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Abstract Nibrin (NBN), located on chromosome 8q21 is

a gene involved in DNA double-strand break repair that has

been implicated in the rare autosomal recessive chromo-

somal instability syndrome known as Nijmegen Breakage

Syndrome (NBS). NBS is characterized by specific physi-

cal characteristics (microcephaly and dysmorphic facies),

immunodeficiency, and increased risk of malignancy.

Individuals who are heterozygous for NBN mutations are

clinically asymptomatic, but may display an elevated risk

for certain cancers including, but not limited to, ovarian

and prostate cancer as well as various lymphoid malig-

nancies. In this study, 94 unrelated familial prostate cancer

cases from the University of Michigan Prostate Cancer

Genetics Project (n = 54) and Johns Hopkins University

(n = 40) were subjected to targeted next-generation

sequencing of the exons, including UTRs, of NBN. One

individual of European descent, diagnosed with prostate

cancer at age 52, was identified to have a heterozygous

2117 C [ G mutation in exon 14 of the gene, that results

in a premature stop at codon 706 (S706X). Sequencing

of germline DNA from additional male relatives showed

partial co-segregation of the NBN S706X mutation with

prostate cancer. This NBN mutation was not observed

among 2768 unrelated European men (1859 with prostate

cancer and 909 controls). NBN is involved in double-strand

break repair as a component of the MRE11 (meiotic

recombination 11)/RAD50/NBN genomic stability com-

plex. The S706X mutation truncates the protein in a highly

conserved region of NBN near the MRE11 binding site,

thus suggesting a role for rare NBN mutations in prostate

cancer susceptibility.

Keywords Cancer � Hereditary � Prostate � NBN gene

Introduction

Prostate cancer is the most common non-cutaneous cancer

diagnosed among American men and the second leading

cause of cancer death with an estimated 241,740 new cases

and 28,170 deaths expected in the United States in 2012

[1]. In addition to increasing age and African American

race, family history is also a recognized risk factor for

prostate cancer. The diagnosis of sporadic prostate cancer

cases remains high in the general population, suggesting

that disease risk may be influenced by additional risk fac-

tors such as diet, obesity, and environment. However,

familial aggregation of prostate cancer suggests that in
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some cases, heritable genetic factors may play a key role in

the development of prostate cancer.

Initial segregation analyses of familial prostate cancer

concluded that inherited predisposition was due to the

presence of at least one highly penetrant autosomal domi-

nant prostate cancer predisposition gene [2–4]. Though

subsequent linkage (e.g. HPC1 [5], HPCX [6], HPC20 [7])

and association (e.g. [8, 9, 10]) studies have revealed

several prostate cancer susceptibility loci, these results

have not been strongly replicated nor have they led to the

identification of a causative gene mutation(s) capable of

explaining a large percentage of familial risk. Evidence

from these and other studies suggest that familial prostate

cancer is a complex heterogeneous disease that may be

influenced by the inheritance of less common risk loci

with moderate penetrance. Next-generation sequencing of

candidate gene regions can be useful in identifying rare

variants that may explain prostate cancer risk in a small

number of families.

Nijmegen breakage syndrome (NBS) is a rare autosomal

recessive disorder that is characterized by microcephaly,

immunodeficiency, chromosomal instability and sensitivity

to ionizing radiation [11]. The gene for Nijmegen breakage

syndrome (NBS1), also known as Nibrin (NBN) is located

on chromosome 8q21; mutations in NBN are known to

cause NBS [12]. To date, several NBS-causing mutations

have been identified, the most prevalent being the NBN

founder mutation 657del5 which is estimated to account for

more than 90 % of all mutant alleles [13]. This mutation,

found in exon 6 of NBN, is most often observed in mem-

bers of the Slavic population which includes people from

Poland, Ukraine, and the Czech Republic. Individuals

heterozygous for NBN mutations are clinically asymp-

tomatic however; there have been reports of increased

incidence of various malignancies [14], particularly breast,

prostate, colorectal, and lymphoid cancers (especially

lymphoblastic leukemia and non-Hodgkin’s lymphoma). In

the present study, we discuss the identification of a novel

truncating mutation in NBN as a result of targeted next-

generation sequencing of 94 familial prostate cancer cases

from the University of Michigan and the Johns Hopkins

University.

Materials and methods

Patient selection

University of Michigan prostate cancer genetics project

(UM-PCGP)

UM-PCGP prostate cancer cases were restricted to (1) men

diagnosed with prostate cancer with at least one living first-

or second-degree relative also diagnosed with prostate can-

cer or (2) men diagnosed with prostate cancer at\56 years of

age irrespective of family history. The diagnosis of prostate

cancer was confirmed by medical record review whenever

possible. All subjects provided written informed consent to

participate in the study and all protocol and consent docu-

ments were approved by the University of Michigan Medical

School Institutional Review Board.

Johns Hopkins University (JHU)

Hereditary prostate cancer (HPC) families each had at least

three first-degree relatives affected with prostate cancer.

The diagnosis of prostate cancer was verified by medical

record review. Radical prostatectomy cases were men who

underwent surgery for treatment of prostate cancer at the

Johns Hopkins Hospital (JHH). Controls for this study

consisted of men who underwent screening for prostate

cancer, including measuring serum prostate-specific anti-

gen (PSA) levels and digital rectal examination at JHH,

Johns Hopkins Bayview Medical Center, Johns Hopkins

University Applied Physics Laboratory (Columbia, MD)

and several other locations in the mid-Atlantic area.

Additional inclusion criteria required control subjects to

have knowledge of prostate cancer ancestry by self-report

and lack a prostate cancer diagnosis. For all JHU studies,

research proposals were reviewed and approved by the

institutional review board.

Targeted sequencing of NBN gene

We selected the youngest prostate cancer case with avail-

able DNA from 94 prostate cancer families (40 families

from JHU and 54 from the UM-PCGP) [15]. Seven fami-

lies were of African descent, 2 were of Asian descent,

and the remaining 85 were of European descent. A primer

library was designed for amplification of 8068 base pairs

(bp) of NBN including all coding regions, exons, intron/

exon boundaries, and 50 and 30 untranslated regions. We

used the RainDance RDT 1000 system (RainDance Tech-

nologies, Inc., Lexington, MA) to amplify 3 lg of sheared

genomic DNA from each sample using our primer library.

Purified amplicons were used as templates for sequencing

using the Life Technologies SOLiDTM system version 4.0

fragment library methodologies (Life Technologies Cor-

poration, Carlsbad, CA). Sequence data processing was

performed using Bioscope to align the sequences to

the genomic reference (Build 36, hg18). Variant detection

was performed using SamTools 1.3 [16] and SolSNP 1.1.

We confirmed and tested all variant sequences in family

members using standard Sanger sequencing, capillary

electrophoresis technology and BigDye� Terminator

chemistry (Applied Biosystems, Carlsbad, CA).
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Genotyping of NBN variants

We genotyped identified NBN variants using the Mass-

ARRAY system (Sequenom, San Diego CA).

Results

Analysis of NBN revealed a novel heterozygous 2117

C [ G mutation (Fig. 1) in a man diagnosed with prostate

cancer at age 52 (NM_002485). The nonsense mutation is a

single C to G transversion in exon 14 resulting in a coding

change from TCA to TGA (Serine 706 Stop or S706X).

This mutation, which codes for a truncated NBN protein

that lacks the C-terminal ataxia-telangiectasia mutated

(ATM) recruitment motif, was not present in 93 additional

HPC probands.

The pedigree of the family in which the NBN mutation

was identified is depicted in Fig. 2, and features four

individuals diagnosed with prostate cancer, as well as one

case each of lymphoma, bladder cancer, and melanoma.

Subsequent Sanger sequencing of DNA samples collected

from three additional family members revealed that the

proband’s father, who had been diagnosed with prostate

and bladder cancer, and a brother who remains unaffected

at age 59, were both carriers of the S706X mutation;

however the proband’s paternal uncle with prostate cancer,

diagnosed at age 70, was not a carrier (Fig. 2). Neither

of the affected men who were NBN S706X carriers had

intermediate or high risk prostate cancer based on available

clinical information. DNA samples from the proband’s

paternal aunt with non-Hodgkin’s lymphoma and son with

melanoma were not available for testing.

The NBN S706X mutation was not observed among

1859 men with prostate cancer (JHU radical prostatectomy

cases) and 909 male controls, all of whom describe

themselves to be of European descent. Coding variants that

were detected as a result of targeted next-generation

sequencing of NBN in 85 individuals of European descent

are summarized in Table 1.

Discussion

Targeted next-generation sequencing of the NBN gene

resulted in the identification of a novel nonsense mutation

S706X in one of 94 HPC families. The mutation was

identified in two of three family members diagnosed with

prostate cancer and therefore demonstrated incomplete

segregation with prostate cancer in this pedigree.

A previous study by Cybulski et al. [17] implicated NBN

as a prostate cancer susceptibility gene due to evidence of

increased prostate cancer incidence in homozygous carriers

of the 657del5 Eastern European founder mutation. The

NBN 657del5 mutation was evaluated in Polish individuals

and was found in 9 of 340 unselected patients with prostate

cancer (2.6 %) compared with only 9 of 1500 (0.6 %)

control subjects from the general population (OR = 4.5;

95 % confidence interval (1.7–11.5); p = 0.002) A follow-

up study by Hebbring et al. [18] could not confirm this

hypothesis due to the inability to identify the 657del5

mutation in DNA samples from 293 unaffected members of

prostate cancer families and 697 control samples.

Nibrin or NBN is a component of the hMRE11 (meiotic

recombination 11)/hRad50/NBN protein complex that is

involved in initiating a response to DNA damage and is

linked to DNA double-strand break repair [19]. Full length

NBN consists of 754 amino acids and has a molecular

weight of 95 kDa. The protein has three regions: the

N-terminus, the central region, and the C-terminus

(Fig. 3a). The N-terminal domain contains a fork-head

associated (FHA) domain (amino acids 24–109) and two

breast cancer C-terminus (BRCT) domains (amino acids

114–183 and 221–291) [20–22]. The central region is

composed of consensus sequences for phosphorylation by

ataxia-telangiectasia mutated (ATM) or ataxia-telangiec-

tasia and Rad3-related (ATR) kinases [23]. The C-terminal

region contains an MRE11 (amino acids 665–693) binding

domain [24] and an ATM (amino acids 734–754) recruit-

ment motif [25].

The S706X mutation results in a truncated NBN protein

that lacks the extreme C-terminal ATM recruitment motif

(ARM). The ATM protein kinase plays a role in sup-

pressing chromosomal abnormalities by functioning as

an agent of DNA damage response [26]. Whereas ATR is

activated by single-strand breaks, ATM appears to be

Fig. 1 Sequence chromatogram of exon 14 of NBN in the proband

demonstrating the 2117 C [ G mutation (a) and wild-type sequence

(b). The arrow indicates the location of the base substitution
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Fig. 2 Pedigree segregating the

NBN S706X mutation. The

proband initially selected for

sequencing is indicated by the

arrow. With the exception of

the proband, the ages of

diagnosis have been rounded to

the nearest 5-year interval and

are shown under the subject.

The remaining symbols are

described in the key. NHL
non-Hodgkins lymphoma

Table 1 Summary of NBN variants from targeted next-generation sequencing of 85 prostate cancer cases of European descent

Chr. position GRCh37 Reference Variant dbSNP ID Substitution SNP Type # of individuals MAFa

(%)

ESP [29] MAFa

(%)

90955548 G C Novel S706X Nonsense 1 1.06 0

90955583 A C rs7823648 P694P Synonymous 1 1.06 0.1

90958422 T C rs1061302 P672P Synonymous 50 53.19 31.36

90967711 A G rs709816 D399D Synonymous 54 57.44 35.56

90990479 C G rs1805794 E185Q Missense 46 48.94 31.41

90990534 A G Novel I166I Synonymous 1 1.06 0

90993061 A G rs61754795 A127A Synonymous 3 3.19 0.41

90995019 C T rs1063045 L34L Synonymous 54 57.44 31.5

a MAF minor allele frequency, ESP MAF are listed for individuals of European descent

a

b

Fig. 3 The NBN S706X mutation results in deletion of the ATM

recruitment motif. a The N-terminus of the NBN protein contains a

fork-head associated (FHA) domain and two breast cancer C-terminus

(BRCT) domains. The C-terminal region contains an MRE11 binding

domain (MBD) and an ATM recruitment motif (ARM). b Novel

nonsense mutation S706X affects an amino acid located in the C-

terminus in a highly conserved region of NBN
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specific to double strand breaks (DSBs). The hMRE11/

hRad50/NBN protein complex requires the highly con-

served C-terminal 20 amino acids of NBN (Fig. 3b), which

comprise the ARM, for interaction with ATM [25]. In the

absence of the full-length protein, ATM is not actively

recruited to the site of DNA damage, thus preventing

efficient DSB repair. In addition, though heterozygous

carriers of NBN mutations maintain the ability to produce

full length NBN, the resulting truncation may be sufficient

to promote tumorigenesis by means of haplo-insufficiency.

Note that in the original report by Cybulski et al. [17], the

majority (seven of eight) of the prostate cancer tumors

from men who were heterozygous carriers of the founder

NBN 657del5 mutation demonstrated loss of heterozygosity

suggesting that NBN is acting as a classical tumor sup-

pressor gene to promote cancer growth. Future tumor as

well as in vitro studies and animal models should address

this issue [27].

In the present study, we focused on identifying germline

variants in NBN, an established prostate cancer candidate

gene. Heterozygous carriers of deleterious NBN mutations

have been shown to be at increased risk for several com-

mon malignancies including prostate cancer. Based on its

deletion of the ATM recruitment motif, the S706X muta-

tion is expected to impair the function of the highly con-

served protein complex necessary for DNA damage

response and subsequent DSB repair. Mutations in genes

involved in DSB repair such as BRCA1, BRCA2 [28], and

BRIP1 [29] have also been shown to increase risk of

prostate cancer in some pedigrees. Exome sequencing of

multiplex prostate cancer pedigrees may uncover addi-

tional deleterious variants in DNA repair genes that may

contribute to this common disease. Although these variants

are expected to be rare, knowledge of these mutations may

be useful for risk assessment and may provide unique

insights into potential therapeutic strategies [30].
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