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Abstract. The article continues a series of papers on the absolute of finitely generated groups.
The absolute of a group with a fixed system of generators is defined as the set of ergodic Markov
measures for which the system of cotransition probabilities is the same as for the simple (right)
random walk generated by the uniform distribution on the generators. The absolute is a new
boundary of a group, generated by random walks on the group.

We divide the absolute into two parts, Laplacian and degenerate, and describe the connection
between the absolute, homogeneous Markov processes, and the Laplace operator; prove that the
Laplacian part is preserved under taking certain central extensions of groups; reduce the computa-
tion of the Laplacian part of the absolute of a nilpotent group to that of its abelianization; consider a
number of fundamental examples (free groups, commutative groups, the discrete Heisenberg group).

Key words: absolute, Laplace operator, dynamic Cayley graph, nilpotent groups, Laplacian part
of absolute.

1. Introduction

In this article, we continue to study the notion of the absolute of discrete groups and semigroups
with a fixed system of generators (see the previous papers [1]–[3], [5], [16], and [17]). It appeared
as a natural generalization of the well-known notions of Poisson–Furstenberg boundary, Martin
boundary, etc. for random walks on groups and semigroups and the exit boundary of the corre-
sponding Markov chains. Unlike the Poisson–Furstenberg boundary, which is defined as a measure
space, the absolute, as well as the Martin boundary, is a topological boundary. On the other hand,
the absolute of a group is a special case of the general notion of the absolute of a graded graph (or
branching graph, or Bratteli diagram, which are different names for the same notion), i.e., the set
of ergodic central measures on the Cantor-like set of infinite paths in the so-called dynamic Cayley
graph. All these terms are defined later on; here, in the introduction, we explain the purpose of the
suggested theory.

The theory of random walks on groups and the asymptotic theory of trajectories of these
random walks have always been closely related to the theory of homogeneous Markov chains and
harmonic analysis on groups, in particular, to the study of Laplace operators on groups, which
are, in some sense or other, generators of Markov chains. The correspondence between the set of
harmonic functions on a group with respect to a given Laplacian and the Poisson–Furstenberg (PF)
boundary of the Markov chain is now well known; for the most part, it has been studied relatively
thoroughly (see [2], [6], [13]–[15], and the references therein). However, this correspondence, for all
its importance, reflects the asymptotic properties of the walk only very roughly. First, for many
groups, the PF boundary, i.e., the set of harmonic positive functions, consists of only the constants;
this is the case for Abelian, nilpotent, and some other groups. Second, the correspondence itself
between the Laplacian and the asymptotic behavior of trajectories of the random walk is sometimes
not defined: for many Markov chains, the notion of a generator needs to be generalized and the
traditional Laplace operator has not yet been appropriately generalized. Our key notion—of the
absolute of a random walk on a group or semigroup with given generators—is defined not in terms
of classes of functions on groups related to the Laplacian but in terms of Markov measures (i.e.,
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random walks on groups) having the same cotransition probabilities as the simple random walk
determined by the set of generators. The PF boundary is only a part of the Laplacian absolute;
namely, this is a space with a (harmonic) measure which realizes the decomposition of the Markov
measure determined by the simple random walk into ergodic components. The whole absolute and,
in particular, its Laplacian part contain much more information on the asymptotic properties of the
group. E. B. Dynkin was probably the first to state, in some special cases, the problem of describing
the Markov measures having the same cotransition probabilities as a given Markov measure.

We retain the term “Laplacian absolute” for a certain part of the absolute, namely, for the part
consisting of nondegenerate measures; on this part, our generalization of classical theory reduces
to simply considering simultaneously not only harmonic functions, as usual, but also all minimal
positive eigenfunctions of the Laplace operator. The main results of the paper concern primarily the
Laplacian part of the absolute. In the relevant papers [7], [8], and [18] known to us this problem was
posed both in the general setting [8] and specifically for nilpotent groups ([7], [18]). It turns out (see
Theorem 4.2) that there are precise geometric conditions on a group epimorphism that guarantee
the preservation of the Laplacian part of the absolute under taking the corresponding quotient. This
provides a generalization and a new proof of Margulis’ well-known theorem on nilpotent groups [8].
Theorem 4.2 implies that the Laplacian part of the absolute of a nilpotent group coincides with
that of its abelianization.

The general problem of describing even the Laplacian part of the absolute of an arbitrary
discrete finitely generated group is difficult, and it is not yet clear how wide is the class of groups
for which it can be reduced to finding the PF boundary. In [3] we demonstrated such a reduction
for free groups, for which the Laplacian part of the absolute is the product of the PF boundary
and a half-open interval. We cite this result in the section containing examples. We also mention
the paper [17], which is devoted to the problem of describing the absolute for commutative groups.
Together with Theorem 4.2 of the present paper, results of [17] partially solve the problem in the
case of nilpotent groups, but only for the Laplacian part of the absolute.

By definition, the degenerate part of the absolute consists of those central ergodic measures for
which some cylinder sets have zero measure. Another way to define degeneracy is to say that the
support of the measure is a proper ideal in the path space of the graph (see below). A proper ideal
of a dynamic Cayley graph is not necessarily the dynamic graph of a group; hence the description
of degenerate central measures reduces, in some way or other, to finding the central measures for
an arbitrary branching graph. Nevertheless, the study of the degenerate part of the absolute for
the Heisenberg group shows that the approach using geometric group theory remains useful in this
case, too: the problems under consideration are closely related to group-geometric problems (the
theory of geodesics in groups), as well as to the theory of filtrations of σ-algebras and, of course,
to harmonic analysis on groups.

The paper is organized as follows.
Section 2 contains numerous definitions and results related to the notion of absolute, but pri-

marily those needed for what follows. For more details, see the references cited above.
In Section 3 we study the correspondence between central measures and positive eigenfunctions

of the Laplace operator. We prove that every measure from the Laplacian absolute is homogeneous
in an appropriate sense (see Lemma 3.2) and establish a bijective correspondence between the
homogeneous nondegenerate central measures and the classes of proportional positive eigenfunctions
of the Laplace operator (see assertion 2 of Theorem 3.4). As a consequence, we obtain one of the
main results of the paper, namely, assertion 1 of Theorem 3.4, which says that the measures from
the Laplacian absolute are in one-to-one correspondence with the classes of proportional minimal
positive eigenfunctions of the Laplace operator.

In Section 4 we introduce the notion of a totally distorted subgroup and prove that taking the
quotient of a group by a totally distorted subgroup all of whose elements have finite conjugacy
classes in the original group changes neither the set of eigenfunctions of the Laplacian (Lemma 4.3)
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nor the Laplacian part of the absolute (Theorem 4.2). Theorem 4.2 implies Corollary 4.4, which says
that the Laplacian part of the absolute of a nilpotent group coincides with that of its abelianization.

Section 5 contains results on the degenerate part of the absolute. The main result of this
section is Theorem 5.1, which says that, for any finitely generated group and any choice of a
set of generators, all degenerate central measures are concentrated on paths whose projections
on the Cayley graph contain no cycles. It follows that, in many interesting cases, all degenerate
central measures are concentrated on paths whose projections on the Cayley graph are geodesics
(Corollary 5.4).

In Section 6 we give descriptions of the absolute for the cases of free groups, the discrete
Heisenberg group, commutative groups, and finite groups. For free groups and homogeneous trees,
the absolute was described in our paper [3]. Here we briefly reproduce the main result of [3] and
give its illustrative formulation. For the discrete Heisenberg group, we only state the result; its
proof will be given elsewhere. The case of commutative groups was considered in [17].

A detailed study of the absolute (including its degenerate part) for nilpotent and other classes
of groups will be the subject of our future papers.

2. Necessary Definitions

We give only definitions of (old and new) notions used in what follows. For more detailed
information on branching graphs and absolutes, not necessarily related to groups, see the papers
cited in the introduction.

2.1. Graphs, branching graphs, and the Cayley and dynamic graph of a group. By
a graph we mean a locally finite directed graph with a marked vertex. Loops and multiple edges
are allowed. A path in a graph is a (finite or infinite) sequence of alternating vertices and edges of
the form

v0, e1, v1, e2, . . . , en, vn,

where each ek is an edge with initial vertex vk−1 and terminal vertex vk (both vertices and edges
may repeat). We consider graphs in which every path can be extended to an infinite path. A special
class of graphs is that of branching graphs. A branching graph is a graph in which the set of paths
from the marked vertex v0 to every vertex v is nonempty (in this case, one says that v is reachable
from v0) and all these paths have the same length. On the vertex set of a branching graph there is
a natural grading by the distance to the marked vertex. Such graphs are also called (locally finite)
N-graded graphs, or Bratteli diagrams.

To each graph Γ with a marked vertex v0 a dynamic graph Dv0(Γ) is canonically associated.
This is the branching graph constructed as follows. The nth level of Dv0(Γ) is a copy of the set of
vertices of Γ connected with the marked vertex v0 by paths of length n. Two vertices v1 and v2
in Dv0(Γ) are connected by exactly k edges directed from v1 to v2 if and only if the level of Dv0(Γ)
containing v2 is higher by 1 than that containing v1 and the number of edges from the vertex w1

of Γ that corresponds to v1 to the vertex w2 of Γ that corresponds to v2 is precisely k. Note that
a graph Γ coincides with its dynamic graph Dv0(Γ) if and only if Γ is a branching graph.

Let us apply the above definitions to groups. The notion of the Cayley graph of a (semi)group
with a chosen set of generators is well known. By a set of generators in a group G we mean a
subset of G generating it as a semigroup. It is not necessarily symmetric and does not necessarily
contain the identity. Note that the results of this paper extend automatically to the case of sets of
generators with multiplicities or weights. The dynamic (Cayley) graph of a group G with a chosen
set of generators S , denoted by D(G,S) in what follows, is the dynamic graph (in the sense of the
above definition) constructed from the Cayley graph of the pair (G,S).

2.2. The path space of a branching graph, central measures, ergodicity, and the
absolute. Let D be a branching graph, and let T (D) denote the set of all infinite paths in D
from the marked vertex. It is equipped with the weak (projective limit) topology, defined in a
natural way, in which T (D) is compact. Let M (D) denote the set of Borel probability measures
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on this space. A measure ν on T (D) is said to be central if, for almost every (with respect to ν)
path t, the conditional measure on the set of paths that differ from t at finitely many places is
uniform. In another terminology, this means that the tail equivalence relation is semihomogeneous.
An equivalent definition of centrality is as follows: a measure on T (D) is central if, for every
vertex v of D, the probabilities of all finite paths from the marked vertex to v corresponding to this
measure are equal. One can easily show that all central measures are Markov. The central measures
constitute a convex compact set C (D), which is a simplex (see [2]) in M (D). The simplex C (D) is
the projective limit of a sequence of finite-dimensional simplices of measures on finite paths; see [2].
Here we do not use this fact.

A central measure is called ergodic (or regular) if it is an extreme point of the simplex C (D).
The absolute of a branching graph is the set of all ergodic central measures on the compact set T (D)
of infinite paths starting at the marked point.

Now we will apply all these notions to the dynamic graph of a group.

Definition 2.1. The absolute of a finitely generated group with a fixed finite set of generators
is the absolute of the corresponding dynamic graph.

The above definitions are equivalent to the following definition in terms close to the theory
of random walks. The absolute of a group G is the set of Markov measures generated by ergodic
random walks on the Cayley graph of G and satisfying the following condition: for every n and
any element g of G representable as a product of n generators, the conditional measure on the
representations of g as a product of n generators is uniform. For stationary Markov measures, the
notion of a central measure coincides with the well-known notion of a measure of maximal entropy.
Note that the ergodicity of a measure, which is defined above in terms of the impossibility of writing
this measure as a nontrivial convex combination of other central measures, can be defined directly
in terms of the intersection of the past σ-algebras (see Section 2.5).

The absolute of a group G with a set of generators S is denoted by A (G,S).

2.3. The Laplace operator and its eigenfunctions. Given a group G and a set of gen-
erators S , we define the Laplace operator acting on the space of all functions on G as the linear
operator given by the formula

(ΔSf)(g) :=

∑
s∈S f(gs)

|S| .

We will be interested in the action of ΔS on nonnegative functions and its eigenfunctions
corresponding to nonnegative eigenvalues.

A nonnegative eigenfunction f of an operator A is called minimal if every nonnegative eigen-
function of A having the same eigenvalue and dominated by f is proportional to f .

The relationships between the operator ΔS , its eigenfunctions, Markov measures, and random
walks on groups will be studied in more detail in the next section.

2.4. The nondegenerate and degenerate parts of the absolute. We say that a measure ν
on the path space of a branching graph is nondegenerate if the probability of every finite path (i.e.,
every cylinder set) is nonzero. Themain part of the absolute is its subset consisting of nondegenerate
measures. In the group case, the main part of the absolute is called the Laplacian part of the
absolute, or simply the Laplacian absolute. The set of degenerate ergodic central measures will be
called the degenerate part of the absolute. It is related to the geometry of groups and the geometry
of paths in Cayley graphs.

Every graded graph determines a partial order on its vertices. An ideal of this partial order is
a subset of vertices that contains, along with every vertex v, all vertices smaller than v. One can
consider the path space of a given ideal as a closed subset in the space of all paths. It is easy to see
that the definition of degenerate and nondegenerate central measures can be reformulated by using
the notion of ideal as follows. The support of every central measure (as a closed set in the path
space) is always the space of all paths of some ideal. If this ideal coincides with the whole path
space, then the measure is nondegenerate; if the ideal is proper, then the measure is degenerate.
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Hence, in order to find the whole absolute, one has to find the absolutes of some proper subgraphs
of the dynamic graph. The problem of describing ideals for the subgraphs of a given graph is of
independent interest.

2.5. Additional structures and comments.
A filtration structure. We consider the tail equivalence relation on the path space of a graph

(for instance, a branching graph). Here it is convenient to use the framework of the theory of
filtrations (see [4]). The tail filtration on the path space of a graph, or, in short, the tail filtration, is
defined as follows. Two paths are said to be n-equivalent if they coincide beginning with the nth
vertex and tail equivalent if they are n-equivalent for some n. Let An , n ∈ N0 , be the σ-algebra of
those Borel subsets in the compact set of infinite paths which contain, along with every path, all
n-equivalent paths. The decreasing sequence

A0 ⊃ A1 ⊃ A2 ⊃ . . .

of σ-subalgebras of Borel sets is called the tail filtration on the path space. The equivalence classes
described above are also called blocks, or elements, of the filtration. The filtration is said to be
ergodic if the intersection of the above σ-algebras is trivial. An automorphism of the filtration is
an automorphism of the measure space preserving the tail equivalence classes. In these terms, a
central measure is a measure invariant under all automorphisms of the tail filtration.

Generalizations: equipped multigraphs. In the present paper, we consider primarily simple
walks related to the uniform distribution on the set of generators, but one can also consider the
absolute in a more general setting depending on a cocycle (for more details on equipped multigraphs
and their cocycles, see Sections 3.3 and 3.5 in [4]). The generalization to the case of multigraphs
will be needed in Section 6.2.

The compact space of infinite words. An alternative approach to the theory of absolutes
of groups and semigroups is provided by the algebraic structure: the dynamic graph of a group is
the Cayley graph of a graded semigroup, and the path space of the dynamic graph is canonically
isomorphic to the space of infinite words in the alphabet of generators (see [10]). In this paper
we use this approach in the example of Section 5 and in Section 6.4, which considers the discrete
Heisenberg group. Within this approach, when considering finite and infinite sequences of elements
of a set, we say that this set is an alphabet, its elements are symbols, or letters, and sequences of
elements are words in this alphabet. For presentations of groups, we use alphabets consisting of
pairs of letters of the form {a, a−1}; such letters are called inverse to each other. A word without
inverse letters is a word in which any (not necessarily neighboring) two letters are not inverse to
each other. Words are written without commas, a block of n successive letters a is denoted by an ,
and a block of n successive letters a−1 is denoted by a−n . The notation (a−1)−1 is interpreted
as a, and a0 stands for the empty (sub)word. The inverse word of w1 . . . wn is w−1

n . . . w−1
1 . The

notation a+∞ (a−∞) is used for the right-infinite word whose every letter is a (respectively, a−1).

3. Homogeneous Measures, the Laplace Operator, and the Laplacian Absolute

In this section we establish a connection between homogeneous Markov chains on a group G
(more precisely, on the Cayley and dynamic graphs) and the functions associated with the Laplace
operator on G. This connection is well known for harmonic functions, i.e., functions invariant un-
der the Laplace operator; it is the basis of harmonic analysis on groups. For eigenfunctions, the
connection is less known and less studied; perhaps, one of the first papers on the subject, using
a somewhat different viewpoint, was Molchanov’s paper [8]. We treat the subject systematically
and refine the correspondence between properties of eigenfunctions and their linear combinations
(positivity, minimality, etc.) on the one hand and properties of Markov chains (homogeneity, cen-
trality, ergodicity, etc.) on the other hand. It is this correspondence which provides a link between
the nondegenerate part of the absolute and the theory of the Laplace operator. Note that it is
the absence of such a correspondence for degenerate Markov chains which causes difficulties in the
study of the degenerate part of the absolute.
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Before proving the main theorem, we discuss the notion of homogeneity. Let G be a finitely gen-
erated group, and let S be a finite set of generators of G. We construct the dynamic graph D(G,S)
corresponding to the pair (G,S) and consider central measures on the compact set of infinite paths
of this graph. It is easy to verify (see the introduction) that the random processes corresponding
to central measures, both on the dynamic graph and on the Cayley graph, are Markov.

Definition 3.1. We refer to measures on the path space of the dynamic graph that give rise
to time-homogeneous Markov chains on the Cayley graph as homogeneous measures. Recall that
a Markov chain is called time-homogeneous if its transition probabilities do not depend on time.
(This terminology causes no confusion, since there are no time-inhomogeneous Markov processes
on dynamic graphs.)

Lemma 3.2 (on homogeneity). All points of the Laplacian absolute of a group, i.e., all non-
degenerate ergodic central measures on the path space of the dynamic graph, are homogeneous. In
other words, every such measure is generated by a homogeneous Markov measure on the group.

Proof. Let v be a vertex of the dynamic graph D = D(G,S), and let Dv be the subgraph in D
formed by the vertices and edges reachable from v. If a central measure μ does not vanish on the set
of paths passing through v (for example, if μ is nondegenerate), then we can consider its restriction
μv to the path space of Dv . The group structure gives rise to a translation, i.e., a canonical natural
isomorphism α between Dv and D. If v represents a central element (for example, the identity)
of the group, then, for every vertex x in D, the vertex α−1(x) is, obviously, reachable from x. It
follows that the measure μ dominates the measure α∗(μv). Clearly, the measures μv and α∗(μv)
are central. Therefore, if μ is ergodic, then α∗(μv) = μ.

Applying the above argument to the vertices of the dynamic graph that project to the identity
of the group, we see that the transition probabilities of the Markov chain corresponding to a
nondegenerate ergodic central measure are invariant under the time shift by k, provided that the
Cayley graph of the pair (G,S) contains a cycle of length k. However, in the group case, the Markov
chain corresponding to a nondegenerate central measure is indecomposable in the sense of the theory
of Markov chains, and it is well known (see, e.g., Theorem 3.3 in [9]) that in an indecomposable
chain the time shift by the period of the chain can be written as the composition of the (direct and
inverse) shifts by the lengths of some cycles, which implies the desired result.

Remark 3.3. The second assertion of Theorem 3.4 proved below shows that, as a rule, only a
small part of central measures are homogeneous.

Now we proceed to a detailed description of the relationship between central measures and
the Laplace operator. In particular, we will explain the connection between this operator and the
Laplacian absolute. A Markov measure on the paths of the dynamic graph is determined by a
collection of transition probabilities. Our aim is to construct a system of transition probabilities,
i.e., define some measure, from the eigenfunctions of the Laplace operator. Given a positive function
f : G → R, we define a transition probability p(g, gs), where g ∈ G and s ∈ S , by the rule

p(g, gs) := f(gs)

/∑

t∈S
f(gt). (1)

Let D denote the mapping that sends a function f to the set of transition probabilities on the
Cayley graph given by (1) and, thereby, to a Markov measure νf on the path space of the dynamic
graph. Recall that the classical theory establishes a correspondence between the minimal positive
harmonic functions and the ergodic central measures of a certain form, or the points of the Poisson–
Furstenberg boundary. The following theorem extends this correspondence.

Theorem 3.4. 1. The mapping D induces a bijection between the set of classes of proportional
positive minimal eigenfunctions of the Laplacian and the Laplacian absolute, i.e., the set of all
nondegenerate central ergodic measures on the path space of the graph D(G,S).
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2. The mapping D induces a bijection between the set of classes of proportional positive (not
necessarily minimal) eigenfunctions of the Laplacian and the set of all homogeneous nondegenerate
central (not necessarily ergodic) measures on the path space of the graph D(G,S).

The first assertion of Theorem 3.4 is the main result of this section.
To prove Theorem 3.4, we will need the following lemma, which introduces the notion of char-

acteristic.

Lemma 3.5 (on the existence of a characteristic). Let ν be a homogeneous nondegenerate
central measure on the path space of the graph D(G,S). Then there exists a unique number Aν ∈ R

(called the characteristic of ν ) and a unique function fν : G → R such that, for every finite path P
in the dynamic graph,

ν(P ) = fν(g) · A|P |
ν , (2)

where ν(P ) is the measure of the cylinder set of paths that begin with P , |P | is the length of P ,
and g is the element of G corresponding to the terminal vertex of P .

Proof. Choose an arbitrary path Z in D(G,S) of nonzero length |Z| that represents the identity
of G, and let Aν := ν(Z)1/|Z| . The value Aν does not depend on the choice of Z . Indeed, let Y

be another path representing the identity. Consider the path Z |Y | whose projection on the Cayley
graph is the |Y |-fold repetition of the projection of Z . Since the paths Z |Y | and Y |Z| have the same
length, it follows from centrality that

ν(Z)|Y | = ν(Z |Y |) centrality
= ν(Y |Z|) = ν(Y )|Z|. (3)

Further, for each element g ∈ G, choose an arbitrary path Pg representing this element in the
dynamic graph and let

fν(g) := ν(Pg) · A−|Pg|
ν . (4)

Then fν does not depend on the choice of a path: if, for some path Qg representing the same

element g, the values ν(Qg) · A−|Qg|
ν and ν(Pg) · A−|Pg|

ν differed, then, extending Pg and Qg by
paths with the same projections on the Cayley graph to paths representing the identity, we would
obtain a contradiction with (3).

To see the uniqueness of Aν , it suffices to consider the paths representing the identity of G.
By (2), this immediately implies the uniqueness of fν .

Remarks 3.6. 1. The notion of characteristic is parallel to the notion of eigenvalue for eigen-
functions of the Laplacian on the semigroup N0 := {0, 1, 2, . . . }; this can be seen by regarding
the dynamic graph as a subset in the direct product of the Cayley graph of some group and the
Cayley graph of the semigroup N0 := {0, 1, 2, . . . } and using the canonical bijection between the
Laplacian absolute and the set of harmonic functions on the dynamic graph: the harmonic functions
corresponding to homogeneous measures can be decomposed into products of eigenfunctions of the
Laplacian on the original group and on the semigroup N0 . (The problem of decomposing minimal
harmonic functions into such products was discussed in [8].)

2. It is clear from the proof of Lemma 3.5 that (in terms of this lemma) logAν is given by the
formula

log ν(P1)− log ν(P2)

|P1| − |P2| , (5)

where P1 and P2 are arbitrary paths of different lengths in the Cayley graph for which both initial
and terminal vertices coincide, |Pi| is the length of Pi , and ν(Pi) is the product of the transition
probabilities corresponding to the measure ν over all edges of Pi (counting multiplicities).

Proof of assertion 2 of Theorem 3.4. If f is an eigenfunction of the Laplacian with eigen-
value α, then the defining formula (1) implies that the value of the measure νf = D(f) on the
cylinder set of paths that begin with a given path P of length k representing an element g is given
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by the formula

νf (P ) =
f(g)

f(1G)
· (α · |S|)−k. (6)

This proves the centrality of the measure νf ; the homogeneity of this measure follows from the
definition.

Conversely, let ν be a homogeneous nondegenerate central measure on the path space of the
graph D(G,S). Then the corresponding function fν in Lemma 3.5 is an eigenfunction of the Lapla-
cian with eigenvalue A−1

ν · |S|−1 (this follows from (4)). Comparing formulas (4) and (6), we see
that the composition of f �→ νf and ν �→ fν is the identity mapping on the sets under consideration
(we distinguish the subset of normalized functions in the set of eigenfunctions).

Proof of assertion 1 of Theorem 3.4. Let us show that the bijection in the second assertion
of the theorem proved above sends ergodic measures to minimal functions. (This will immediately
imply the desired result by Lemma 3.2 on homogeneity.) It follows from the formula (4) defining the
function fν that the correspondence ν �→ fν sends the simplex of measures with characteristic A
to the simplex of positive eigenfunctions (taking the value 1 at the identity of the group) of the
Laplacian with eigenvalue A−1 · |S|−1 and preserves the affine structure. Since the minimality of an
eigenfunction is defined with respect to functions having the same eigenvalue, it follows that the
correspondence ν �→ fν yields an embedding of the main part of the absolute into the set of classes
of proportional minimal positive eigenfunctions of the Laplacian. To check that this embedding is
bijective, we must verify that the decomposition of a homogeneous nondegenerate central measure ν
into ergodic components involves neither degenerate measures nor measures with characteristics
different from that of ν . To see this, in the Cayley graph choose a cycle of nonzero length with
endpoints at the identity of the group and observe that, by (5), the values of homogeneous measures
with different characteristics at the powers of this cycle produce exponentials with different bases,
while every degenerate measure vanishes at these powers (see Theorem 5.1).

Remarks 3.7. 1 (on the algebra of eigenfunctions). Apparently, the Laplacian absolute can
be described and studied by analogy with the theory of harmonic functions, in which a nontrivial
commutative multiplication of such functions is introduced so that, on the one hand, the Gelfand
spectrum of the corresponding Banach algebra coincides with the set of minimal positive harmonic
functions and, on the other hand, this is exactly the exit boundary of the simple walk. Such a
construction of the Laplacian absolute would, first, clarify the situation and, second, simplify the
proofs given above (see [14], [11], and the literature on harmonic analysis). It is also of interest to
establish direct analytic links between the asymptotics of the typical trajectories of ergodic random
walks on a group and the corresponding positive minimal eigenfunctions of the Laplace operator.

2 (on minimal eigenfunctions). The results of this section remain valid in a more general context:
in particular, the main part of the absolute can be described in terms of minimal eigenfunctions of
the Laplacian for a wide class of graphs that do not have symmetries of Cayley graphs of groups
(see [8]). We also mention that the collection of minimal eigenfunctions itself was studied in the
literature and is well known for some cases (see [18] and a description of minimal eigenfunctions
for the product of graphs in [8]).

3 (on the structure of the Laplacian absolute). In the investigated cases, there is a bijection
between the spaces of positive minimal eigenfunctions on a group for any two nonextreme eigen-
values. Accordingly, in these cases, the Laplacian absolute (with the “extreme” fiber excluded) is
the product of some space and an interval. The authors do not know examples of groups for which
this is not so. In any case, the class of groups with this property is of interest.

4 (on the group action on the Laplacian absolute). Identifying the Laplacian absolute with the
set of minimal eigenfunctions of the Laplacian (see Theorem 3.4), we obtain an action of the group
on its Laplacian absolute. It is of interest to describe the class of groups for which this action is
trivial. This is exactly the class of groups for which every nondegenerate ergodic central measure
gives rise to a Markov chain with independent identically distributed increments (the transition
probabilities are the same at all vertices of the graph and depend only on the generators labeling the
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edges). This class contains all finitely generated nilpotent groups (see Section 6.3 and Corollary 4.4
below).

4. Preservation of the Laplacian Absolute under Extensions

In this section we introduce the notion of a totally distorted subgroup and prove that taking
the quotient of a group by a totally distorted subgroup all of whose elements have finite conjugacy
classes in the original group changes neither the eigenfunctions of the Laplacian (Lemma 4.3) nor
the Laplacian part of the absolute (Theorem 4.2). These results are a natural generalization of
Margulis’ theorem which arises when looking at the latter from the viewpoint of geometric group
theory. A crucial role here is played by the notion of a distorted subgroup in this theory. As we will
see, in the case of nilpotent groups, the existence of a central totally distorted subgroup is typical.
This gives Corollary 4.4, which says that the Laplacian absolute of a nilpotent group coincides with
that of its abelianization.

Definition 4.1. A finitely generated subgroup H of a finitely generated group G is called
distorted if the identity embedding H → G is not a quasi-isometry with respect to word metrics;
the property of being distorted does not depend on the choice of a set of generators (see [12]). We
say that a subgroup K in a group G is totally distorted if all infinite cyclic subgroups of K are
distorted in G.

In the case of an infinite cyclic subgroup, we have the following equivalent definition of dis-
tortion: the infinite cyclic subgroup 〈g〉 generated by an element g ∈ G is distorted if and only if
|gk|G = o(k), where | · |G is the length of an element in the word metric of the group G. Thus, a
subgroup K in G is totally distorted if and only if |gk|G = o(k) for every element g ∈ K .

Theorem 4.2. Let φ : G → G/K be an epimorphism of finitely generated groups such that the
kernel K is a totally distorted subgroup and every element of K has finite conjugacy class in G.
Let S be a set of generators of G, and assume that φ is injective on S . There arises a natural iso-
morphism φ∗ between the path spaces of the graphs D(G,S) and D(G/K,φ(S)). This isomorphism
φ∗ induces an isomorphism of the Laplacian absolutes of the pairs (G,S) and (G/K,φ(S)).

The main fact used in the proof of Theorem 4.2 is that φ∗ sends central measures to central
measures. If K is not totally distorted, this is not always true. To prove Theorem 4.2, we will need
the following lemma related to Margulis’ theorem on harmonic functions on nilpotent groups [7]
(see also [18]). This lemma can be directly extended to Laplacians of arbitrary measures whose
supports generate the whole group; however, here we restrict ourselves to the main case we are
interested in.

Lemma 4.3. Let G be a finitely generated group. Assume that a subgroup H in G is totally
distorted and every element of K has finite conjugacy class in G. Let S be a set of generators
in G. Then every positive eigenfunction of the Laplacian constructed from S is constant on the
right cosets of H .

Proof. Consider a left-invariant word metric d on G (for example, the one corresponding to
the set S of generators). To each element g of G we associate the function

φg : G → R, x �→ d(x, gx) = d(1G, x
−1gx),

sending an element x ∈ G to the distance d(x, gx) (in the chosen metric) between x and gx. If the
conjugacy class of g in G is finite, then, obviously, the function φg takes only finitely many values
(since the element x−1gx is conjugate to g). Using Harnack’s inequality (see, e.g., [18, p. 262]), we
see that, for every positive eigenfunction f of the Laplacian, there is a positive constant ε such
that f(x) > ε · f(gx) for all x ∈ G. If f is minimal and, thus, cannot dominate eigenfunctions not
proportional to f , then it follows that there is a positive t ∈ R such that f(gx) = t · f(x) for all
x ∈ G. But f(gn) = tn ·f(1G); hence if the subgroup 〈g〉 generated by g is finite or distorted, then,
again using Harnack’s inequality but this time applying it to elements of the sequence f(gn), we
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see that t = 1. It remains to observe that every eigenfunction of the Laplacian can be decomposed
into a sum of minimal eigenfunctions.

Proof of Theorem 4.2. Observe that, for an arbitrary group epimorphism G1 → G2 preserv-
ing the set of generators, every eigenfunction of the Laplacian on G2 can be lifted to an eigenfunction
of the Laplacian on G1 , but in the general case, the Laplacian on G1 may have eigenfunctions that
do not correspond to any eigenfunctions of the Laplacian on G2 . If the kernel of the epimorphism
satisfies the conditions of Lemma 4.3, then the lemma guarantees that every positive eigenfunction
of the Laplacian on G2 is the lifting of an eigenfunction of the Laplacian on G1 . Thus, an epimor-
phism with such kernel induces a bijection at the level of positive eigenfunctions of the Laplacians.
The proof is completed by passing from eigenfunctions of the Laplacians to the Laplacian absolutes
(see Theorem 3.4).

Corollary 4.4. Let N be a finitely generated nilpotent group, and let φ : N → Ab(N) be the
abelianization homomorphism. Choose a set S of generators in N and assume that φ is injective
on S . There arises a natural isomorphism φ∗ between the path spaces of the graphs D(N,S) and
D(Ab(N), φ(S)). This isomorphism φ∗ induces an isomorphism of the Laplacian absolutes of the
pairs (N,S) and (Ab(N), φ(S)).

Proof. In an arbitrary group the subgroup generated by the commutators lying in the center
of the group is totally distorted; this can easily be deduced from the fact that if a commutator [a, b]
lies in the center, then [am, bn] = [a, b]mn for arbitrary integers m and n.

In a nilpotent group N of class s, the subgroup Ns−1 (where Ni = [N,Ni−1] and N0 := N )
is generated by the commutators lying in the center of N and, consequently, totally distorted;
moreover, the quotient N/Ns−1 is a nilpotent group of class s − 1, and Ab(N) = Ab(N/Ns−1).
Therefore, Ab(N) is obtained from N by taking a sequence of quotients by central totally distorted
subgroups, and the required assertion follows from Theorem 4.2.

Remark 4.5. Theorem 4.2 and Lemma 4.3 generalize Margulis’ important theorem [7] that
every positive eigenfunction of the Laplacian of a nilpotent group is constant on the cosets of the
commutant in the sense that nilpotency is replaced by the conditions in Theorem 4.2; see also [18].

5. The Degenerate Part of the Absolute and Geodesics on the Group

In this section we prove a number of statements concerning the degenerate part of the absolute.
As in the previous sections, G is a finitely generated group with a finite set of generators S .
We construct the dynamic graph D(G,S) corresponding to the pair (G,S) and consider central
measures on the space of infinite paths of this graph.

Theorem 5.1. All degenerate central measures on the path space of the dynamic graph are
concentrated on paths whose projections on the Cayley graph do not contain cycles.

Proof. It suffices to consider the case of an ergodic (degenerate central) measure. Assume
that the probability of traversing a finite path P whose projection on the Cayley graph contains
a cycle does not vanish. Since we deal with the dynamic graph of a group, there is a path P ′
in D(G,S) that leads to the same vertex as P and begins with a path P ′′ whose projection on the
Cayley graph is a cycle. We have ν(P ′′) � ν(P ′) = ν(P ) > 0, because the measure is central and
additive. Applying the argument from the proof∗ of Lemma 3.2 on homogeneity, we conclude that
the conditional measure on the subgraph Dv for the terminal vertex v of P ′′ is isomorphic to the
original measure ν . It follows that the original measure ν takes nonzero values not only at P ′′ but
also at all paths corresponding to the powers of the cycle given by the projection of P ′′ . Thus, the
original measure takes nonzero values at arbitrarily long paths that project to cycles. But it follows
from standard results of the theory of Markov chains (see Theorems 3.2 and 3.3 in [9]) that, for
every path Q in the Cayley graph, there is an N ∈ N such that, for every n > N , the path Q can

∗Lemma 3.2 deals with the case of a nondegenerate measure, but the argument in its proof applies also to a
degenerate measure, provided that we consider paths on which the measure is concentrated.
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be extended to a cycle of length n, provided that cycles of length n exist. It remains to use the
centrality of the measure to obtain a contradiction with the assumed degeneracy.

Since the measures under consideration are central, it follows that Theorem 5.1 implies Corol-
lary 5.3 that degenerate central measures are concentrated on paths whose projections on the
Cayley graph are close to geodesics. To rigorously define the notion of “being close to geodesics,”
we introduce the following notion of the defect of a path.

Definition 5.2. The defect of a finite path in the Cayley graph of a group is the difference
between the length of this path and the length of the shortest path with the same initial and
terminal vertices. The defect of an infinite path is the supremum of the defects of its finite parts.
Paths with zero defect are called geodesics. The defect of a (finite or infinite) path in the dynamic
graph of a group is the defect of its projection on the Cayley graph.

Corollary 5.3. Let G be a finitely generated group, and let S be a finite set of generators
of G. Then there exists an N � 0 such that all degenerate central measures on the path space of
the graph D(G,S) are concentrated on paths with defect at most N .

Proof. Let D be the greatest common divisor of all lengths of cycles in the Cayley graph of the
pair (G,S). Then, as we know from the combinatorics of Markov chains (see Theorem 3.3 in [9]),
there exists a J ∈ N0 such that, for every j � J , the Cayley graph contains a cycle of length jD.
Note also that the defect of every path is divisible by D (to see this, it suffices to extend the path
and the corresponding geodesic to cycles by the same path). Let P be a finite path (beginning at the
marked vertex) with defect def(P ) > JD in the dynamic graph, and let Q be a geodesic path in the
Cayley graph connecting the same vertices as the projection of P . Then, since def(P ) > JD, the
Cayley graph contains a cycle Z of length |Z| = def(P ). We may assume without loss of generality
that Z starts and ends at the identity of the group. Then the path consisting of the cycle Z and
the path Q has the same length and connects the same vertices as the projection of P . Since the
measure is central, it follows by Theorem 5.1 that degenerate measures vanish on the path P . It
remains to set N := JD.

It turns out that one can easily give not too restrictive sufficient conditions on G and S under
which all degenerate central measures are concentrated on paths whose projections on the Cayley
graph are geodesics.

Corollary 5.4. Let G be a finitely generated group, and let S be a finite set of generators of G.
Assume that the Cayley graph Γ of the pair (G,S) contains a cycle with length equal to the greatest
common divisor of all lengths of cycles in Γ (this condition is satisfied, for example, if S contains
the identity of the group or if S is symmetric and all cycles in Γ are even). Then all degenerate
central measures on the path space of the graph D(G,S) are concentrated on paths whose projections
on Γ are geodesics.

Proof. The assumptions of the corollary correspond to the case N = J = 0 in the proof of
Corollary 5.3.

The spectrum of cases in which degenerate central measures are concentrated on geodesics is far
from exhausted by Corollary 5.4. For example, in a commutative group this is so for any finite set of
generators (see [17]). Nevertheless, the following example shows that, in some cases, geodesics are
not sufficient to describe the degenerate part of the absolute: a degenerate ergodic central measure
may be neither concentrated on paths with zero defect nor homogeneous.

Example. Consider the Baumslag–Solitar group BS(2, 1) (this is the group with two genera-
tors a and b and one relation ab2a−1 = b) with the set of generators S := {a, b, a−1, b−1}. One can
easily check that the three infinite paths corresponding to the three infinite words

abbba+∞, baabba+∞, bbab−1a+∞

constitute a tail equivalence class; hence the uniform measure on these three paths is (central and)
ergodic. At the same time, as is easy to check, the projections of these three paths on the Cayley
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graph are not geodesics, and the transition probabilities of the corresponding Markov process at
the point g = abb = ba are different for the third and the fourth step.

6. Example Descriptions of the Absolute

6.1. The absolute of free groups and homogeneous trees. Although against the natural
order of exposition, we begin with a more complicated and illustrative example of computing
the absolute of a free group, after which we consider the problem of computing the absolute in
the order of increasing complexity of the group structure. This example clearly demonstrates the
instructiveness of the transition from the Poisson–Furstenberg boundary to the absolute.

Consider the homogeneous tree Tq+1 in which the valences of all vertices equal q + 1. The set
Hmin of minimal positive harmonic (i.e., invariant under the Laplace operator) functions on Tq+1

coincides with the family of functions of the form q−h(v) , where h(v) is an arbitrary horofunction

on Tq+1 . One can easily check that, for every (real or complex) number α, the power (q−h(v))α =

q−αh(v) of any minimal harmonic function q−h(v) is an eigenfunction of the Laplace operator with
eigenvalue

sα =
qα + q1−α

q + 1
.

A complete description of the absolute (see Theorem 2.1 in [3]) is as follows: the absolute of the
free group with respect to the natural generators is the direct product of the boundary of the free
group and a closed interval:

A (Tq+1) = ∂Tq+1 × [1/2, 1].

To obtain the main part of the absolute, one should consider the same product with the half-open
interval [1/2, 1).

Let us explain this formula. A pair ω × r in ∂Tq+1 × [1/2, 1] is interpreted as the Markov
measure on the dynamic graph of Tq+1 that corresponds to the Markov measure on paths in the
tree Tq+1 (which is the Cayley graph of the free group) such that the probability p(g, gw) of the
transition from an arbitrary vertex g to the vertex gw, where w is a generator, is equal to r if the
edge leading to ω is labeled by w and (1− r)/q otherwise.

It is natural to regard the probability r, the eigenvalue corresponding to the eigenfunction,
and the rate defined below as functions of the number α parametrizing the eigenfunctions of the
Laplace operator. Then we obtain the following three characteristics of the Markov chain:

• rα , the above probability;
• sα , the eigenvalue;
• vα := 2rα − 1, the rate at which the point moves toward a chosen point ω at infinity.
These characteristics are given by the formulas

sα =
qα + q1−α

q + 1
,

rα =
qα

qα + q1−α
=

1

1 + q1−2α
,

vα =
2

1 + q1−2α
− 1 =

1− q1−2α

1 + q1−2α
=

qα − q1−α

qα + q1−α
.

Using these formulas, we easily derive direct relationships between the parameters.
The table below shows the correspondences between the above parameters at the critical points.
The value α = 1/2 corresponds to the critical point at which the Markov chain loses ergodicity

(phase transition). At this point, the eigenfunctions cease to be minimal. More precisely, for every
eigenvalue greater than 2

√
q/(q+1), there are two sets of eigenfunctions: one of them, corresponding

to α > 1/2, consists of minimal eigenfunctions, and the other consists of eigenfunctions that are
not minimal. The difference between them is well illustrated by the change of the rate vα . For
α > 1/2 (which is the same as rα > 1/2), almost every trajectory of the random walk approaches
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Parameters Simple Critical point: Harmonic measure
random loss (values
walk of ergodicity of parameters)

α −∞ · · · 0 1
2

1 · · · +∞
rα 0 · · · 1

q+1
1
2

q
q+1

· · · 1

vα −1 · · · 1−q
q+1

0 q−1
q+1

· · · 1

sα +∞ · · · 1
2
√

q

q+1
1 · · · +∞

the corresponding point of the boundary at a linear rate vα (drift). For α = 1/2 = r1/2 , there is
no such convergence. Negative rates correspond to moving away from the point at infinity.

The value α = 1 corresponds to ergodic Markov measures associated with minimal harmonic
functions. The value α = 0 corresponds to the nonergodic Markov chain that is generated by the
Laplace operator; more precisely, the transition probabilities of this chain determine the corre-
sponding Laplace operator. It is its decomposition into ergodic components which determines the
harmonic measure on the fiber ∂Tq+1 × q/(q + 1).

6.2. The absolute of finite groups.

Theorem 6.1. The absolute of any finite group with any set of generators S consists of a single
point, which is the uniform measure on the paths of equal length. The transition probabilities of the
corresponding Markov process on the Cayley graph are equal to 1/|S| for all edges of the graph.
This measure belongs to the Laplacian part, and the degenerate part of the absolute is empty.

Proof. Let us introduce the notion of a system of generators: by a system of generators of a
group G we mean a (finite in our case) set S and a mapping S → G (not necessarily an embedding)
whose image generates G as a semigroup. It is natural to interpret systems of generators as sets of
generators with multiplicities. All constructions of this paper can be extended in an obvious way
to the case of a group with a chosen system of generators, including the notions of Cayley graph
(in the case under consideration, it may have multiple edges), dynamic graph, central measure,
absolute, etc. Obviously, for the one-element group with a system of generators of any cardinality,
the whole simplex of central measures consists of one measure, which is described in the statement
of the theorem. Considering the epimorphism from a finite group to the one-element group and
applying Theorem 4.2 (more precisely, its direct generalization to the case of sets of generators with
multiplicities), we see that the Laplacian absolute of a finite group consists of this measure. The
degenerate part of the absolute of a finite group is empty by Theorem 5.1, since every infinite path
in a finite graph contains cycles.

6.3. The absolute of commutative groups. The following results were obtained in [17].

Theorem 6.2 (on the absolute of commutative groups and semigroups). For every commutative
semigroup and an arbitrary finite set of generators, the set of ergodic central measures (i.e., the
absolute) coincides with the set of those central measures which give rise to Markov chains with
independent identically distributed increments. Thus, there is a one-to-one correspondence between
the absolute and the collection of all measures on the set of generators that determine Markov
chains with this centrality property.

Theorem 6.3 (on the topology of the absolute of commutative groups). The absolute of a
finitely generated commutative group with respect to any finite set of generators is homeomorphic
to a closed disk with dimension equal to the rank of the group. The Laplacian part of the absolute
corresponds to the interior of the disk.

6.4. The absolute of the discrete Heisenberg group. The problem of describing the
Laplacian part of the absolute of any finitely generated nilpotent group reduces to the already solved
problem of describing the Laplacian part of the absolute of its abelianization (see Corollary 4.4). But
the degenerate part of the absolute of a nilpotent group may differ significantly from the degenerate
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part of the absolute of its abelianization, and describing it in the general case is a difficult problem.
In a paper under preparation, we describe the structure of the absolute for the Heisenberg group
with the standard set of generators. In the following theorem we give a description of the absolute
of the Heisenberg group from that paper in terms of measures on the space of infinite words in the
alphabet of generators (this space S∞ is in one-to-one correspondence with the space of infinite
paths in the dynamic graph).

Theorem 6.4. 1. The absolute A (N2, S) of the discrete Heisenberg group

N2 = 〈x, y | [[x, y], x] = [[x, y], y] = 1〉
with the set of generators S = {x, y, x−1, y−1} is the union of a countable set of atomic measures
and the set B of Bernoulli measures μ∞ on S∞ for which the generating measure μ on S satisfies
the condition μ(x) · μ(x−1) = μ(y) · μ(y−1).

2. There is a natural bijection between the set C of atomic measures in A (N2, S) and the set W
of words of the form ambnab+∞ , where {a, b} is a pair of elements of S not inverse to each other
and (m,n) ∈ N0 × N0 ; namely, for every measure ν in C , there is a unique word W in W such
that ν is the uniform measure on the tail equivalence class of W ; moreover, the tail equivalence
class in N2 of every word in W is finite, and the uniform measure on this class belongs to C .
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