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Abstract. It is proved that, for n = 8, 9, 10, the natural algebra of automorphic forms of the
group O+

2,n(Z) acting on the n-dimensional symmetric domain of type IV is free, and the weights
of generators are found. This extends results obtained in the author’s previous paper for n � 7.
On the other hand, as proved in a recent joint paper of the author and O. V. Shvartsman, similar
algebras of automorphic forms cannot be free for n > 10 .
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1. Introduction

1.1. The celebrated Shephard–Todd–Chevalley theorem ([1], [2]) asserts that the algebra of
invariants of a finite linear group Γ acting on a complex vector space V is free if and only if the

group Γ is generated by (complex) reflections.

A natural infinite counterpart of a finite linear group is a discrete automorphism group Γ of a
complex symmetric domain D with fundamental domain of finite volume acting on an equivariant

C∗-bundle over D . Here the domain D is the counterpart of the projective space PV and the total

space of the C∗-bundle is the counterpart of the punctured vector space V . The counterpart of
the polynomial invariants of a finite linear group are the automorphic forms (with respect to the

C∗-bundle under consideration).

A simple topological argument (see [3] and Proposition 8.3 in [4]), which applies equally well to
finite linear groups and discrete groups of holomorphic transformations, shows that, for the algebra

of automorphic forms to be free, it is necessary that the group Γ be generated by reflections. It

is easy to see that reflections exist only in two series of symmetric domains: complex balls and
symmetric domains of type IV in Cartan’s classification.

Determining the structure of the algebra of automorphic forms is generally a difficult problem.

Until recently, this was done for only few groups (apart from those in dimension 1), mainly of
dimension 2. In the author’s preceding paper [5] it was proved that, for n = 4, 5, 6, 7, the algebra

of automorphic forms of the group O+
2,n(Z) acting on the n-dimensional symmetric domain of type

IV is free and the weights of its generators were found. In this paper, similar results are obtained
for n = 8, 9, 10.

1.2. We proceed to precise statements.

Let R2,n be the pseudo-Euclidean vector space of signature (2, n) with inner product

(x, y) = x1y1 + x2y2 − x3y3 − · · · − xn+2yn+2.

We set C2,n = R2,n ⊗ C and consider the cone

L̃n = {z ∈ C2,n : (z, z) = 0, (z, z̄) > 0}.
It has two complex conjugate connected components. Let Ln be one of them, and let Dn ⊂ CPn

be its projectivization.

∗This work was supported by RFBR grant no. 16-01-00818.
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The natural action of the pseudo-orthogonal group O2,n on C2,n preserves the cone L̃n . Its
subgroup O+

2,n of index 2, which preserves the component Ln , acts transitively on Dn . This ac-

tion identifies the domain Dn with the Hermitian symmetric space O+
2,n/(SO2 × On), that is, the

symmetric domain of type IV. Simultaneously, we obtain the natural O+
2,n -equivariant holomorphic

C∗-bundle
π : Ln → Dn.

Suppose that n � 3, and let Γ ⊂ O+
2,n be a discrete subgroup of finite covolume. For each

k ∈ Z+, Γ-invariant holomorphic functions on Ln homogeneous of degree −k on each fiber of
the bundle π are called automorphic forms of weight k with respect to the group Γ. They form a
finite-dimensional vector space A(Dn,Γ)k . The algebra

A(Dn,Γ) =
∞⊕
k=0

A(Dn,Γ)k

is called the natural algebra of automorphic forms on Dn with respect to the group Γ.
As is known, A(Dn,Γ) is a normal finitely generated graded algebra, and A(Dn,Γ)0 = C.

The affine algebraic variety SpecA(Dn,Γ) contains the analytic quotient Ln/Γ as a Zariski open
subset with boundary of dimension at most 2. The projective algebraic variety ProjA(Dn,Γ) is
the so-called Satake–Baily–Borel compactification of the variety Dn/Γ [6].

This paper is devoted to the algebras of automorphic forms of the groups Γn =
O+

2,n(Z) consisting of all integer matrices in O+
2,n .

In the 1962 paper [7] Igusa proved that the algebra of even Siegel modular forms of genus 2
is freely generated by forms of weights 4, 6, 10, and 12. It can be shown [8] that this algebra is
naturally isomorphic to the algebra A(D3,Γ) for some group Γ ⊂ O+

2,3 commensurable with Γ3

(although the algebra A(D3,Γ3) itself is not free; see [5, Theorem 8]).
Interpreting the quotient Dn/Γn as the moduli spaces of appropriately multipolarized K3-

surfaces, in the previous paper [5] the author has succeeded in proving that the algebra A(Dn,Γn)
is free and finding the weights of its generators for n = 4, 5, 6, 7. In this paper, these results are

extended to n = 8, 9, 10. For the reader’s convenience, we summarize the results of these two papers
in one theorem.

Theorem 1. For 4 � n � 10, the algebra A(Dn,Γn) is freely generated by forms of weights
tabulated below :

n weights
4 4, 6, 8, 10, 12
5 4, 6, 8, 10, 12, 18
6 4, 6, 8, 10, 12, 16, 18
7 4, 6, 8, 10, 12, 14, 16, 18
8 4, 6, 8, 10, 12, 12, 14, 16, 18
9 4, 6, 8, 10, 10, 12, 12, 14, 16, 18
10 4, 6, 8, 8, 10, 10, 12, 12, 14, 16, 18

Note that, for n > 10, the algebra A(Dn,Γ) can be free for no arithmetic group Γ ⊂ O+
2,n with

noncompact factor [9].
As proved in [5, Theorem 3], for any n � 3, the natural embeddings Ln ↪→ Ln+1 and Γn ↪→

Γn+1 induce epimorphisms of graded algebras

A(Dn+1,Γn+1) → A(Dn,Γn).

It is clear from the preceding considerations that, for n = 4, 5, 6, 7, 8, 9, the kernel of this epimor-
phism is the principal ideal of A(Dn+1,Γn+1) generated by the generator of weight 18, 16, 14, 12,
10, and 8, respectively.
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In [5] the moduli spaces of multipolarized K3-surfaces were explicitly described by using their
projective models as quartics in CP 3 . Unfortunately, the K3-surfaces considered in this paper have
no such models, and we have to work with their projective models in CP 5 , which are not complete

intersections.

1.3. The author is grateful to V. V. Nikulin and Viktor S. Kulikov for valuable discussions. A
special thanks is due to I. V. Dolgachev, who drew the author’s attention to projective models of

K3-surfaces in scrolls. The author is also grateful to E. S. Stuken, who performed a very convincing
indirect verification, based on Bruinier’s formula, of the result of this paper for n = 10.

2. Certain Quadratic Lattices and Their Roots

2.1. In this section we introduce notation and recall certain facts related to quadratic lattices.
For more details, see [5, Sec. 1].

By Ik,l we denote the quadratic lattice of rank n = k+ l with orthogonal basis {e1, . . . , en} for
which

(e1, e1) = · · · = (ek, ek) = 1, (ek+1, ek+1) = · · · = (en, en) = −1.

This is an odd unimodular quadratic lattice. For k, l > 0, any odd unimodular quadratic lattice of

signature (k, l) is isomorphic to Ik,l .
By Dk,l we denote the even sublattice of Ik,l (it consists of all vectors with even sum of

coordinates). In particular, Dn,0 is the root lattice of type Dn .

If k ≡ l (mod 8), then the group generated by the lattice Dk,l and the vector

σ = 1
2 (e1 + · · ·+ en) ∈ Ik,l ⊗Q

is an even unimodular quadratic lattice. We denote it by Jk,l . If k, l > 0, then any even unimodular
quadratic lattice of signature (k, l) is isomorphic to Jk,l . The lattice J8,0 is the root lattice of

type E8 .
If k − l �≡ 4 (mod 8), then the lattice Ik,l is the unique odd extension of the lattice Dk,l ;

therefore, the groups of automorphisms (orthogonal transformations) of these lattices coincide. If

k ≡ l (mod 8), then the lattice Dk,l has a unique even extension (isomorphic to Jk,l).
In the case where p ≡ q (mod 8), k < p, and l < q, we have

Ik,l ⊕ Ip−k,q−l = Ip,q

up to a permutation of the basis vectors. Therefore,

Dk,l ⊕Dp−k,q−l ⊂ Dp,q ⊂ Jp,q,

which gives an embedding of the lattice Dk,l in Jp,q as a primitive sublattice. This embedding is
unique up to an automorphism of the lattice Jp,q ([10, Theorem 1.14.4], [5, Proposition 5]).

2.2. A primitive vector α of a quadratic lattice L is called a k-root if (α,α) = −k < 0 and the
reflection

Rα : x 
→ x+
2(α, x)

k
α

preserves the lattice L. The latter condition holds automatically if k = 1 or 2. If the lattice L is
unimodular, then so are all of its roots.

In this paper we consider only 2-roots and refer to them simply as roots. We denote the group
generated by the corresponding reflections by W (L). This is a normal subgroup of the group O(L)

of all automorphisms of the lattice L.
A quadratic lattice of signature (1,m) is said to be hyperbolic. Given a hyperbolic lattice L, we

set

R1,m = L⊗R, C̃m = {x ∈ R1,m : (x, x) > 0}
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and denote one of the connected components of the cone C̃m (the “future cone”) by Cm . The

hyperboloid

Hm = {x ∈ Cm : (x, x) = 1}
is a model of m-dimensional Lobachevsky space. The motion group of the space Hm in this model

is the subgroup O+
1,m of index 2 in the Lorentz group O1,m that preserves the cone Cm . The group

O+(L) = O(L) ∩O+
1,m

is a discrete motion group of Hm with fundamental domain of finite volume.

The group W (L) acting on Hm is generated by reflections in the sense of Lobachevsky geometry.

Let P (L) be a fundamental polyhedron of this group in Hm . The cone over it is a fundamental

cone for the action of the group W (L) on Cm . We denote its closure in Minkowski space R1,m by

A(L). The roots orthogonal to its walls and directed outward are called the simple 2-roots of the

lattice L, and the corresponding reflections are called the simple reflections.

2.3. To prove the main theorem of this paper, we need the simple roots of the lattice D1,m

with m = 9, 10, 11. They can easily be found by the algorithm described in [11].

First, it follows from the above considerations that if m �≡ 5 (mod 8) (all m considered in what

follows satisfy this condition), then O(D1,m) = O(I1,m) and hence W (D1,m) = W (I1,m).

Let {e0, e1, . . . , em} be the standard basis of the lattice I1,m , and let x0, x1, . . . , xm be the

coordinates with respect to this basis. For the base point of the algorithm we take e0 . The stabi-

lizer of this point in W (I1,m) is the finite reflection group of type Dm permuting the coordinates

x1, . . . , xm and multiplying an even number of these coordinates by −1. For the fundamental cone

we can take the cone defined by the inequalities

x1 � · · · � xm−1 � |xm|.
The corresponding simple roots are

αi = −ei + ei+1 (i = 1, . . . ,m− 1), αm = −em−1 − em.

At the next step of the algorithm we must choose a root αm+1 satisfying the conditions

(αm+1, e0) � 0, (αm+1, αi) � 0 (i = 1, . . . ,m)

and minimizing the inner product (αm+1, e0) (i.e., the coordinate x0). Such a root is

αm+1 = e0 + e1 + e2 + e3.

The Coxeter diagram of the found roots is shown in Fig. 1. Analyzing it, we see that, for m = 9, it

determines a simplex of finite volume with one infinite vertex of type D̃8 and two infinite vertices of

type Ẽ8 , so that, in this case, the simple roots are exhausted by those already found. It can be shown

that, for m = 10, there are infinitely many other simple roots (i.e., a fundamental polyhedron of

the group W (I1,10) has infinite volume), and for m = 11, there are two more simple roots. However,

the roots already found are sufficient for our purposes.

Fig. 1
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3. Multipolarized K3-surfaces

3.1. Recall that the homology group H2(X,Z) of any K3-surface X is an even unimodular

quadratic lattice isomorphic to the lattice J3,19 . The lattice S(X) of algebraic cycles (the Picard

group) of a surface X is a primitive hyperbolic sublattice in H2(X,Z) of signature (1,m). Its

orthogonal complement T (X) in H2(X,Z), called the lattice of transcendental cycles, has signature

(2, n), where n = 19−m.

Under a suitable choice of the future cone Cm and the fundamental polyhedron P (S(X)) of

the group W (S(X)) in the space Hm , the simple roots correspond to smooth rational curves on

the surface X , and the primitive isotropic vectors of the lattice S(X) on the boundary of the cone

A(S(X)) (which represent the vertices at infinity of the polyhedron P (S(X))) correspond to the

elliptic sheaves on X .

In what follows, we write for brevity W (X), P (X), and A(X) instead of W (S(X)), P (S(X)),

and A(S(X)).

Let h ∈ A(X) be a primitive vector of S(X) satisfying the condition (h, h) = d > 0 and the

additional condition

(∗) there exist no isotropic vectors u in S(X) ∩A(X) for which (h, u) = 1 or 2.

Then the corresponding linear system determines a birational morphism

ϕh : X → Y ⊂ CP g, where 2g − 2 = d,

onto a normal projective variety Y of degree d; this ϕh contracts all smooth rational curves cor-

responding to simple roots orthogonal to h to a point and is an isomorphism outside them [13].

For this reason, we refer to the cone A(X) as the cone of ample divisors (although not all divisor

classes in this cone are ample).

We also recall that, on each K3-surface X , there is a unique (up to proportionality) nowhere

vanishing regular differential 2-form ω (a symplectic form). We refer to the pair (X,ω) as a normed

K3-surface.

The period map (integration over transcendental cycles) allows us to consider the form ω as an

element of the space C2,n = T (X)⊗C. Moreover, for an appropriately chosen connected component

Ln of the cone L̃n ⊂ C2,n , we have ω ∈ Ln (see the notation in Section 1.2).

3.2. Let us fix a primitive hyperbolic sublattice S0 ⊂ J3,19 of signature (1,m) and a primitive

vector h0 ∈ S0 for which (h0, h0) = d > 0. We denote the orthogonal complement of S0 in J3,19
by T0 .

By a multipolarization of type (S0, h0) of a K3-surface X we mean a pair of a sublattice

S ⊂ S(X) and a vector h ∈ S∩A(X) that are mapped to S0 and h0 , respectively, by an isomorphism

ϕ : H2(X,Z) → J3,19 . Such an isomorphism ϕ (if it exists) is determined uniquely up to left

multiplication by a transformation in O+(J3,19) preserving S0 and h0 (or, equivalently, T0 and

h0). We denote the group of the restrictions of such transformations to T0 by O+(T0, h0).

The isomorphism ϕ takes the symplectic form ω on a multipolarized K3-surface X to a vector

in T0 ⊗C determined up to the action of the group O+(T0, h0).

We say that the type (S0, h0) of multipolarization is admissible if the following condition holds:

(∗∗) none of the hyperbolic sublattices S ⊂ J3,19 containing S0 has an isotropic vector u for

which (h0, u) equals 1 or 2.

In this case, the moduli space of normed multipolarized K3-surfaces of type (S0, h0) is the

quotient Ln/O
+(T0, h0), and, accordingly, the moduli space of K3-surfaces of type (S0, h0) is the

quotient Dn/O
+(T0, h0) [5]. We refer to the group O+(T0, h0) as the modular group of type (S0, h0).

A multipolarized K3-surface X for which S = S(X) is said to be irrational. In the moduli

space the set of such surfaces is the complement of a dense union of countably many algebraic

hypersurfaces.
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Remark 1. In the definition of multipolarization the vector h0 is determined only up to an
automorphism of S0 which can be extended to an automorphism of J3,19 being the identity on the
orthogonal complement. In particular, if the lattice S0 is 2-elementary, then, multiplying by −1,
we can bring the vector h0 to a chosen future cone. In any case, if h0 belongs to the future cone,
then, by means of reflections in the lattice S0 , we can move it to a chosen fundamental cone A(S0)
of the group W (S0).

4. Choice of Multipolarization

4.1. Let D1,9 ⊂ J3,19 be the standard embedding described in Section 1.1, and let

h0 = 4e0 + e1 + · · ·+ e8 ∈ D1,9. (1)

We have (h0, h0) = 8. The inner products of the vector h0 and the simple roots are shown in Fig. 2
(the absence of a mark means zero).

Fig. 2

Lemma 2 (cf. [5, Proposition 8]). None of the hyperbolic sublattices S ⊂ J3,19 containing D1,9

has an isotropic vector u for which (h0, u) = 1 or 2.

Proof. First, we prove that there is no such vector in the lattice D1,9 itself. According to

Lemma 2 in [5], to prove this, it suffices to check the primitive isotropic vectors of the cone A(D1,9).

There are three such vectors. One of them corresponds to a parabolic subdiagram of type D̃8 of
the Coxeter diagram, and the two others, to two symmetric parabolic subdiagrams of type Ẽ8 .
We denote them by u0 , u1 , and u2 , respectively. The isotropic vector corresponding to a parabolic

subdiagram is a linear combination of the simple roots in this subdiagram with coefficients equal
to those in the linear dependence of the corresponding extended diagram of simple roots [12,
Section 1.9]. Using this fact, we obtain

(h0, u0) = 3, (h0, u1) = (h0, u2) = 4.

Next, let u ∈ J3,19 be an isotropic vector not belonging to the lattice D1,9 but belonging to a
hyperbolic lattice S ⊂ J3,19 containing D1,9 . Suppose that (h0, u) equals 1 or 2, and let u′ be the
orthogonal projection of the vector u on D1,9 ⊗Q. Then

(h0, u
′) = (h0, u), (u′, u′) > 0.

Moreover, u′ is contained in the lattice dual to D1,9 and, therefore, 2u′ ∈ D1,9 , which implies

(u′, u′) � 1/2.

Consider the Gramian of the vectors h0 and u′ . By virtue of the inequalities obtained above, it

is nonnegative. Since D1,9 is a lattice of signature (1, 9), it follows that this is possible only if
the vectors h0 and u are proportional and their Gramian vanishes. In the latter case, we have
(u′, u′) = 1/2, so that h0 = 4u′ ∈ 2D1,9 ; obviously, this is not true.

Thus, multipolarization of type (D1,9, h0) is admissible. The orthogonal complement of the
lattice D1,9 in J3,19 is D2,10 .

4.2. Now, let us find the modular group O+(D2,10, h0).

Proposition 1. O+(D2,10, h0) = O+(D2,10)(= O+(I2,10)).
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Proof. The automorphisms σ and ρ of the lattices O(D2,10) and O(D1,9) can be “glued to-

gether” into an automorphism of the lattice J3,19 if and only if their actions on the common

discriminant group D of these lattices coincide [5, Proposition 4]. The group D is the Klein four-

group. Two of its nonzero elements, say δ1 and δ2 , correspond to two (isomorphic) even extensions

of the corresponding lattice, and the third nonzero element corresponds to the unique odd exten-

sion of this lattice. The automorphism σ can either act trivially on D or transpose δ1 and δ2 .

In the former case, for ρ we can take the identity automorphism of D1,9 , and in the latter, the

automorphism transposing the simple roots α8 and α9 , i.e., multiplying e9 by −1. In any case, we

obtain ρ(h0) = h0 .

Thus, the moduli space of normed multipolarized K3-surfaces of type (D1,9, h0) is the quo-

tient L10/Γ10 , where Γ10 = O+
2,10(Z). This is a “large” Zariski open subset of the affine vari-

ety SpecA(D10, O
+
2,10(Z)) in the sense that its boundary contains no divisors (in fact, it is two-

dimensional).

5. A Projective Model

5.1. First, we recall the necessary information about vector bundles over the projective line

CP 1 . We treat CP 1 as the homogeneous space SL2 /B , where SL2 = SL2(C) and B ⊂ SL2 is the

Borel subgroup consisting of triangular matrices.

We begin with describing line bundles. Any line bundle over CP 1 is homogeneous (in the

sense that the action of the group SL2 on the base space can be lifted to an action by bundle

automorphisms) and hence is determined by the character of B defining its action on the fiber over

the base point. We denote the line bundle corresponding to the kth power of the first diagonal

element by E(k).

For k > 0, the regular functions on E(k) linear on the fibers determine an SL2-equivariant

birational morphism Φ of the variety E(k) onto a closed subvariety S(k) of the space of the

irreducible representation of SL2 with highest weight k, namely, onto SL2 H , where H is the one-

dimensional subspace spanned by the highest-weight vector of the representation. This morphism

contracts the zero section of the bundle to a point and is an isomorphism outside this point. For

k = 0, the bundle is the direct product CP 1 × C1 and Φ is the projection onto the second factor.

For k < 0, there exist no nonzero regular functions linear on the fibers.

By Grothendieck’s theorem any vector bundle over CP 1 is a direct sum of line bundles. Consider

the bundle E(k1, . . . , ks) = E(k1)⊕· · ·⊕E(ks), where k1, . . . , ks � 0 and not all k1, . . . , ks are zero.

The regular functions on E(k1, . . . , ks) linear on the fibers determine an SL2-equivariant birational

morphism Φ of the variety E(k1, . . . , ks) onto a closed subvariety S(k1, . . . , ks) of the direct sum of

the spaces of irreducible representations of SL2 with highest weights k1, . . . , ks , namely, onto SL2 H ,

where H is the subspace spanned by the highest-weight vectors of these representations. The fibers

of E(k1, . . . , ks) are mapped to the s-dimensional subspaces gH (g ∈ SL2), whose intersection is

the subspace of SL2-invariant vectors of dimension equal to the number of zeros among k1, . . . , ks .

This subspace is the set of singular points of the variety S(k1, . . . , ks).

The projectivization PS(k1, . . . , ks) of the variety S(k1, . . . , ks) is called a scroll of type

(k1, . . . , ks). This is a normal s-dimensional projective variety of degree k1 + · · · + ks in the pro-

jective space of dimension k1 + · · ·+ ks + s− 1; its ideal is generated by quadratic forms (see, e.g.,

[14]). We refer to the variety S(k1, . . . , ks) itself as a linear scroll, as opposed to the projective

scroll PS(k1, . . . , ks), and to the subspaces gH (g ∈ SL2) (or to their projectivizations) as the

fibers of the scroll S(k1, . . . , ks) (respectively, of the scroll PS(k1, . . . , ks)).

5.2. Now, let (X,S, h) be a multipolarized K3-surface of type (D1,9, h0), where h0 ∈ D1,9 is

the vector given by (1). Somewhat abusing notation, we identify the lattice S with the sublattice
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D1,9 ⊂ J3,19 and the vector h with the vector h0 . According to what was said in Section 3.1, the
linear system |h| gives a birational morphism

ϕh : X → Y ⊂ CP 5

onto a normal projective variety Y of degree 8 having only simple singularities.
First, consider the case where the given multipolarization is irrational, i.e., S = S(X).
By Ci (i = 1, 2, . . . ) we denote the smooth rational curve on X corresponding to the simple root

αi of the lattice S . The inner products (h, αi) presented in Fig. 2 show that the curves C1, . . . , C7

contract to the unique singular point o ∈ Y (of type A7) of the surface Y and the curves C8 , C9 ,
and C10 are mapped to some three lines l1, l2, l3 ⊂ Y intersecting in o. The surface Y contains no
other lines or conics.

The vertex at infinity of the polyhedron P (S) of type D̃8 corresponds to the isotropic vector

u0 = α10 + α2 + 2(α3 + · · · + α7) + α8 + α9 ∈ S = e0 + e1.

The linear system |u0| determines the structure of an elliptic fibration on X with singular fiber of

type D̃8 , and the curve C1 is a section of this fibration, because (u0, α1) = 1.
Since (h, u0) = 3, it follows that the generic fibers of this elliptic fibration are mapped to

irreducible curves of degree 3 in CP 5 (passing through the point o). From dimension considerations,
these curves must be flat, i.e., belong to projectivizations of some three-dimensional subspaces of
C6 . It follows that the image of any fiber is contained in a plane. Thus, we have a three-dimensional
vector bundle E(k1, k2, k3) over CP 1 together with a morphism

Φ: E(k1, k2, k3) → S(k1, k2, k3) ⊂ C6

linear on fibers. The projectivization of the morphism Φ is an extension of the morphism ϕh .
Therefore, Y ⊂ PS(k1, k2, k3), and the images of the fibers of the elliptic fibration on X under
consideration are intersections of Y with the fibers of the scroll PS(k1, k2, k3).

By abuse of language, we speak about an elliptic fibration on Y whose fibers are the images of
the fibers of an elliptic fibration on X (but bearing in mind that all of them intersect in the point
o). Note that the generic fibers of this fibration are nonsingular cubics in the corresponding planes,
because otherwise they would be rational.

The ideal of the surface Y ⊂ CP 5 is generated by quadratic forms generating the ideal of the
scroll and some cubic forms which do not identically vanish on the scroll [14]. If F is one of such
cubic forms, then the equation F = 0 defines a surface of degree 9 in the scroll, which is the union
of the surface Y and some “extra” plane Π depending on the choice of F .

5.3. Let us determine the type (k1, k2, k3) of the scroll defined in Section 5.2.

Proposition 2. Up to permutation,

(k1, k2, k3) = (0, 1, 2).

Proof. Since the surface Y is not contained in any hyperplane of the space CP 5 , it follows
that the scroll S(k1, k2, k3) generates the space C6 . This means that k1 + k2 + k3 = 3.

Recall that the images of all fibers of an elliptic fibration contain the point o; therefore, all
fibers of S(k1, k2, k3) contain the one-dimensional subspace corresponding to this point. Hence at
least one of the numbers k1 , k2 , and k3 is zero. There remain the possibilities

(k1, k2, k3) = (0, 1, 2) and (k1, k2, k3) = (0, 0, 3).

Let us show that, in fact, only the former case can occur.
Suppose that Y ⊂ PS(0, 0, 3), i.e., the representation of the group SL2 on the space C6 is the

sum of two trivial one-dimensional representations and the representation on the space of cubic
binary forms. A vector belongs to the linear scroll S(0, 0, 3) if and only if its last component is the
cube of a linear form. All fibers of S(0, 0, 3) contain the sum of the one-dimensional components
of the representation.
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Consider the 5-dimensional subspace U ⊂ C6 defined by the condition that the last component

of the vector (which is a cubic form on C2) vanishes at a fixed nonzero vector v ∈ C2 . Its inter-

section with the scroll S(0, 0, 3) is the three-dimensional subspace consisting of vectors whose last

component is proportional to the cube of a fixed linear form (vanishing at v), i.e., this is a fiber of

S(0, 0, 3). Accordingly, the intersection PU∩PS(0, 0, 3) is a plane P being a fiber of the projective

scroll, and the intersection P ∩ Y is a fiber of the elliptic fibration. Appropriately choosing v, we

can assume that this is a generic fiber, i.e., P ∩ Y is an irreducible cubic.

Now let F be a cubic form in the ideal of Y which does not vanish identically on the scroll

PS(0, 0, 3). The equation F = 0 determines the union of the surface Y and some plane Π in the

scroll. Appropriately choosing such a form F in the ideal, we can achieve that Π �= P . Then in the

plane P the equation F = 0 defines the union of the intersections P ∩Y and P ∩Π. The former is

an irreducible cubic in P , and the latter coincides with the intersection PU ∩Π and hence is a line.

This contradicts the form F being cubic. Thus, the case (k1, k2, k3) = (0, 0, 3) is impossible.

5.4. Since the lattice S is 2-elementary, there is an antisymplectic involution σ of X which

acts as the identity map on S = S(X) and as multiplication by −1 on T = T (X). It determines a

projective involution of the surface Y , which we denote by the same letter.

Acting on X , the involution σ takes each smooth rational curve to itself. Therefore, the inter-

section point of these curves is fixed. Since any nontrivial involutive automorphism of the projective

line has precisely two fixed points and the involution σ, being antisymplectic, cannot act trivially

on two intersecting curves, it follows that σ acts trivially on the curves C1 , C3 , C5 , and C7 and

nontrivially on C2 , C4 , C6 , C8 , C9 , and C10 .

Let us endow the generic fibers of the elliptic fibration with a group structure, taking the

intersection point with the curve C1 for the identity element. Then σ acts on each fiber as an

inversion and on its image in Y as a projective involution for which o is an isolated fixed point.

Since the surface Y is not contained in any hyperplane of CP 5 , it follows that o is an isolated

fixed point of the involution σ in the whole space CP 5 . In other words, σ is induced by the

linear transformation with matrix diag(−1, 1, 1, 1, 1, 1) in some basis such that the first basis vector

corresponds to the point o.

5.5. Now, let us see what changes when the lattice S(X) is strictly larger than D1,9 .

In any case, the stabilizer of the point e0 in the group W (X) contains a finite reflection group

of type D9 and, therefore, is the direct product of a group of type Dp (p � 9) containing D9 and,

possibly, some other finite reflection group. Moreover, the roots α1, . . . , α8 can be included in the

set of simple roots of the group Dp (but α9 is no longer a simple root for p > 9). The following

simple root of the group Dp is orthogonal to the vectors e0, e1, . . . , e8 and hence to h0 , and all of

the remaining simple roots of the stabilizer are orthogonal to the entire lattice D1,9 . We denote the

number of simple roots of the stabilizer of e0 by q.

At the next step of the algorithm, in any case, we can choose the root αq+1 = e0 + e1 + e2 + e3
(which equals α10 in the case of irrational multipolarization), because its inner products with all

roots already chosen are nonnegative, and the inner product (αq+1, e0) = 1 is the least possible.

For p = 10, 11, the Coxeter diagrams of the system of simple roots of the group Dp and the

root αq+1 , together with their inner products with h0 , are shown in Figs. 3 and 4.

Fig. 3
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Fig. 4

A direct verification shows that the vector h0 can be expressed linearly in terms of the simple

roots of the group Dp and the root αq+1 with positive integer coefficients, namely,

h0 = (3α1 + 6α2 + 9α3 + 8α4 + 7α5 + 6α6 + 5α7)

+ 4(α8 + · · ·+ αp−2) + 2(αp−1 + αp) + 4αq+1. (2)

It follows that the inner products of this vector with all other simple roots are nonnegative as well.

Under our identifications we can assume that h0 is contained in the cone A(X) of ample divisors

of the surface X .

The isotropic vector u0 = e0+e1 is a positive integer linear combination of the roots α2 , . . . , αp ,

αq+1 , which form an extended system of simple roots of type D̃p−1 . Therefore, it is also contained

in the cone A(X). The system of all simple roots orthogonal to u0 contains the subsystem D̃p−1

as an indecomposable component.

Suppose that there is another component Σ of the system of simple roots orthogonal to u0 .

Then u0 is a positive integer linear combination of roots in Σ [12, Sec. 1.9]. Since (u0, α1) = 1, it

follows that all roots of the system Σ, except a single root β which occurs in the decomposition

of u0 with coefficient 1, are orthogonal to α1 , and (β, α1) = 1. Since simple roots from different

components are orthogonal, it follows from (2) that

(h0, u0) = (h0, β) = 3.

This means that the singular fiber of the elliptic fibration of X , which corresponds to the component

Σ, is mapped onto a singular irreducible plane cubic in Y .

In the general case, the antisymplectic involution σ of the surface X is defined in a different

way. Namely, the involution σ0 of J3,19 which acts trivially on S = D1,9 and as multiplication

by −1 on the orthogonal complement preserves the lattice S(X) ⊃ S , but it does not generally

preserve the cone A(X). To return this cone back in its place, we must multiply σ0 by a suitable

element w0 ∈ W (X) trivially acting on S (in particular, belonging to the stabilizer of e0). Then

σ = w0σ0 is the required involution.

The involution σ0 preserves the sublattice Dp ⊂ D1,p ; hence σ somehow permutes the simple

roots α1, . . . , αp of this lattice and the corresponding curves C1, . . . , Cp . Clearly, in reality, only the

roots αp−1 and αp can be permuted.

The smooth rational curve on X corresponding to a simple root α is mapped to a line on Y if

and only if (h0, α) = 1. For p = 9, only three simple roots among those occurring in the expression

(2) of h0 satisfy this condition, and for p > 9, there are only two such roots. They correspond to

three lines l1, l2, l3 ⊂ Y , which merge into two lines for p > 9. As seen from (2), the inner products

of the vector h0 with other simple roots either vanish or are at least 2. Hence there are no other

lines on the surface Y .

Thus, in the general case, the projective model ϕh(X) = Y ⊂ CP 5 has all those properties

which we proved for the case of irrational polarization, except that the lines l1 and l2 may merge,

singular points different from o may arise, the type of the singular fiber of the elliptic fibration

may become more complex, and new singular fibers may emerge, which are represented by singular

irreducible flat cubics in the projective model.
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6. The Scroll S(0, 1, 2)

6.1. Let us study the scroll S = S(0, 1, 2) ⊂ C6 in detail.
The representation of the group SL2 on the space C6 decomposes as

C6 = C+C2 + S2C2, (3)

where SL2 acts trivially on the first term and tautologically on C2 . Let {v1, v2} be a basis in C2 .
In the space C6 for basis vectors we take

1, v1, v2, v
2
1 , v

2
2 , 2v1v2.

We denote coordinates in this basis by

x0, x1, x2, y1, y2, z.

A condition for a vector to belong to the scroll S is the proportionality of its third component
and squared second component. In coordinates this means that the matrices(

x21 x1x2
x1x2 x22

)
and

(
y1 z
z y2

)
are proportional, which is equivalent to the system of equations

x2y1 = x1z, x1y2 = x2z, y1y2 = z2. (4)

It is easy to see that any quadratic form in x0 , x1 , x2 , y1 , y2 , and z vanishing on S is a
linear combination of the forms x2y1−x1z , x1y2−x2z , and y1y2− z2 . Therefore, these three forms
generate the ideal of the scroll S, or, in other words, the equations (4) are defining relations of
the algebra of polynomial functions on S. Using these relations, we can uniquely represent any
polynomial function on S as a linear combination of monomials not containing the products x2y1 ,
x1y2 , and y1y2 . We refer to such representations as reduced.

6.2. Let us describe the 3-dimensional subspaces contained in the scroll S. First, these are the
fibers of the scroll. In terms of the decomposition (3), these are the subspaces of the form

L(v) = 〈1, v, v2〉 (v ∈ C2, v �= 0).

Moreover, S contains also the 3-dimensional subspace

L(0) = C+ C2.

Lemma 3. Any 3-dimensional subspace contained in S is one of the subspaces L(v) and L(0)
described above.

Proof. Note that the projection of S on the third term S2C2 of the decomposition (3) is the
quadratic cone determined by the equation y1y2 = z2 . It contains no 2-dimensional subspaces.

Now suppose that L ⊂ S is a 3-dimensional subspace different from L(0). Then its projection
on S2C2 is one-dimensional and has the form 〈v2〉, where v ∈ C2, v �= 0. Therefore, the projection
of L on the second term equals 〈v〉; this means that L = L(v).

6.3. A projective model of a K3-surface X in a fixed scroll PS is determined uniquely up to a
projective automorphism of the scroll. Any such automorphism originates from a linear automor-
phism of the linear scroll S.

Obviously, the linear automorphism group AutS of S contains the group SL2 and the 3-
torus Z acting by scalar multiplication on each term in (3), and there are no other automorphisms
preserving the decomposition (3).

In any case, every automorphism preserves the first term of the decomposition (3) (as the
intersection of all fibers) and the sum of the first two terms (as a unique 3-dimensional subspace
not being a fiber). Therefore, Z ·SL2 is a maximal reductive subgroup of the group AutS, and the
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unipotent radical of the group AutS preserves the flag C ⊂ L(0) ⊂ C6 and acts trivially on its
factors. A direct verification shows that this radical consists of the products of the transformations

(x0, x1, x2, y1, y2, z) 
→ (x0 + l(x1, x2, y1, y2, z), x1, x2, y1, y2, z), (5)

where l is any linear form, and

(x0, x1, x2, y1, y2, z) 
→ (x0, x1 + αy1 + βz, x2 + βy2 + αz, y1, y2, z), (6)

The automorphisms of the scroll that preserve some of the subspaces L(v) (a fiber of the scroll)
form a Borel subgroup B(v) of AutS, which is a semidirect product of the unipotent radical of
AutS and some Borel subgroup of Z · SL2 . In particular, B(v2) contains a Borel subgroup of the
group SL2 , whose unipotent radical consists of all transformations of the form

(x0, x1, x2, y1, y2, z) 
→ (x0, x1, x2 + γx1, y1, y2 + 2γz + γ2y1, z + γy1). (7)

The following transformations constitute a maximal torus T of Z · SL2 contained in B(v2):

(x0, x1, x2, y1, y2, z) 
→ (t0x0, t1tx1, t1t
−1x2, t2t

2y1, t2t
−2y2, t2z). (8)

(The parameters t0, t1, t2, t ∈ C∗ are determined up to simultaneous multiplication of t and t1
by −1.)

Proposition 3. The group B(v2) acts transitively on the complement of L(v2) ∪ L(0) in the
scroll S.

Proof. Let X be a vector in the complement mentioned in the statement, and let X0 , X1 , and
X2 be its projections on the components of the decomposition (2). Then, in particular, X2 �= 0.
Using transformations of the form (2), we can achieve that X0,X1 �= 0. Moreover, the component
X1 is not proportional to v2 , and using a transformation of the form (7), we can make it proportional
to v1 . Then the component X2 will become proportional to v21 . Finally, using a transformation of
the form (8), we can map the obtained vector to 1 + v1 + v21 .

6.4. Consider the rational differential 4-form

Ω =
dx0 ∧ dx1 ∧ dx2 ∧ dz

x2
(9)

on the nonsingular points of the scroll S.

Proposition 4. The form Ω is semi-invariant with respect to the group B(v2) with weight
(t0t1t2t)

−1 (in the notation of (8)).

Proof. Since the projection of the scroll on the sum of the last two components in (3) is three-
dimensional, it follows that any four of the five differentials dx1 , dx2 , dy1 , dy2 , and dz are linearly
dependent on S. Therefore, the form Ω is invariant with respect to the transformations (5).

Differentiating the first relation in (4), we obtain

y1 dx2 + x2 dy1 = z dx1 + x1 dz, (10)

which implies

dx2 =
z dx1 + x1 dz − x2 dy1

y1
.

Substituting this expression into the definition of the form Ω, we obtain the alternative represen-
tation

Ω = −dx0 ∧ dx1 ∧ dy1 ∧ dz

y1
(11)

of this form. It easily follows that Ω is invariant with respect to the transformations (6) and (7).
Finally, the transformation (8) multiplies Ω by (t0t1t2t)

−1 .

Proposition 5. The form Ω is regular; its zero divisor is the (one-fold) subspace L(v2).
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Proof. Since the form Ω semi-invariant with respect to the group B(v2), it follows that Ω is
everywhere defined and nowhere vanishes on the open orbit of this group. It remains to examine
its behavior on the subspaces L(0) and L(v2).

Considering the Jacobian matrix of the relations (4), we easily see that x0 , x1 , x2 , and z form
a coordinate system in a domain of S which intersects L(0); thus, it follows directly from the
definition of the form Ω that the subspace L(0) is not contained in its divisor.

Similarly, x0 , x2 , y2 , and z form a coordinate system in a domain of S which intersects L(v2).
In the same way as in the proof of Proposition 4, using the second relation in (4), we can obtain
yet another representation of the form Ω:

Ω =
zdx0 ∧ dx2 ∧ dy2 ∧ dz

y22
. (12)

It is seen that the form Ω is defined and vanishes with multiplicity 1 on the subspace L(v2).

6.5. The involution σ defined in Section 5.4 is conjugate in AutS to an element of the maximal
reductive subgroup Z ·SL2 . Applying the corresponding projective automorphism of the scroll PS
to the surface Y , we can achieve that σ ∈ Z ·SL2 . Obviously, σ then acts on C6 as the multiplication
of the coordinate x0 by −1:

σ : (x0, x1, x2, y1, y2, z) 
→ (−x0, x1, x2, y1, y2, z). (13)

Under this condition the projective model Y is determined uniquely up to an automorphism of PS
commuting with σ.

Let Aut(S, σ) denote the group of all linear automorphisms of S commuting with σ defined
by (13), i.e., preserving the sum of the last two terms in the decomposition (3). Obviously, this
group contains Z · SL2 as a maximal reductive subgroup, and its unipotent radical consists of
transformations of the form (6).

7. The Canonical Equation

7.1. Let X be a multipolarized K3-surface of the type considered in Section 5, and let Y be
its projective model in the scroll PS = PS(0, 1, 2). There exists a homogeneous cubic polynomial
F in x0 , x1 , x2 , y1 , y2 , and z such that the equation F = 0 in the scroll defines the union of the
surface Y and some scroll fiber PL(v).

We can assume the polynomial F to be reduced (see Section 6.1) and σ-invariant. The latter
condition means that all terms of this polynomial contain x0 to an even power.

Acting on Y by the group SL2 ⊂ AutS, we can achieve that the singular fiber of the elliptic
fibration containing the lines l1 , l2 , and l3 (which intersect in the point o) is contained in the plane
PL(v2), i.e., that

Y ∩ PL(v2) = l1 ∪ l2 ∪ l3. (14)

Under this condition the surface Y is determined uniquely up to a transformation in the Borel
subgroup B(v2) of the group AutS.

After that, appropriately choosing the polynomial F in the ideal of the surface Y , we can
achieve that v = v2 , i.e., that the polynomial F has no terms depending only on x0 , x2 , and y2 .

To satisfy condition (14), we must move the extra plane PL(v2), which prevents us from seeing
the intersection of the surface Y with this plane. This can be done by multiplying the polynomial
F by x2/x1 . Taking into account the relations

x2
x1

=
y2
z

=
z

y1
, (15)

which hold on the scroll according to (4), we obtain another cubic polynomial F̃ in the ideal of
the surface Y , which vanishes on the fiber PL(v1) rather than on PL(v2). We refer to this new
polynomial as the satellite of the polynomial F . It follows from condition (14) that it does not
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contain the terms x20x2 and x20y2 , or, equivalently, the initial polynomial F does not contain the
terms x20x1 and x20z .

Thus, if the polynomial F has a term containing x0 , then this term must be x20y1 . On the other
hand, such a term must be present, because otherwise the surface Y would be a cone, which is
impossible.

Next, it follows from preceding considerations that the restriction of the polynomial F to the
subspace L(0) = 〈v1, v2〉 is a cubic form f(x1, x2), and hence in the plane PL(0) the equation
F = 0 defines three lines intersecting in o. One of them is the line l = PL(0) ∩ PL(v2) defined
by the equation x1 = 0 in PL(0). The other two lines must be contained in the surface Y and,
therefore, in the same plane P (v2). Thus, the equation F = 0 defines a triple line l in the plane
PL(0). This means that f(x1, x2) = Bx31 , where B �= 0.

7.2. Acting on the polynomial F by transformations (6) and (7) in the unipotent radical of
the group B(v2) ∩ Aut(S, σ) and using the term x31 , we can kill the coefficients of x21y1 , x

2
1z , and

x1x2z . The parameters α, β , and γ of these transformations are determined uniquely.
As a result, we obtain

F = Ax20y1 +Bx31 + Cx22z + (ax1 + by1)y
2
1 + (a1x1y1 + a2x2y2 + b1y

2
1 + b2y

2
2)z

+ (f1x1 + f2x2 + g1y1 + g2y2 + hz)z2 (A,B �= 0). (16)

This form of the polynomial F is determined uniquely up to the transformations (8) in the maximal
torus of the group B(v2) ∩Aut(S, σ).

The satellite of the polynomial (16) has the form

F̃ = Ax20z +Bx21x2 + (Cx22 + a2x2y2 + b2y
2
2)y2 + (ax1 + by1)y1z

+ (f2x2 + g2y2)y2z + (a1x1 + f1x2 + b1y1 + hy2 + g1z)z
2. (17)

It is easy to see that, at all points of the line P 〈1, v2〉 on the tangent space of the scroll PS,

on the affine chart x0 = 1 the relation dF̃ = Cx22 dy2 holds, so that, for C = 0, all points of this
line are singular points of the surface Y , which is impossible. Therefore, C �= 0.

Let T ◦ denote the 3-torus formed by the transformations (8) preserving the form Ω, i.e.,
satisfying the condition

t0t1t2t = 1.

Applying transformations in the torus T ◦ , we can make the coefficients A, B , and C equal
to 1. Indeed, it suffices to solve the system of equations

t0t1t2t = 1, t20t2t
2 = A, t31t

3 = B, t21t2t
−2 = C.

It is easy to see that this system does have a solution. Moreover, its solution is unique up to the
simultaneous multiplication of t1 and t by −1, which does not change torus elements, and the
simultaneous multiplication of t0 , t1 , and t2 by a cubic root of 1, which does not change the action
of torus elements on the space of cubic forms.

Thus, applying transformations in B(v2)∩Aut(S, σ) preserving the form Ω to the polynomial
F , we can reduce F to the form

F = x20y1 + x31 + x22z + (ax1 + by1)y
2
1 + (a1x1y1 + a2x2y2 + b1y

2
1 + b2y

2
2)z

+ (f1x1 + f2x2 + g1y1 + g2y2 + hz)z2, (18)

and this form is determined uniquely. We refer to the polynomials F of this form as canonical.

7.3. Let R denote the set of all canonical polynomials (18). This is an 11-dimensional affine
space. On this space, in addition to the torus T ◦ , the 1-torus T 1 ⊂ T preserving the monomials
x20y1 , x

3
1 , and x22z acts. It is easy to see that this torus consists of all transformations of the form

g(t) : (x0, x1, x2, y1, y2, z) 
→ (t3x0, x1, t
2x2, t

−6y1, t
−2y2, t

−4z). (19)
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A direct calculation shows that the transformation g(t) multiplies the form Ω by t and the
monomials occurring in the canonical polynomial (18) with indeterminate coefficients, by powers of
t with exponents specified in the following table. (The first row of the table contains the notation
of the corresponding coefficients.)

a b a1 a2 b1 b2 f1 f2 g1 g2 h

x1y
2
1 y31 x1y1z x2y2z y21z y22z x1z

2 x2z
2 y1z

2 y2z
2 z3

12 18 10 4 16 8 8 6 14 10 12

8. Examination of the Canonical Surface

8.1. Consider the inverse problem. Let F be the canonical polynomial given by (18). Then the
equation F = 0 defines the union of some surface Y of degree 8 and the plane PL(v2) in the scroll

PS, and the equation F̃ = 0, where F̃ is the satellite of F , defines the union of the surface Y and
the plane PL(v1). The surface Y itself is defined by the system of equations

F = F̃ = 0 (20)

in PS. Let us find sufficient conditions for the surface Y thus defined to be a K3-surface with
simple singularities.

The intersection of Y with the plane PL(v2) is given in this plane by the equation

(x22 + a2x2y2 + b2y
2
2)y2 = 0; (21)

this is a triple of lines l1 , l2 , and l3 intersecting in the point o, the first two of which merge when

4b2 = a22. (22)

Now let us find the intersections of the surface Y with the other fibers of the scroll PS. The
fiber L(v1 + τv2) of the scroll S is given in C6 by the linear equations

x2 = τx1, y2 = τ2y1, z = τy1.

Substituting these expressions for x2 , y2 , and z into (18), we obtain a representation of the restric-
tion of the polynomial F to L(v1 + τv2) in Weierstrass’ normal form:

F = x20y1 + x31 + τ3x21y1 + φ2(τ)x1y
2
1 + φ3(τ)y

3
1 , (23)

where

φ2(τ) = a2τ
4 + f2τ

3 + f1τ
2 + a1τ + a, (24)

φ3(τ) = b2τ
5 + g2τ

4 + hτ3 + g1τ
2 + b1τ + b. (25)

Thus, we see that the intersection

Y (τ) = Y ∩ PL(v1 + τv2)

is an irreducible cubic curve. Therefore, the surface Y itself is irreducible as well.

8.2. Let us now consider what singular points other than o the surface Y can have.
First, clearly, a point p ∈ Y ∩ PL(v) different from o can be a singular point of Y only if it

is a singular point of the curve Y ∩ PL(v). As applied to v = v2 , this means that the surface Y
can have singular points different from o in the fiber PL(v2) only under the condition (22), when
the lines l1 and l2 merge, and these points can be only some points of this double line, which we
denote by l0 .

To be more precise, under condition (22) the line l0 is defined by the equation

2x2 + a2y2 = 0
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in PL(v2). At the points of this line on the tangent space of the scroll S, on the affine chart x0 = 1,
the relation

dF̃ = (1 + (f2x2 + g2y2)y2)dz = (1 + (g2 − 1
2a2f2)y

2
2) dz

holds. Therefore, in addition to o, the surface Y has two singular points on the line l0 , which are
defined by the condition

x20 + (g2 − 1
2a2f2)y

2
2 = 0

in homogeneous coordinates; they merge into one singular point when

2g2 = a2f2. (26)

Moreover, the surface Y can have one singular point different from o on the curve Y (τ) if the
discriminant D(τ) of the cubic polynomial

f = x3 + τ3x2 + φ2(τ)x+ φ3(τ) ∈ C[τ ][x] (27)

vanishes at τ . It may happen that this discriminant identically vanishes. Let us show that this
happens only rarely.

Let R denote the set of all canonical polynomials (18). This is an 11-dimensional affine space.
The set R0 of polynomials F ∈ R for which the discriminant D(τ) identically vanishes is a closed
subvariety in R.

Proposition 6. dimR0 = 2.

Proof. If the discriminant D(τ) identically vanishes, then the polynomial (27) has a multiple
root in C[τ ] and, therefore, can be represented in the form

f = (x− p(τ))2(x− q(τ)),

where p and q are some polynomials. The relations

2p(τ) + q(τ) = −τ3, p(τ)2q(τ) = −φ3(τ)

imply that p and q are polynomials of degrees 1 and 3, respectively, and the polynomial q is
uniquely determined by the polynomial p, which can be chosen arbitrarily. Thus, a polynomial
F ∈ R0 depends on two parameters.

8.3. It follows from the above considerations that if F ∈ R \ R0 , then the surface Y has only
finitely many singularities. Let us find sufficient conditions under which all of them are simple.

Proposition 7. For any polynomial F ∈ R\R0 , the surface Y has a simple singularity of type
A at the point o.

Proof. The surface Y is defined in CP 5 by the three quadratic equations (4) and the two
cubic equations (20). On the affine chart x0 = 1 the coordinates y1 and z in a neighborhood of o
can be expressed from (20) in the form of formal power series in x1 , x2 , and y2 with lower-order
terms of degree 3. Thus, the singularity of the surface Y at o is determined by an ideal I of the
ring C[[x1, x2, y2]]. In particular, substituting the expression for z found above into the equation
x1y2 = y2z , we obtain an element of I with lower-order term x1y2 , which is a quadratic form of
corank 1. Therefore, o is a simple singularity of type A [15].

Now suppose that p ∈ Y (τ0) is a singular point of Y different from o. Then p is a singular point
of the curve Y (τ0). If this singularity is a simple self-intersection, then its 2-jet is nondegenerate,
and hence the rank of its 2-jet as a singularity of Y is at least 2. Thus, in this case, p is a simple
singularity of type A of the surface Y .

Finally, suppose that p is a cusp of the curve Y (τ0), i.e., (27) is a perfect cube for τ = τ0 .
Making the change x = x̄− 1

3τ
3 , we obtain

f = x̄3 + φ̄2(τ)x̄+ φ̄3(τ), (28)
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where

φ̄2(τ) = −1
3τ

6 + φ2(τ), (29)

φ̄3(τ) =
2
27τ

9 − 1
3τ

3φ2(τ) + φ3(τ), (30)

and φ̄2(τ0) = φ̄3(τ0) = 0. The singularity of the surface Y at the point p is equivalent to the
singularity of the polynomial (28) as a function of x̄ and τ at the point x̄ = 0, τ = τ0 .

Let us expand the polynomials φ̄2(τ) and φ̄3(τ) in powers of τ̄ = τ − τ0 and consider the
lowest-order term of the obtained representation of f in the form of a polynomial in x̄ and τ̄ . This
term cannot be of the first degree, because if it were, then the point p would not be a singular point
of the surface Y . If this term is of the second or the third degree, then p is a simple singularity of
type A1 , A2 , or D4 . If this is τ̄4 , τ̄3x̄, or τ̄5 , then p is a simple singularity of type E6 , E7 , or E8 ,
respectively.

Thus, the point p is not a simple singularity of the surface Y only if τ0 is a root of multiplicity
� 4 of the polynomial φ̄2 and, simultaneously, a root of multiplicity � 6 of the polynomial φ̄3 .

Let us denote the set of those polynomials F ∈ R for which there exists such a τ0 by R1 . This
is a closed algebraic subvariety in R.

Proposition 8. dimR1 = 2.

Proof. The condition under consideration means that the polynomials φ̄2 and φ̄3 can be
represented in the form

φ̄2(τ)(= −1
3τ

6 + φ2(τ)) = −1
3(τ

2 + p1τ + p2)(τ − τ0)
4, (31)

φ̄3(τ)(=
2
27τ

9 − 1
3τ

3φ2(τ) + φ3(τ)) =
2
27(τ

3 + q1τ
2 + q2τ + q3)(τ − τ0)

6. (32)

Adding the first equality multiplied by 1
3τ

3 to the second one, we obtain

− 1
27τ

9 + φ3(τ) =
2
27(τ

3 + q1τ
2 + q2τ + q3)(τ − τ0)

6 − 1
9τ

3(τ2 + p1τ + p2)(τ − τ0)
4. (33)

Comparing the coefficients of τ5 in (31) and the coefficients of τ8 in (32), we can express p1 and
q1 in terms of τ0 , and comparing the coefficients of τ7 and τ6 in (33), we can express q2 and q3
in terms of τ0 and p2 . The parameters τ0 and p2 can be chosen arbitrarily. Thus, a polynomial
F ∈ R1 depends on two parameters.

Finally, consider the singular points on the double line l0 ⊂ Y ∩PL(v2) (under condition (22)).
On the affine chart y2 = 1 the scroll PS is given by the equations

x1 = x2z, y1 = z2, (34)

so that we can take x0 , x2 , and z for its internal coordinates. In these coordinates the line l0 is
defined by the equations

x2 = −1
2a2, z = 0,

and the singular points on it are given by

x20 =
1
2a2f2 − g2.

In a neighborhood of the fiber PL(v2) of the scroll PS punctured at o the surface Y is defined

by the equation F̃ = 0. Taking into account relations (34), we can write the polynomial F̃ in the
internal coordinates on the scroll chosen above as

F̃ = x20z + x22z
3 + x22 + a2x2 + b+ (ax2 + bz)z4 + (f2x2 + g2)z

+ (a1x2 + b1z)z
3 + (f1x2 + h)z2 + g1z

3. (35)

A direct verification shows that

1
2d

2F̃ = 2x0 dx0 dz + (dx2)
2 + f2 dx2 dz + f1x2(dz)

2

at the singular points of interest to us. For x0 �= 0, the rank of this quadratic form is at least 2, so
that we have two simple singular points of type A. At x0 = 0, where the singular points merge, the
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rank of this quadratic form equals 1 and its kernel is given by the linear equation dx2+
1
2f2 dz = 0.

Calculating the third differential, we obtain

1
6d

3F̃ = (dx0)
2dz + (x22 + a1x2 + g1)(dz)

3 + f1 dx2(dz)
2,

which, together with the constraint on the kernel of the second differential, gives the cubic form
(dx0)

2dz + k(dz)3 , where k is some coefficient. This means that, in the case under consideration,
we have a singular point of type D.

Thus, if F ∈ R \ (R0 ∪R1), then the surface Y is irreducible and has only simple singularities.

8.4. Now we explicitly construct a symplectic form on the variety Y reg of nonsingular points
of Y under the assumption F ∈ R \ (R0 ∪R1).

Let Ŷ denote the cone over Y , and let Ŷ reg denote the variety of its nonsingular points. At

each point v ∈ Ŷ reg \ L(v2) we “divide” the 4-form Ω constructed in Section 6 by dF , i.e., find a
3-form Φ such that

Ω = dF ∧ Φ.

This division is not unique, but the restriction of the form Φ to the tangent space of the cone is
determined uniquely.

To define Φ at the points v ∈ Ŷ reg∩L(v2), we use the representation (12) of the form Ω, which
implies

x2
x1

Ω = Ω̃ =
dx0 ∧ dx2 ∧ dy2 ∧ dz

y2
.

Thus, in this case, instead of dividing Ω by dF , we can divide Ω̃ by dF̃ = x2
x1

dF . This makes it

possible to determine the form Φ on the entire variety Ŷ reg . Obviously, it vanishes nowhere.
Further, substituting the radius vector of a point v into the form Φ as one of the arguments,

we obtain a 2-form ω̂ on Ŷ reg , whose kernel at each point is the one-dimensional subspace spanned
by the radius vector of v.

Finally, we prove that the form ω̂ is invariant with respect to homothety. Indeed, the homothety
with coefficient λ of C6 is implemented by an element of the torus T with t0 = t1 = t2 = λ and
t = 1. This element multiplies the form Ω and the polynomial F by λ3 and, therefore, preserves
the form Φ. Since the field of radius vectors is invariant with respect to homothety, it follows from
the invariance of Φ that ω̂ is invariant as well.

Thus, the form ω̂ determines a nowhere vanishing 2-form ω on Y reg = PŶ reg . This means that
Y is a projective model of some K3-surface in our family.

9. Proof of the Main Theorem

9.1. According to Torelli’s theorem for K3-surfaces (see, e.g., [16]), integrating the form ω
canonically constructed from F as above over the transcendental cycles of the surface Y , we obtain
an isomorphism of analytic varieties

p : R \ (R0 ∪R1) →̃L10/Γ10 (36)

(the period map).

Proposition 9. The map p is equivariant with respect to the action of the 1-torus T 1 introduced
in Section 7.3 under the assumption that T 1 acts on L10 as multiplication by t−1 .

Proof. Let F ∈ R \ (R0 ∪R1), and let Y ⊂ PS be the corresponding projective surface. Given
an element g(t) ∈ T 1 , the polynomial g(t)F corresponds to the surface g(t)Y isomorphic to Y ,
and we need only compare the image of the form ω on Y constructed from F by “dividing” the
form Ω by dF (as in Section 8.4) with the corresponding form ωt on the surface g(t)Y .

Clearly, the form g(t)ω can be obtained by dividing the form g(t)Ω = tΩ by g(t) dF = d(g(t)F ).
On the other hand, the form ωt is obtained by dividing Ω by d(g(t)F ). Therefore, ωt = t−1g(t)ω.
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The action of the torus T 1 on R described in Section 7.3 defines a grading of the algebra C[R],

which is the algebra of polynomials in the coefficients a, b, . . . , h of the canonical polynomial. The

degrees of these variables in this grading are, respectively,

12, 18, 10, 4, 16, 8, 8, 6, 14, 10, 12.

Proposition 9 means that the map p induces an isomorphism of graded algebras

p∗ : A(D10,Γ10) → C[R],

which implies the assertion of the main theorem for n = 10.

9.2. Consider the possible degeneracies. In the case where S(X) ⊃ D1,10 , the lines l1 and l2
on the surface Y merge (see Fig. 3), i.e., relation (22) holds. This means that one form of weight 8

becomes proportional to the squared generator of weight 4 and, thereby, falls out of the set of

generators of the algebra of automorphic forms and. There cannot be any other relations from

dimension considerations. This gives the assertion of the theorem for n = 9.

Next, if S(X) ⊃ D1,11 , then two singular points of type A1 on the double line l0 merge (see

Fig. 4), i.e., relation (26) holds. This means that one of the generators of weight 10 becomes

proportional to a product of the generators of weights 4 and 6. This implies the assertion of the

theorem for n = 8.
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