14), or biallelic mutation (2/14) (Fig. 2b, Supple-

mental Table 5). Of the 94 sporadic PDACs, 82 (87 %) had

inactivating TP53 mutations. The mutation types included

biallelic mutations (1/82), single base substitutions with LOH

(64/82), frameshifts with LOH (15/82), and HDs (2/82).

SMAD4/DPC4 was inactivated in 75 % (9/12, the four

cases without SNP microarray data were excluded) of FPC

PDACs, by homozygous deletion (5/9), single base sub-

stitution with LOH (3/9), and frameshift with LOH (1/9)

(Fig. 2b, Supplemental Table 6). Of the 13 sporadic

PDACs (the cases without SNP microarray data were

excluded), 62 % had inactivated SMAD4. The mutation

types included single base substitutions with LOH (2/8),

frameshifts with LOH (3/8), and HDs (3/8).

Having established a consensus gene mutation status, we

retrospectively determined the ability of each genome-wide

tool to detect the mutations. We first categorized the

mutations as HDs, point mutations (including single base

substitutions, frameshift deletions and insertions), and loss-

of-heterozygosity (LOH) events. We then studied the

ability of each tool to detect these three types of mutations

in the four driver genes (Table 2).

Homozygous deletions are common in the tumor sup-

pressors CDKN2A/p16 and SMAD4/DPC4 and were

detected reliably by SNP microarray, whole exomic

sequencing (WES), whole genome sequencing (WGS), and

RNA sequencing (RNA-Seq). For only one homozygous

deletion (Fig. 3a, b), the standard WGS Illumina pipeline

for calling copy number alterations missed a p16 homo-

zygous deletion (sample PA222C), clearly deleted by

visual inspection of WGS data (Fig. 3c). The homozygous

deletion included 17 kb of the 50 end of p16 transcript

variant 4 (NM_058195), but did not result in the deletion of

any DNA sequence corresponding to transcript variants 1,

3, 5 (NM_000077, NM_058197, and NM_001195132)

(Fig. 3a, b). The later transcript variants encode the

p16(INK4) isoform, a CDK inhibitor, while transcript

variant 4 encodes a structurally distinct p14(ARF) which

stabilizes TP53 by sequestering MDM2. Both isoforms are

normally expressed in the pancreas. Importantly, neither

the p14ARF or p16INK4a transcripts are expressed

according to the RNA-Seq data (Fig. 3e), a result of the

loss of p14ARF’s first exon and p16(INK4)’s promoter

sequence, respectively. This 97 kb homozygous deletion

was identified by WES, RNA-Seq, and high density SNP

microarray, and the deletion’s breakpoints were remark-

ably concordant across these methods (Fig. 3b–f). Because

the WGS results were initially discordant, we used multi-

plex ligation-dependent probe amplification (MLPA) to

confirm the homozygous deletion (Fig. 3g). That only one

of the four alternative transcripts is included in the

homozygous deletion explains why this was missed by the

WGS using the standard Illumina pipeline. This highlights

the importance of the reference transcript used in a NGS

mapping algorithm and the potential utility of remapping to

known deletions, such as p16 in the case of PDAC, espe-

cially at lower read depths.

Point mutations and LOH in KRAS, p16, TP53, and SMAD4

were all detected by WES, WGS, and RNA-Seq. High density

SNP microarray could of course not detect any of the point

mutations in the four driver genes. However, it is likely that a

custom SNP microarray could be designed to detect mutations

in hotspots in KRAS. Where LOH in p16, TP53, and SMAD4

genes was detected, it was detected equally by all of the

methods. In the two cases with biallelic TP53 mutations, there

was no evidence of LOH, as expected.

We also investigated the mutation status of genes

implicated at a lower frequency in PDAC, but reported to

be mutated in cystic precursors, pancreatic neuroendocrine

tumors (PanNETs), or implicated as FPC predisposition

genes. MLL3 has been reported to be mutated in 9 % of

PDACs [11, 32]. Here, MLL3 was mutated in 17 % (2/12)

Table 2 Relative power of each method to detect common alterations

Gene Gene type* Alteration

type

# Samples

altered

WES WGS SNP array RNA-Seq

KRAS OG Mut 7 7 (100 %) 7 (100 %) 0 (0 %) 7 (100 %)

TP53 TSG Mut 7 7 (100 %) 7 (100 %) 0 (0 %) 7 (100 %)

HD 0 na na na na

CDKN2A/p16 TSG Mut 3 3 (100 %) 3 (100 %) 0 (0 %) 3 (100 %)

HD 4 4 (100 %) 4** (100 %) 4 (100 %) 4 (100 %)

SMAD4/DPC4 TSG Mut 2 2 (100 %) 2 (100 %) 0 (0 %) 2 (100 %)

HD 4 4 (100 %) 4 (100 %) 4 (100 %) 4 (100 %)

* OG oncogene, TSG tumor suppressor gene, MUT mutation (includes frameshifting indels and point mutations), HD homozygous deletion, WES

whole exome sequencing, WGS whole genome sequencing

** 1 p16 mutation was not reported as an alteration by the standard Illumina pipeline, but visualization of the bam file clearly showed a

homozygous deletion

Familial and sporadic pancreatic cancer 99

123



FPC PDACs. Both cases were single base substitutions

(nonsense mutation with LOH in PA11X and bi-allelic

missense mutations in PA18C). The genes implicated in

pancreatic cystic lesions (GNAS, RNF43, CTNNB1, and

VHL) were not mutated in any FPC case [33, 34]. ATRX,

DAXX, and MEN1 are reported to be mutated in PanNETs,

and ATRX was homozygously deleted in 1 (8 %) FPC case

(PA102C) [27]. DAXX and MEN1 however, were not

mutated in any FPC PDACs, and no clearly deleterious

mutations were identified in ATM, STK11, PRSS1, PALB2,

BRCA2, or SPINK1.

Discussion

We confirm, through our qualitative analysis of the litera-

ture, that most studies do not indicate a large difference in

the age of onset between SPC and FPC. While some studies

do show a slight difference in the age of onset, part of this

difference could be due to ascertainment biases. Some

studies have shown a slightly lower age of onset in FPC

compared to SPC in their cohorts [35–41]. One study even

showed a slightly later onset in their FPC group [42],

however most studies to date have shown a similar age of

onset (Supplemental Table 1) [43–52]. The field would

benefit from a rigorous meta-analysis of FPC versus SPC

age of onset.

Our study also showed that FPC PDACs harbor the same

high prevalence genetic alterations that have been identi-

fied in SPC PDACs (Fig. 2b). One purpose of analyzing

driver data prevalence is to identify ‘‘holes’’, genes with

lower than expected mutation prevalence, under the

hypothesis that a homologue or pathway-related gene could

be defective in the germline. A similar approach led to the

Fig. 3 CDKN2A/p16 homozygous deletion initially missed by WGS

in one case (PA222C). Visualization of WGS reads for p16 gene

region (hg19, chr9:21,951,176-22,102,475) in PA222C sample using

IGV (Broad Institute, version 2.3.31) and Karyostudio (Illumina,

version 1.4). The 2 protein isoforms of p16 (p14(ARF) and

p16(INK4), blue) are shown as well as the adjacent genes, C9orf53

and CDKN2B-AS1 (a). There is clear agreement across the methods

for the consensus 97 kb homozygous deletion boundaries (b). The

homozygous deletion of p16 was not called by the standard Illumina

pipeline for WGS data, despite a clear confirmation of the 50 deletion

by visual inspection, due to reference transcript choice (c). The

homozygous deletion was detected by WES, as evidenced by the lack

of reads (d). RNA-Seq produced no high quality reads that mapped to

this deleted region, but there were reads upstream (MTAP) and

downstream (DMRTA1) of the homozygous deletion (e line break

indicates upstream or downstream reads shows). High density SNP

microarray detected the homozygous deletion (red LogR line drops to

-2.00 and scattered B allele frequencies) and the flanking LOH

regions (red LogR line at -1.00 and B allele frequencies at 0 or 1) (f).
MLPA probes were used to confirm the upstream LOH (black) and

homozygous deletion (red) regions (g)
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elegant discovery of germline MYH mutations in familial

colorectal cancers that were phenotypically similar to

attenuated familial adenomatous polyposis, but lacked

germline APC mutations [53]. From our data, there are no

such ‘‘holes.’’ This finding confirms and builds upon a

previous study that found that familial and sporadic pan-

creatic cancers had similar prevalence of mutations in the

three SPC driver genes they assessed [31].

The late detection of pancreatic cancers contributes to

the lethality of the disease. Much work has been done in

the area of non-invasive early detection tests, using

molecular signatures of pancreatic cancer—notably, the

KRAS codon 12/13 mutation hotspot. Because FPC shares

the SPC molecular signature mutations, these could be

included in early detection tests and the gene panels cur-

rently in development could also be used in familial pan-

creatic kindreds for early detection and molecular relapse.

Assuming that FPC and SPC have a similar age of onset,

how can one inherit a predisposition to a disease without

accelerating its age of onset? Unfortunately, our study did

not provide any great insights into this question and it

remains unanswered. We note, however, that there is

precedent in PDAC, even when the causative genes are

known. For example, in patients with FAMMM syndrome,

p16 germline mutations confer a significantly earlier age of

onset for melanoma, but not for PDAC [20, 49, 54, 55].

These observations support the idea that it is the pancreatic

tissue rather than the gene that is responsible for the curi-

ous lack of age dependence on the presence of hereditary

predisposition genes. The mechanisms underlying this

difference represent an important area for future study as it

may shed light on PDAC pathogenesis in general.

We employed an integrative strategy to more compre-

hensively detect alterations in FPC than previous reports.

Combining WES, WGS, and RNA-Seq allowed for a

greater coverage of gene-coding regions, particularly in

expressed genes (Table 2). The importance of gene tran-

script choice in identifying alterations, such as HDs, in next

generation sequencing data was highlighted by the PA222C

homozygous deletion of p16 initially missed by WGS

analysis, but obvious upon visual inspection of the reads

(Fig. 3). Other than this one example, the methods were

remarkably concordant. High density SNP microarrays

strengths are identifying LOH and large HDs, both hall-

marks of tumor suppressor genes.

We conclude that FPC and SPC undergo similar path-

ogenesis permitting the same gene targets to be used for

early detection and minimal residual disease testing.
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