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Abstract. Let d > 0 be a square-free integer, and let Ld be the corresponding Hilbert lattice.
Suppose given a finite-index subgroup Γ of O+(Ld) generated by reflections and containing − id
and let A(Γ) be the algebra of Γ-automorphic forms. It is proved that if the algebra A(Γ) is free,
then d ∈ {2, 3, 5, 6, 13, 21}.
Key words: automorphic form.

1. Basic Definitions

Let A be a ring of principal ideals. A quadratic A-module is a free A-module of finite rank
equipped with a nondegenerate symmetric bilinear form ( · , · ) taking values in the ring A. The
module An , n ∈ N, in which inner product is specified by a Gram matrix S is denoted by (S).
A quadratic module over a field is called a quadratic (vector) space and over the ring Z, a lattice.

Let V be a quadratic space over the field of rational numbers. Then VR = V ⊗Q R and VC =
VR ⊗R C are quadratic spaces over the fields R and C, respectively. Suppose that the signature of
the quadratic space VR equals (2, n), where n � 2.

In the projective space PVC consider the domain

˜Dn = {[z] ∈ PVC : (z, z) = 0, (z, z̄) > 0},
which consists of two connected components. Let Dn denote any of these components. Its complex
dimension equals n. The domain Dn is a Hermitian symmetric space of type IV (in E. Cartan’s clas-
sification). The domain D1 is biholomorphic to the upper half-plane H+ , and D2 is biholomorphic
to the product of two such half-planes.

Let G = O(VR) denote the orthogonal group of the quadratic space VR , and let G+ be its
subgroup of index 2 preserving the domain Dn . The group G+ acts on Dn ineffectively with
ineffectiveness kernel ±1. As is known [7], G+ is the full group of holomorphic automorphisms of
the domain Dn , and its action on Dn is transitive.

1.1. An arithmetic group Γ ⊂ G+ acting discretely on Dn. Choose a lattice L with
rkZ L = dimQ V in the space V . Let O(L) denote the orthogonal group of the lattice L ⊂ V ,
and let Γ = O(L) ∩ G+ . Such a group Γ is called an arithmetic group. It acts on the domain
Dn discretely (but possibly ineffectively). The group Γ always has a finite-index normal subgroup
Γ1 , which acts effectively. As is known, the volume of the quotient Dn/Γ1 (with respect to any
G+-invariant volume form on Dn) is finite. This volume is called the covolume of the group Γ1

(with respect to the chosen volume form on Dn) and denoted by Covol(Γ1). The covolume of the
group Γ is defined as Covol(Γ1)/[Γ : Γ1] (we denote it by Covol(Γ)).

1.2. The algebra A(Γ) of Γ-automorphic forms. Let D•
n denote the cone over the domain

Dn in the space VC . In what follows, it is assumed that if n = 2, then the Witt index of V is less
than 2.

Definition 1.1. An automorphic form of weight k with character χ : Γ → C
∗ with respect to

the group Γ is a holomorphic function f on D•
n satisfying the following conditions:

(i) f(tz) = t−kf(z) for t ∈ C
∗ ;

(ii) f(g(z)) = χ(g)f(z) for g ∈ Γ.
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Remark 1.2. Appropriately choosing a nonzero section of the tautological bundle over the
domain Dn , we can establish a one-to-one correspondence between the homogeneous Γ-invariant
holomorphic functions on the cone D•

n and the holomorphic functions f on Dn such that f(g(z)) =
a(g, z)χ(g)f(z), where g ∈ Γ and a(g, z) is the automorphism factor for Γ.

It is known that if Γ is an arithmetic group, then the Γ-automorphic forms of all nonnegative
weights with trivial character form a finitely generated graded algebra, which we denote by A(Γ).

In what follows (unless otherwise specified) we use the notation introduced above.

2. Results

Suppose that dimQ V = 4 (i.e., n = 2) and the space V is isotropic but has no two-dimensional
isotropic subspaces, i.e., the Witt index of the space V equals 1.

We choose a square-free positive integer d > 1 and consider the lattice L = Ld = U⊕Bd , where

U =

(

0 1
1 0

)

, Bd =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(

2 1

1 (1− d)/2

)

for d ≡ 1 (mod 4),

(

2 0

0 −2d

)

for d ≡ 2, 3 (mod 4).

We denote the group Γ constructed for the lattice Ld by Γd . It is not by accident that we have
chosen this series of arithmetic subgroups. Recall that the real quadratic extension K = Q(

√
d)

with ring of integers Od is associated with the extended Hilbert modular group P̃SL(2,Od) =
Gal(K/Q) � PSL(2,Od), which naturally acts on D2 as a discrete arithmetic group. The group

P̃SL(2,Od) is embedded in Γd [3]. As is known, Γd is a maximal discrete subgroup of G+ (see

Section 1.1) containing P̃SL(2,Od) [12].
At present, a number of examples of arithmetic groups Γ for domains Dn which have free

algebras of automorphic forms have been constructed ([17], [14], [15], [23], [5]). In this paper we
answer the following related question: What are values of d for which Γd can have a finite-index
subgroup Γ′ such that the algebra A(Γ′) is free (for n = 2, this means that A(Γ′) is an algebra of
polynomials in three variables)?

Theorem 2.1. Let Γ′ ⊂ Γd be a finite-index subgroup in Γd containing the element − Id. If
the algebra A(Γ′) is free, then d ∈ {2, 3, 5, 6, 13, 21}.

Corollary 2.2. The algebra A(Γd) is free if and only if d = 2 or 5.

Proof. In [4] it was shown, in particular, that, for the algebra A(Γ) (see Section 1.2) to be free,
it is necessary that the stabilizer Γv of each isotropic vector v ∈ V in the group Γ be generated by
reflections whose mirrors contain this vector. But, as communicated to the author by E. B. Vinberg,
this is not so for the groups Γd with d ∈ {3, 6, 13, 21}.

Consider the cases d = 2 and d = 5. The group P̃SL(2,Od) is embedded in Γd but does not

contain − Id. Adjoining − Id to the subgroup P̃SL(2,Od), we obtain the entire group Γd . Indeed,
the fields Q(

√
2) and Q(

√
5) are one-class and contain a fundamental unit of norm −1; therefore,

the group P̃SL(2,Od) is a maximal arithmetic group acting on the product of two upper planes [3].
But in [15] and [14] it was proved that the algebra of automorphic forms of even weight is free for

the groups P̃SL(2,Od) with d = 2 and d = 5.

3. Methods of Proof

3.1. Reflections. Each nonisotropic vector e ∈ VR determines an orthogonal transformation re
in the group G = O(VR), namely, the reflection in the hyperplane e⊥ , which acts on the vector space

VC by the rule re(x) = x− 2(x,e)
(e,e) e. The reflection re preserves the domain Dn only if (e, e) < 0. In

this case, the projectivization [e⊥ ⊗ C] of the hyperplane e⊥ ⊗ C (which is customarily called the
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mirror of the reflection) intersects Dn in a domain Dn−1 embedded as a totally geodesic complex
submanifold of codimension 1. We refer to this intersection as the mirror of the reflection re in the
domain Dn and denote it by π(re).

If a reflection re preserves a lattice L, then for the vector e we can take a primitive vector of
this lattice. If, in addition, (e, e) = −k, k ∈ N, then the vector e, which is determined up to sign,
is called a k-root of the lattice L.

3.2. The Poincaré–Lelong–Bruinier formula. The complex quadric Qn = {[z] ∈ PVC :
(z, z) = 0} contains a Cartan domain Dn and is a compact symmetric space dual to it.

Consider the restriction to the quadric Qn of the tautological bundle over PVC . Let ˜Ω be a
nondegenerate 2-form representing the first Chern class of this linear bundle over the quadric Qn .

The cohomology class of the restriction of the form ˜Ω to the domain Dn contains a G+ -invariant
2-form Ω. This form Ω can be written explicitly: the domain Dn can be realized as the future
cylinder, i.e., Dn is isomorphic to a connected component of the domain {Z = X + iY ∈ C

n |
Q(Y ) > 0}, where Q is a quadratic form of signature (1, n − 1); then Ω = −ddc log(Q(Y )).

Let ωn = Ωn and ω̃n = ˜Ωn be the corresponding volume forms. It is easy to verify that the
restriction of the form Ωn−1 to the totally geodesic complex hypersurface Dn−1 is the volume
form ωn−1.

The ratio
∫

Dn/Γ
ωn

/ ∫

Qn
ω̃n is called the Mumford–Hirzebruch volume of the quotient Dn/Γ,

or the Mumford–Hirzebruch covolume of the group Γ.
In what follows, we denote the Mumford–Hirzebruch covolume of the group Γ by Covol(Γ).
The main tool in the proof of Theorem 1 is the Poincaré–Lelong–Bruinier formula, which we

write below in the generality needed for our purposes, using the notions and notation of Section 1.
In [10] this formula was obtained under the assumption that the group PΓ acts freely on the

domain Dn (for cocompact groups, this follows from the Poincaré–Lelong formula [21]). However,
it can easily be generalized to the case of any group Γ (see, e.g., [20], where the generalized
Poincaré–Lelong–Bruinier formula was essentially obtained in a special case). Namely, let F be an
automorphic form (with a character), and let div(F ) be a divisor of its zeros on the quotient Dn/Γ.
We set div(F ) =

∑

imiCi , where each Ci is an irreducible divisor. If the weight of the form F
equals K , then

∑

i

mi

ni

∫

Ci

Ωn−1 = K

∫

Dn/Γ
Ωn, (1)

where each ni is the ramification index over the divisor Ci in the ramified covering Dn → Dn/Γ.
Suppose that the divisor of zeros of the form F on the domain Dn is the linear combination

of mirrors πi of reflections in Γ with coefficients mi . We denote the stabilizer of the mirror πi in
Γ by Γπi . In this special case, formula (1) can be rewritten in the following form convenient for
calculations (this was proved, e.g., in [13]):

k
∑

i=1

miCovol(Γπi) = K Covol(Γ).

The summation on the left-hand side is over the representatives {π1, . . . , πk} of the Γ-equivalence
classes of the mirrors of reflections in Γ. The following theorem, which plays an important role in
our considerations, was proved in [9].

Theorem 3.1. If the algebra A(Γ) is free and f1, . . . , fn+1 are its generators of weights
k1, . . . , kn+1 , then there exists a unique (up to proportionality) Γ-automorphic form F of weight

n+
∑n+1

i=1 ki (with a character) such that the divisor of its zeros on the domain Dn is the sum of
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all mirrors of reflections in Γ with multiplicity 1; namely,

F =

∣

∣

∣

∣

∣

∣

∣

∣

∣

k1f̃1 k2f̃2 . . . kn+1f̃n+1

∂f̃1/∂z1 ∂f̃2/∂z1 . . . ∂f̃n+1/∂z1
...

...
. . .

...

∂f̃1/∂zn ∂f̃2/∂zn . . . ∂f̃n+1/∂zn

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

where the f̃i are the images of the generators fi under the bijection mentioned in Remark 1.2 and
z1, . . . , zn are coordinates in the domain Dn .

Corollary 3.2. If the group Γ contains − Id and the algebra A(Γ) is free, then the weight K
of the automorphic form F in Theorem 3.1 is at least 3n+ 2.

Proof. The algebra A(Γ) contains no automorphic forms of odd weight. Indeed, if f is an
automorphic form of odd weight, then condition (ii) in the definition of an automorphic form
implies f(−z) = f(z), and condition (i) implies f(−z) = −f(z). Therefore, the algebra A(Γ) has

n+ 1 generators of even weight. Hence K = n+
∑n+1

i=1 ki � n+ 2(n+ 1) = 3n + 2.

If the algebra A(Γ) is free, then, for the form F in the preceding theorem, the Poincaré–Lelong–
Bruinier formula takes the form

k
∑

i=1

Covol(Γπi) =

(

n+
n+1
∑

i=1

ki

)

Covol(Γ). (2)

3.3. The number K(Γ). Let Γ′ ⊂ Γ be a subgroup of finite index in the group Γ introduced
in Section 1.1 (in particular, Γ′ may coincide with Γ). With every such subgroup we associate the
number

K(Γ′) :=

∑

[π]Covol(Γ
′
π)

Covol(Γ′)
, (3)

where Γ′
π is the stabilizer of the mirror π in Γ′ and the summation in the numerator is over all

Γ′-equivalence classes of the mirrors of all reflections in the group Γ′ . Thus, if the algebra A(Γ′) is
free and k1, . . . , kn+1 are the weights of its generators, then formula (2) takes the form

K(Γ′) = n+

n+1
∑

i=1

ki.

O. V. Shvartsman obtained the following important result.

Lemma 3.3. K(Γ) � K(Γ′).

Proof. Let
∑

[π] denote summation over the Γ-equivalence classes of the mirrors of all reflections

in the group Γ, and let
∑

[π′] denote summation over the Γ′-equivalence classes of the mirrors of

all reflections in Γ. Suppose that the orbit of a mirror π under the action of Γ is partitioned into
s(π) orbits under the action of Γ′ . We denote representatives of these orbits by π1, . . . , πs(π) . Let
us show that if all reflections in Γ belong to the group Γ′ , then K(Γ′) = K(Γ). Clearly, this implies
the lemma. We have Covol(Γ′) = Covol(Γ) · [Γ : Γ′]. Next,

∑

[π′]

Covol(Γ′
π′) =

∑

[π′]

Covol(Γπ′)[Γπ′ : Γ′
π′ ] =

∑

[π]

s(π)
∑

i=1

Covol(Γπ)[Γπi : Γ
′
πi
]

=
∑

[π]

Covol(Γπ)

s(π)
∑

i=1

[Γπi : Γ
′
πi
] = [Γ : Γ′]

∑

[π]

Covol(Γπ).

We have used a general lemma about actions of groups on sets, according to which [Γ : Γ′] =
∑s(π)

i=1 [Γπi : Γ
′
πi
] (see, e.g., Theorem 5.2 in [1]). Comparing the numerators and denominators of the

fractions K(Γ) and K(Γ′), we obtain the required inequality.
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3.4. The strategy of the proof of Theorem 2.1. Applying Corollary 3.2 to the group Γ′ ,
we see that the weight K ′ of the automorphic form F ′ is at least 8 (in the case under consideration,
n = 2). This means that K(Γd) � K(Γ′) = K ′ � 8. Then, estimating the numerator of the fraction
K(Γd) from above and the denominator from below, we conclude that the denominator grows faster
as a function of d. Therefore, for large d, we have K(Γd) < 8. By virtue of Corollary 3.2, the algebra
A(Γ′) cannot be free for such d.

4. Proofs

4.1. Preparatory lemmas.

Kneser’s Theorem [19]. Suppose that a lattice L satisfies the following conditions :
(i) L⊗ R is an isotropic quadratic space of dimension higher than or equal to 3;
(ii) for each prime p, the quadratic module L⊗ Zp has a multiple invariant factor.

Then the class of the lattice L coincides with its genus.

Let d(L) denote the discriminant of the lattice L, and let εp(L) be the Hasse symbol of L over
the ring Zp of p-adic integers. An arbitrary lattice L admits a Jordan decomposition over the ring
Zp: L⊗ Zp = L0 ⊕ pL1 ⊕ p2L2 ⊕ . . ., where the Li are unimodular Zp-modules.

Theorem 4.1. If an even lattice L of signature (2, 2) is such that d(L) = d(Ld) and εp(L) =
εp(Ld) for all prime p, then it is isomorphic to the lattice Ld .

Proof. The invariant factors of the lattice L are 1, 1, 1, and d if d(Ld) ≡ 1 (mod 4) and 1,
1, 2, and 2d if d(Ld) ≡ 0 (mod 4). This means that the class of the lattice L coincides with its
genus (by Kneser’s theorem). Therefore, it suffices to examine the local equivalence of the lattices
L and Ld . For each odd prime p not dividing d(L), the lattice L⊗Zp is unimodular and, therefore,
equivalent to any other unimodular lattice with the same rank and discriminant. For any odd
number p dividing d(L), the lattice L ⊗ Zp has a three-dimensional unimodular component and
a one-dimensional p-component in the Jordan decomposition. There exist precisely four different
lattices over Zp with these properties: (1)⊕(1)⊕(1)⊕(p), (1)⊕(1)⊕(1)⊕(rp), (1)⊕(1)⊕(r)⊕(p),
and (1)⊕(1)⊕(r)⊕(rp), where r is a fixed quadratic nonresidue modulo p. For the first two lattices,
we have εp(L) = 1, and for the other two, εp(L) = −1. Since the Hasse symbols are fixed, there
remains only one of the two pairs of lattices. Since the lattices in the same pair have different
discriminants, each pair contains only one lattice satisfying the required conditions.

It remains to check equivalence over Z2 .
Let d(L) ≡ 1 (mod 4). The lattice L is even; therefore, the lattice L⊗ Z2 has the form U ⊕U

or U ⊕
(

2 1
1 2

)

. The discriminants of these lattices differ modulo 8.

Let d(L) ≡ 0 (mod 4). Since d(L) = d(Ld), it follows that d(L) = 4d, where d ≡ 3 (mod 4) or
d ≡ 2 (mod 4). Consider the former case. The Jordan decomposition of L has the form L⊗ Z2 =
L0⊕2L1 , where rkL0 = rkL1 = 2. The lattice L1 cannot be even, because if it were, then we would
have d ≡ 1 (mod 4). This means that L⊗Z2 has the form U⊕(2u1)⊕(2u2), where u1, u2 ∈ Z

∗
2/(Z

∗
2)

2

and u1u2 ≡ 1 (mod 4), because the lattice

(

2 1
1 2

)

⊕ (2u′1)⊕ (2u′2), where u′1, u′2 ∈ Z
∗
2/(Z

∗
2)

2 and

u′1u
′
2 ≡ 1 (mod 4), is obtained from the lattice under consideration by applying sign walking ([11],

[8]). Considering all possible pairs (u1, u2) modulo 8, we see that the lattices under examination
have different discriminants and Hasse symbols.

Consider the latter case. Let d(L) = 8d′ , where d′ is an odd number. The lattice L⊗Z2 can be

of the form U ⊕ (2u) ⊕ (−4ud′) or of the form

(

2 1
1 2

)

⊕ (2u′)⊕ (12u′d′), where u, u′ ∈ Z
∗
2/(Z

∗
2)

2 .

The equivalence of these lattices is verified by sign walking. Considering all possible values of u
modulo 8 for each fixed d′ modulo 8, we obtain two lattices with different Hasse symbols. The
result is presented in Table 1.
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Table 1

d′ (mod 8) 2-adic ε2(L)
symbol of L

1
1+2
II [2+4+]0 −1

1+2
II [2−4−]0 1

−1
1+2
II [2+4+]2 1

1+2
II [2+4+]−2 −1

3
1+2
II [2+4−]−2 −1

1+2
II [2+4−]2 1

−3
1+2
II [2+4−]4 1

1+2
II [2−4+]4 −1

4.2. Reflections. It is well known [2] that a vector e is a primitive root of a lattice L if and
only if it can be represented as a direct summand in this lattice or in its sublattice of index 2. In
the former case, we refer to this root as a root of type I and in the latter, as a root of type II.

Let e be a primitive root of type II in a given lattice Ld . We set (e) = Ze, Le = Ld ∩ e⊥ , and
Γe = O+(Le). An important role in what follows is played by the following theorem, whose proof
will be postponed until Section 4.4.

Theorem 4.2. Let e be a root of a lattice Ld . Then the lattice Le is uniquely (up to isomor-
phism) determined by the type and the square of e.

Given a lattice Ld , consider the set M of all lattices L in the pseudo-Euclidean space E2,2(R)
of signature (2, 2) which contain the lattice (e)⊕ Le as a sublattice of index 2 and are isomorphic
to Ld .

Let L∨ denote the lattice dual to a lattice L ∈ M , and let pre⊥L be the projection of L on the
subspace e⊥ . Clearly, Le ⊂ pre⊥L ⊂ (Le)∨ . It is also easy to check that pre⊥L/L

e = preL/(e) =
Z/2Z. We denote the subgroup of 2-torsion elements in the discriminant group disc(L) = L∨/L of
the lattice L by disc(L)(2) .

Definition 4.3. We refer to the nontrivial element [xL] of the group pre⊥L/L
e as the gluing

element (and denote it simply by [x], when it is clear which lattice is considered).

Clearly, the gluing element belongs to the group disc(Le)(2) and uniquely determines the lattice

L. Indeed, L = x + 1
2e+ (e) ⊕ Le , where x is any representative of [x] ∈ disc(Le)(2) in the lattice

pre⊥L. In what follows, given any such representative x, we refer to the vector x+ 1
2e as a gluing

vector.
Extending each element γ ∈ Γe to an automorphism of the space E2,2(R) by setting γ(e) = e,

we obtain a natural action of the group Γe on the set M . This action induces the action of the
group Γe on the set of gluing elements [x] in the group disc(Le)(2) .

Lemma 4.4. There exists a bijection between the Γd-equivalence classes of k-roots e of type II
in the lattice Ld and the Γe-equivalence classes of gluing elements in the group disc(Le)(2) .

Proof. Let e and e′ be two k-roots in the lattice Ld . By Theorem 4.2 the three-dimensional
lattices Le and Le′ are isomorphic, and hence there exists an isomorphism g ∈ O+(E2,2(R)) taking

the direct sum (e′)⊕Le′ to the direct sum (e)⊕Le . Thus, gLd = L ∈ M . Clearly, the roots e and
e′ are Γd-equivalent in the lattice Ld if and only if there exists an element γ ∈ Γe which takes the
lattice gLd to the lattice Ld , or, equivalently, the gluing element [xL] to [xLd

] (the composition
γ ◦ g serves as an isomorphism conjugating the roots e and e′ in the lattice Ld).

Lemma 4.5. Let L ∈ M . An automorphism g ∈ Γe can be extended to an automorphism
g′ ∈ O+(L) if and only if it acts identically on the gluing element [xL] of the lattice L.
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Proof. Any automorphism g′ ∈ O+(L) preserving the lattice Le preserves also the element [xL].
Conversely, the required automorphism g′ ∈ O+(L) is defined by the rule g′(e) = e, g′|Le = g.

Let Nk denote the number of gluing elements [xL] in the group disc(Le)(2) , where e is a k-root
of type II.

Remark 4.6. This number is well defined by virtue of Theorem 4.2.

Lemma 4.7. The numerator of the fraction K(Γd) equals

1

2

∑

k
(e,e)=−k

e is of type II

Covol(Γe) ·Nk +
1

2

∑

k
(e,e)=−k

e is of type I

Covol(Γe).

Proof. Note that if e is a root of type I in the lattice Ld and πe is the corresponding mirror
of reflections, then Covol(Γe) = 2Covol((Γd)πe) (because Γe is a subgroup of index 2 in the group
(Γd)πe ). Therefore,

1

2

∑

k
(e,e)=−k
e type I

Covol(Γe) =
∑

[πe]
e type I

Covol((Γd)πe).

It remains to prove the lemma for roots of type II. Let e be a k-root of type II in the lattice Ld , and
let x be the corresponding gluing element. Denoting summation over the Γe-equivalence classes of
gluing elements in disc(Le)(2) by

∑

[x], we write
∑

[πe]
e type II

Covol((Γd)πe) =
∑

k

∑

[πe]
(e,e)=−k
e type II

Covol((Γd)πe) =
∑

k
(e,e)=−k
e type II

∑

[x]

Covol((Γd)πe);

the second equality follows from Lemma 4.4.
Consider the map φ from (Γd)πe to Γe which takes each element g ∈ (Γd)πe to its restriction

to the lattice Le . Its image im(φ((Γd)πe)) consists of automorphisms which extend from Γe to Γd ,
and ker(φ) = Z/2Z (the kernel consists of id and the reflection in the vector e). By Lemma 4.5 we
have φ((Γd)πe) = Γe

x , where Γe
x denotes the subgroup of Γe identically acting on the gluing element

x. Thus, [Γe :φ((Γd)πe)] = [Γe : Γe
x], and [Γe : Γe

x] is the number of points in the orbit of the gluing
element x under the action of the group Γe . Thus,

∑

k
(e,e)=−k

e is of type II

∑

[x]

Covol((Γd)πe) =
∑

k
(e,e)=−k

e is of type II

∑

[x]

[Γe : Γe
x]

2
Covol(Γe)

=
∑

k
(e,e)=−k

e is of type II

Covol(Γe)
∑

[x]

[Γe : Γe
x]

2
=

1

2

∑

k
(e,e)=−k

e is of type II

Covol(Γe) ·Nk.

We have used the equality Nk =
∑

[x][Γ
e : Γe

x]. Indeed, the right-hand side of this equality is the

sum of the lengths of orbits of the group Γe over all orbits of gluing elements under the action of
Γe. Clearly, this sum equals the number on the left-hand side, because Nk is the cardinality of the
set of gluing elements.

4.3. Possible types of the lattices Le. In this section we describe all possible types of the
lattices Le . Let ν2(L) denote the maximum power of 2 dividing the determinant d(L) of the Gram

matrix of L. We set de := −d(Le)/2ν2(L
e) .

Lemma 4.8. (a) If d ≡ 1 (mod 4), then ν2(L
e) = 1.

(b) If d ≡ 3 (mod 4), then ν2(L
e) ∈ {1, 2, 3}.

(c) If d ≡ 2 (mod 4), then ν2(L
e) ∈ {1, 2, 3, 4}.



44

(d) The number ν2((e)) is uniquely determined by d (mod 4) and ν2(L
e).

Proof. Note that d(Ld) · [Ld :L
e⊕ (e)]2 = d(Le) · (e, e). It follows that ν2(Le) = ν2(Ld)−ν2((e))

for roots of type I and ν2(L
e) = ν2(Ld)− ν2((e)) + 2 for roots of type II. Using these relations, we

complete Table 2, whose last row contains all values of ν2(L
e) possible a priori.

Table 2

d (mod 4) 1 3 2

ν2(Ld) 0 2 3

Inv. set 1, 1, 1, d 1, 1, 2, 2d 1, 1, 2, 2d

ν2((e)) 1 1 1 1 2 2 1 1 2 2 3 3

Type of e I II I II I II I II I II I II

ν2(L
e) −1 1 1 3 0 2 2 4 1 3 0 2

In completing the fourth row, we used the fact that (e, e) divides twice the maximum invariant
factor of Ld .

The lattice Le is even; therefore, ν2(L
e) � 1. This implies assertions (a), (b), and (c) of the

lemma.
Let us prove (d). We must show that there exist no roots e for which ν2((e)) = 3. Note that

such a root can exist only if d ≡ 2 (mod 4). Suppose that e = (x, y, z, t) is a primitive root of
the lattice Ld and ν2((e)) = 3. Writing the condition (e, e) = −4 d

de
in coordinates, we obtain

2xy + 2z2 − 2dt2 = −4 d
de
. Moreover, 2e

(e,e) ∈ L∨
d . Considering the inner products ( 2e

(e,e) , ei) with the

basis vectors ei of the lattice Ld , we obtain 2d
de

∣

∣x, 2d
de

∣

∣y, and d
de

∣

∣z . Setting x = 2d
de
x′ , y = 2d

de
y′ , and

z = d
de
z′ , substituting these expressions into the equation of the squared vector e, and reducing

both sides by 2d
de
, we obtain 4d

de
x′y′ + d

de
z′2 − det

2 = −2. Since the number de is odd, it follows that

2 | t, i.e., all coordinates of the root e are even. This contradicts the assumption that the root e is
primitive.

Let e be a root of type II in the lattice Ld . All possible invariant factors of the lattices Le and
the corresponding discriminant groups disc(Le ⊗ Z2) are listed in Table 3.

Table 3

d (mod 4) 1 3 2

ν2(L
e) 1 2 3 3 4

Inv. set Le 1, 1, 2de 1, 1, 4de 2, 2, 2de 2, 2, 2de 2, 2, 4de
disc(Le ⊗ Z2) Z/2Z Z/4Z (Z/2Z)3 (Z/2Z)3 (Z/2Z)2 × Z/4Z

Comments to Table 3. The invariant factors in the first two columns are found by using
Lemma 4.8 and the fact that the lattice Le is even. It also follows from this fact that the invariant
factors in the third and fourth columns cannot be 1, 2, 4de . If the invariant factors of Le are 1,
1, 8de , then the group disc(Le ⊗Z2) ∼= Z/8Z has a unique gluing element of order 2. This element
corresponds to a gluing vector with noninteger square in the case d ≡ 3 (mod 4) and with odd
square in the case d ≡ 2 (mod 4). The invariant factors in the fifth column cannot be 1, 4, 4de
or 1, 2, 8de , because the lattice Le is even. Suppose that they are 1, 1, 16de . This means that
disc(Le ⊗ Z2) ∼= Z/16Z. We obtain a contradiction, because the only element of order 2 in this
group corresponds to a gluing vector with noninteger square. The discriminant groups disc(Le⊗Z2)
are naturally determined by the sets of invariant factors of the lattices Le ⊗ Z2 .

Remark 4.9. A similar argument proves that if e is a root of type I in the lattice Ld , then
the invariant factors of the lattice Le are 1, 1, 2ν2(L

e) .

4.4. Proof of Theorem 4.2. It follows from the proof of Lemma 4.8 that the quantity d(Le)
is determined by the type and the square of the root e. The Hasse symbols of the lattice Le
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are determined from the well-known relation εp(Ld) = εp(L
e) · ((e, e), d(Le))p [6], where ( · , · )p

is the p-adic Hilbert symbol. The invariant factors of the lattices Le are given in Table 3 and
Remark 4.9. In all cases under consideration, the class of the lattice Le coincides with its genus
by virtue of Kneser’s theorem. As in Theorem 4.1, it suffices to examine the equivalence of the
2-adic completions of the lattices Le with fixed discriminants and Hasse symbols (see the proof of
Theorem 4.1).

Let ν2(L
e) = 1. In this case, two lattices are possible: U ⊕ (2de) and

(

2 1
1 2

)

⊕ (−6de); their

equivalence is verified by using sign walking.

Let ν2(L
e) = 2. Again, there are two possible lattices, U ⊕ (4de) and

(

2 1
1 2

)

⊕ (−12de), but

they have different Hasse symbols.

In the case ν2(L
e) = 3, the two possible lattices

(

0 2
2 0

)

⊕ (2de) and

(

4 2
2 4

)

⊕ (−6de) again

have different Hasse symbols.
Finally, consider the case ν2(L

e) = 4. Suppose that the Gram matrix of the lattice Le ⊗ Z2

is twice the matrix of an even lattice, i.e., has the form

(

0 2
2 0

)

⊕ (4de) or

(

4 2
2 4

)

⊕ (−12de).

Applying sign walking, we see that these lattices are equivalent. Considering all elements of order 2
in the group disc(Le ⊗Z2), we see that they correspond to a gluing vector with noninteger square.

Therefore, the Gram matrix of the lattice Le⊗Z2 is twice the matrix of an odd lattice. Thus, the
lattice Le⊗Z2 has the form (2u1)⊕(2u2)⊕(4deu1u2), where u1, u2 ∈ Z

∗
2/(Z

∗
2)

2 . Note that the Hasse
symbol is uniquely determined by the triple (u1, u2, de) modulo 8. Considering all possible triples
(u1, u2, de) modulo 8, we see that the lattice Le is uniquely determined by the pair (de, ε2).

4.5. The number of gluing vectors for various types of the lattices Le. In this section
e denotes a k-root of type II in the lattice Ld .

Lemma 4.10. Let e be a primitive root of the lattice Ld such that ν2((e)) = 1 and ν2(L
e) = 3.

Then

Le ⊗ Z2
∼=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(

0 2

2 0

)

⊕ (2de) for de ≡ 1 (mod 4),

(

4 2

2 4

)

⊕ (−6de) for de ≡ 3 (mod 4).

Proof. Note that

ε2(Ld) = (2, 2d)2 =

{

1 if d ≡ −1 (mod 8),

−1 if d ≡ 3 (mod 8).

On the other hand, ε2(Ld) = ε2((e)⊕Le) = ε2(L
e) ·(−8de, (e, e))2 . Considering all possible pairs

(de,
1
2 (e, e)) modulo 8, we see that ε2(L

e) = 1. Calculating the Hasse symbols ε2 of the lattices
(

0 2
2 0

)

⊕ (2de) and

(

4 2
2 4

)

⊕ (−6de), we obtain the required expression.

Let N ′
k denote the upper bound for the number Nk of gluing vectors.

Lemma 4.11. The following table contains all possible triples (d (mod 4), ν2(L
e), N ′

k).

d (mod 4) 1 3 2

ν2(L
e) 1 2 3 3 4

N ′
k 1 1 1 or 3 1 or 3 2

If ν2(L
e) = 3 and Le ⊗ Z2

∼=
(

0 2
2 0

)

⊕ (2de), then N ′
k = 1; otherwise, N ′

k = 3.
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Proof. Clearly, Nk � |disc(Le ⊗ Z2)(2)|, but, generally, not all elements of disc(Le ⊗ Z2)(2)
are gluing elements. The proof of the lemma reduces to considering all elements of the group
disc(Le ⊗ Z2)(2) for lattices Le ⊗ Z2 of various types. All discriminant groups disc(Le ⊗ Z2) are
given in Table 3. For example, consider the third column of this table. According to Lemma 4.10,

we have Le ⊗ Z2
∼=
(

0 2
2 0

)

⊕ (2de) if de ≡ 1 (mod 4) and Le ⊗ Z2
∼=
(

4 2
2 4

)

⊕ (−6de) if de ≡ 3

(mod 4). Considering all elements of the group disc(Le ⊗ Z2)(2) , we see that the gluing elements

are [x] = (1, 1, 1) ∈ (Z/2Z)3 if de ≡ 1 (mod 4) and [x] = (1, 0, 1), [x] = (1, 1, 1), [x] = (0, 1, 1) ∈
(Z/2Z)3 if de ≡ 3 (mod 4). The remaining cases are considered in a similar way.

Remark 4.12. It follows from Theorem 4.1 that N ′
k = Nk .

4.6. Calculation of covolumes. We use Siegel’s formula for calculating the covolume
Covol(O+(L)) for a given lattice L (which is the only one of its kind) of signature (2, n) ([22],
[13]):

Covol(O+(L)) = 4|d(L)|(n+3)/2
n+2
∏

k=1

π−k/2Γ(k/2) ·
∏

p

ap(L)
−1, (4)

where the ap(L) :=
1
2 limr→∞ p−r(n+2)(n+1)/2|O(L⊗Z/prZ)| are the local volumes of the orthogonal

group of the lattice L.

Let L(s,D) = L(s, χD) =
∏

p

(

1− χD(p)
ps

)−1
be the Dirichlet L-function with character χD(p) =

(

D
p

)

, where ( ·
· ) is the Kronecker–Jacobi symbol.

Lemma 4.13. Let ρ(d) be the number of odd prime divisors of the number d.

(a) If d ≡ 1 (mod 4), then Covol(Γd) =
d3/2

2ρ(d)+4·3π2L(2, d).

(b) If d ≡ 2, 3 (mod 4), then Covol(Γd) =
d3/2

2ρ(d)+2·3π2L(2, 4d).

Proof. Formulas for calculating local volumes can be found, e.g., in [18]. The local volumes
ap(Ld), p �= 2, do not depend on d modulo 4; they are given by

ap(Ld) =

{

2p(1 − p−2) if p | d,
(1− p−2)(1 − (dp)p

−2) if p � d.

The local volumes a2(Ld) are given by

a2(Ld) =

⎧

⎪

⎨

⎪

⎩

24(1− 2−2)(1 − (d2 )2
−2) if d ≡ 1 (mod 4),

27(1− 2−2) if d ≡ 3 (mod 4),

28(1− 2−2) if d ≡ 2 (mod 4).

Substituting the values of local volumes into (4), we obtain the required result.

Lemma 4.14. The covolume Covol(Γe) does not exceed C1 ·
∏

p|de
p+1
2 , where C1 = 1/12 if

ν2(L
e) = 1 and C1 = 1/8 if ν2(L

e) ∈ {2, 3, 4}.
Proof. The local volumes ap(L

e), p �= 2, do not depend on ν2(L
e) and are given by

ap(L
e) =

{

2p(1− p−2)(1± p−1)−1 if p | de,
(1− p−2) if p � de.

The local volumes a2(L
e) are given by

a2(L
e) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

24(1− 2−2) if ν2(L
e) = 1,

26(1− 2−2)(1 ± 2−1)−1 if ν2(L
e) = 2,

28(1− 2−2)(1 ± 2−1)−1 if ν2(L
e) = 3,

29, if ν2(L
e) = 4.
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The last equality follows from the isomorphism Le ⊗ Z2
∼= (2u1)⊕ (2u2)⊕ (−4u1u2de) (which can

be derived from the proof of Theorem 4.2).
Substituting the values of local volumes into (4), we obtain the required result (the covolume

Covol(Γe) is maximum when all signs are pluses).

Lemma 4.15. Let Ie be the set of odd primes dividing de = −d(Le)/2ν2(L
e) and such that, for

each p ∈ Ie , the unimodular component L0 of the Jordan decomposition of the lattice Le ⊗ Zp is

nonisomorphic to any lattice of the form

(

0 n
n 0

)

, where n ∈ N (recall that Le ⊗ Zp = L0 ⊕ pL1

and rkL0 = 2). Then Covol(Γe) � C1
∏

p∈Ie
p−1
2

∏

p 	∈Ie
p+1
2 = C1

∏

p|de
p+1
2

∏

p∈Ie
1−p−1

1+p−1 , where the

constant C1 is the same as in Lemma 4.14.

Proof. We must choose the sign in the formula ap = 2p(1 − p−2)(1 ± p−1)−1 for p ∈ Ie . As

shown in [18], the plus sign corresponds to the case where the lattice L0 has the form

(

0 n
n 0

)

for

some n ∈ N. Thus, by assumption, we choose minus. Substituting the values of local volumes into
(4), we obtain the required relation.

Note that the bound for the covolume Covol(Γe) under the conditions of the preceding lemma

differs from that in Lemma 4.14 by a factor of Se :=
∏

p∈Ie
1−p−1

1+p−1 . We will use this coefficient in

Section 4.9.

Lemma 4.16. If d = 3 (mod 4), e is a primitive root of the lattice Ld such that ν2((e)) = 1

and ν2(L
e) = 3, and de = 3 (mod 4), then Covol(Γe) � 1

24

∏

p|de
p+1
2 .

Proof. Note that all local volumes of the lattice Le for odd p are the same as in Lemma 4.14.

It follows from Lemma 4.10 that Le ⊗ Z2
∼=
(

4 2
2 4

)

⊕ (−6de). Applying formulas for calculating

local volumes given in the book [18], we obtain a2(L) = 28(1−2−2)(1−2−1)−1 . Substituting values
of local volumes into (4), we obtain the required relation.

4.7. Estimates for the numerator and denominator of K(Γd). Suppose that d =
p1 · · · pρ(d) or d = 2p1 · · · pρ(d) = 2d′ , where the pi are different odd primes and 3 � p1 < · · · < pρ(d)
(if d = 2d′ , then the set {pi}i may be empty).

Lemma 4.17. The denominator of K(Γd) is not smaller than Cd3/2 , where C = 1
2ρ(d)+4·45 if

d ≡ 1 (mod 4) and C = 1
2ρ(d)+2·45 if d ≡ 2 (mod 4) or d ≡ 3 (mod 4).

Proof. Note that L(s, χ) =
∏

p

(

1 − χ(p)
ps

)−1 �
∏

p(1 + p−s)−1 =
∏

p(1 − p−2s)−1(1 − p−s) =

ζ(2s)/ζ(s). The first inequality holds because χ(p) ∈ {±1, 0} for all p and each multiplier attains
its minimum at χ(p) = −1. Thus, L(2, χ) � ζ(4)/ζ(2) = π2/15. The required assertion now follows
from Lemma 4.13.

Lemma 4.18. The numerator of K(Γd) is not greater than C2
∏ρ(d)

i=1
pi+3
2 , where C2 = 1/24 if

d ≡ 1 (mod 4), C2 = 1/6 if d ≡ 3 (mod 4), and C2 = 7/24 if d ≡ 2 (mod 4).

Proof. Let us fix the type of a root e and ν2((e)). Substituting the estimates of the covolume
Covol(Γe) obtained in Lemma 4.14 into the numerator of K(Γd) for each root e, we obtain

∑

k
(e,e)=−k

Covol(Γe) = C1

∑

{i1,...,im}
⊆{1,...,ρ(d)}

m
∏

j=1

pij+1

2
= C1

ρ(d)
∏

i=1

(

pi+1

2
+ 1

)

= C1

ρ(d)
∏

i=1

pi+3

2
.

Substituting the bounds for the maximum number of gluing vectors given in Lemma 4.11 for all
possible pairs (e, d(Le)) and all d modulo 4 into the expression in Lemma 4.7, we obtain the
required estimates.

Consider the case d ≡ 3 (mod 4) in detail (the cases d ≡ 1 (mod 4) and d ≡ 2 (mod 4)
are similar). If a root e is such that ν2(L

e) = 3, then there are two possible cases: Le ⊗ Z2
∼=
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(

0 2
2 0

)

⊕ (2de) and Le ⊗ Z2
∼=
(

4 2
2 4

)

⊕ (−6de). By virtue of Lemma 4.11, we have N ′
k = 1 in

the former case and N ′
k = 3 in the latter. But in the latter case, we also have C1 � 1/24 (by

Lemma 4.16). Therefore, the contribution of each of these terms to the numerator of K(Γd) is at

most C1 ·N ′
k

∏

pj |de
pj+1
2 = 1

8

∏

pj |de
pj+1
2 . According to Lemma 4.7, the numerator of K(Γd) does

not exceed 1
2

(

1
12 +

1
8 + 1

8

)∏ρ(d)
i=1

pi+3
2 = 1

6

∏ρ(d)
i=1

pi+3
2 .

4.8. Proof of Theorem 2.1. Let ˜K(Γd) denote the upper bound for K(Γd) obtained by using
Lemmas 4.17 and 4.18. It is easy to check that the following assertions hold.

Remark 4.19. If ˜K(Γd) < 8 for k = k0 and any k0-tuple (p1, . . . , pk0) of odd primes, then
this inequality holds also for any k > k0 and any k-tuple (p1, . . . , pk) of odd primes.

Remark 4.20. If ˜K(Γd) < 8 for an m-tuple (p1, . . . , pm), then this inequality remains valid
under the replacement of one of the numbers pi by pj > pi .

Proof of Theorem 2.1. Suppose that the number d is odd. It follows from Lemmas 4.17
and 4.18 that

K(Γd) � ˜K(Γd) = 30

ρ(d)
∏

i=1

(pi + 3)

/ ρ(d)
∏

i=1

p
3/2
i .

We will consider k-tuples of increasing odd primes and show that K(Γd) < 8 for all d �∈
{2, 3, 5, 6, 13, 21} (see Section 3.4).

For k = 4, the least k-tuple is (3, 5, 7, 11), for which we have ˜K(Γd) < 8. It follows from
Remark 4.19 that K(Γd) < 8 for all d divisible by at least four different odd primes.

Suppose that k = 3. Note that ˜K(Γd) < 8 for the triples (5, 7, 11), (3, 7, 11), and (3, 5, 17) and
all triples majorizing them. The remaining triples have the form (3, 5, x), where x < 17. Therefore,
in the case k = 3, the inequality K(Γd) � 8 can hold only for d ∈ {105, 165, 195}.

In the case k = 2, for the pairs (7, 11), (5, 13), and (3, 29) and all pairs majorizing them, we

have ˜K(Γd) < 8. There remain the pairs (5, 7), (5, 11), and (3, x), where x � 23. Thus, in the case
k = 2, the inequality K(Γd) � 8 can hold only for d ∈ {15, 21, 33, 35, 39, 51, 55, 57, 69}.

Finally, consider the case k = 1. A simple exhaustive search shows that ˜K(Γd) � 8 only for
d ∈ {3, 5, 7, 11, 13, 17}.

For even d, it can be verified in a similar way that ˜K(Γd) � 8 only for d ∈ {210, 66, 42, 30, 14, 10,
6, 2}.

Note that, instead of the bound of Lemma 4.17 (which is convenient for general calculations)
for the denominator of K(Γd), we can use the exact value given by Lemma 4.13. Substituting the
values of the L-function L(2, d) or L(2, 4d) into the denominator for all remaining numbers d,

we see that ˜K(Γd) < 8 for d ∈ {210, 195, 165, 105, 69, 66, 57, 55, 51, 42, 39, 33, 17, 14}. In the next
section we show that K(Γd) < 8 for d ∈ {35, 30, 15, 11, 10, 7}, which completes the proof of the
theorem.

4.9. Exceptional cases. In Lemma 4.18 we estimated the numerator of K(Γd) under the
assumption that all theoretically possible roots of the lattice Ld exist and each of them makes the
maximum possible contribution to the numerator of the fraction K(Γd). In this section we improve
this estimate by refining the description of the roots and the corresponding covolumes.

Lemma 4.21. Let d ≡ 1 (mod 4). For a vector e to be a k-root of the lattice Ld , it is necessary
that (dep ) = 1 for each odd p dividing k .

Proof. Suppose that e = (x, y, z, t) is a primitive root of the lattice Ld . Let k = 2k′ , where k′ is
odd. Writing the condition (e, e) = −2k′ in coordinates, we obtain 2xy+2z2+2tz+ 1−d

2 t2 = −2k′ .
Moreover, 2e

(e,e) ∈ L∨
d . Considering the inner products ( 2e

(e,e) , ei) with the basis vectors ei of the

lattice Ld , we see that k′|x, k′|y, and k′|(2z + t). Setting x = k′x′ , y = k′y′ , and 2z = k′t′ − t,
substituting these expressions into the equation for the squared vector e, reducing both sides by
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k′ , and multiplying by 2, we obtain 4k′x′y′ + k′t′2 − det
2 = −4. Considering this relation modulo

each p dividing k′ , we obtain the required result.

Remark 4.22. A similar argument shows that if e is a root of the lattice Ld and d ≡ 2, 3
(mod 4), then the congruence 2ν2(d)det

2 ≡ ν2((e)) (mod p) has a solution for each prime p dividing
the number d

2ν2(d)de
.

Lemma 4.23. Let d ≡ 3 (mod 4), and let e be a primitive k-root of type I in the lattice Ld .
If 1

2k is odd, then 1
2k ≡ 3 (mod 4).

Proof. Considering all pairs (12k, de) (mod 8), we see that the Conway codes of the lattices

Ld ⊗ Z2 and U ⊕ (2de)⊕ (−k) coincide if and only if 1
2k ≡ 3 (mod 4).

Lemma 4.24. For d ∈ {35, 30, 15, 11, 10, 7}, K(Γd) < 8.

Proof. In Lemma 4.18 we estimated the numerator of K(Γd), assuming that the lattice Ld

may have any root e whose square is a divisor of twice an invariant factor of Ld (except roots for
which ν2((e)) = 3, whose nonexistence was shown in the proof of assertion (d) of Lemma 4.8)).
However, Lemma 4.21 and Remark 4.22 imply that, for the values d in the first row of Table 4,
there exist no roots e whose squares are given in the second row.

Table 4

d 35 30 21 15 11 10 6 3
(e, e) −10, −14, −28, −140 −30, −20, −12 −14 −60, −10, −6 −44 −10 −6 −12

It follows from Lemma 4.23 that, for d ∈ {35, 15, 11, 7, 3}, the lattice Ld has no 2-roots of
type I.

The absence of the roots e mentioned above means that the bound for the numerator of K(Γd)
can be decreased by the contribution of the corresponding summands. This proves the assertion of
the Lemma for d ∈ {35, 30, 11, 10}.

Let us apply Lemma 4.15 for the remaining values d. Considering the divisor de for each pair
(d, (e, e)), we check that the conditions of Lemma 4.15 hold and complete the third row of Table 5

(the fourth row is obtained directly from the third, because Se =
∏

p∈Ie
1−p−1

1+p−1 ).

Table 5

d 21 15 7 3

(e, e) −2 −2 −20 −4 −4 −2

Ie {3, 7} {3} {3} {5} {7} {3}
Se 3/8 1/2 1/2 2/3 3/4 1/2

According to Lemma 4.15, for each pair (d, (e, e)), the summand Covol(Γe) is bounded above

by the number SeC1
∏

p|de
p+1
2 (rather than by C1

∏

p|de
p+1
2 , as in Lemma 4.14). Decreasing the

contribution of the corresponding summands to the numerator of K(Γd), we obtain the assertion
of the lemma for the remaining values d.

Remark 4.25. The calculations performed in the proof of Lemma 4.24 yield an upper estimate
of K(Γd) for the remaining values d.

d 21 13 6 5 3 2
K(Γd) � 8 � 8 � 10 � 20 � 14 � 14

In particular, if d ∈ {13, 21} and Γ′ is a subgroup of Γd not containing some mirrors of reflections
in the group Γd , then the algebra A(Γ′) cannot be free.

Acknowledgments

The author thanks O. V. Shvartsman for setting the problem and many useful discussions, ideas,
suggestions, and comments. The author is also grateful to E. B. Vinberg for valuable remarks and



50

comments, which have led to a number of simplifications and helped to significantly improve the
initial text of the paper.

References

[1] O. V. Bogopol′skii, Introduction to Group Theory [in Russian], Institut Komp′yuternykh
Issledovanii, Moscow–Izhevsk, 2002.

[2] E. B. Vinberg, “Absence of crystallographic groups of reflections in Lobachevskii spaces of
large dimension,” Trudy Moskov. Mat. Obshch., 47 (1984), 68–102; English transl.: Trans.
Mosc. Math. Soc., 1985 (1985), 75–112.

[3] E. B. Vinberg, “Reflection subgroups in Bianchi groups [in Russian],” in: Topics in Group
Theory and Homological Algebra, Yaroslav. Gos. Univ., Yaroslavl, 1987, 121–127.

[4] E. B. Vinberg and O. V. Shvartsman, “A criterion of smoothness at infinity for an arithmetic
quotient of the future tube,” Funkts. Anal. Prilozhen., 51:1 (2017), 40–59; English transl.:
Functional Anal. Appl., 51:1 (2017), 32–47.

[5] E. B. Vinberg, “On certain free algebras of automorphic forms,” Funkts. Anal. Prilozhen., 52:4
(2018), 38–61; English transl.: Functional Anal. Appl., 52:4 (2018), 270–289.

[6] J.-P. Serre, A Course in Arithmetic, Graduate Texts in Mathematics, vol. 7, Springer-Verlag,
New York, 1973.

[7] I. I. Pyatetskii-Shapiro, Geometry of Classical Domains and the Theory of Automorphic Func-
tions [in Russian], Fizmatgiz, Moscow, 1961.

[8] D. Allcock, I. Gal, and A. Mark, The Conway–Sloane Calculus for 2-adic Lattices, https://
arxiv.org/abs/1511.04614.

[9] H. Aoki and T. Ibukiyama, “Simple graded rings of Siegel modular forms, differential operators
and Borcherds products,” Intern. J. Math., 16:3 (2005), 249–279.

[10] J. H. Bruinier, “Two applications of the curve lemma for orthogonal groups,” Math. Nachr.,
274–275 (2004), 19–31; https://arxiv.org/abs/math/0301102.

[11] J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, Grundlehren der
Mathematischen Wissenschaften, vol. 290, Springer-Verlag, Berlin–New York, 1988.

[12] G. van der Geer, Hilbert Modular Surfaces, Springer-Verlag, Berlin–Heidelberg, 1988.
[13] V. Gritsenko, K. Hulek, and G. K. Sankaran, “The Hirzebruch–Mumford volume for the or-

thogonal group and applications,” Doc. Math., 12 (2007), 215–241.
[14] K.-B. Gundlach, “Die Bestimmung der Funktionen zur Hilbertschen Modulgruppe des Zahlko-

rpers Q(
√
5),” Math. Ann., 152 (1963), 226–256.

[15] K. B. Gundlach, “Die Bestimmung der Funktionen zu einigen Hilbertschen Modulgruppen,”
J. Reine Angew. Math., 202 (1965), 109–153.

[16] S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Pure and Applied
Mathematics, vol. 80, Academic Press, New York–London, 1978.

[17] J.-i. Igusa, “On Siegel modular forms of genus two,” Amer. J. Math., 84 (1962), 175–200.
[18] Y. Kitaoka, Arithmetic of quadratic forms, Cambridge Tracts in Mathematics, vol. 106, Cam-

bridge University Press, Cambridge, 1993.
[19] M. Kneser, “Klassenzahlen indefiniter quadratischer Formen in drei order mehr Veränder-

lichen,” Arch. Math., 7:5 (1956), 323–332.
[20] S. Kudla, “Integrals of Borcherds forms,” Compositio Math., 137:3 (2003), 293–349.
[21] P. Lelong, “Fonctions entières (n variables) et fonctions plurisousharmoniques d’ordre fini dans

C
n ,” J. Analyse Math., 12 (1964), 365–407.

[22] C. L. Siegel, “On the theory of indefinite quadratic forms,” Ann. of Math., 45:3 (1944), 577–
622.

[23] E. B. Vinberg, “Some free algebras of automorphic forms on symmetric domains of type IV,”
Transform. Groups, 15:3 (2010), 701–741.

National Research University Higher School of Economics, Moscow, Russia

e-mail: katyastuken@yandex.ru

Translated by O. V. Sipacheva


