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ABSTRACT. For semicontinuous summation methods generated by A = {\,(h)} (n =0,1,2,...;
h > 0) of Fourier series in eigenfunctions of a discrete Sturm-Liouville operator of class 2, some
results on the uniform a.e. behavior of A-means are obtained. The results are based on strong- and
weak-type estimates of maximal functions. As a consequence, some statements on the behavior of
the summation methods generated by the exponential means Ay, (h) = exp(—u®(n)h) are obtained.

An application to a generalized heat equation is given.
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1. The Discrete Sturm—Liouville operator. Let

bo aj 0 0 0
al b1 a9 0 0

J = 0 a b2 as 0 (1)

be an infinite Jacobian (tridiagonal) symmetric matrix with a,4; > 0 and b, € R. Let .Z be the
discrete Sturm—Liouville operator generated by the differences

(Lu)p = any1tns1 + bpuy + aptiy—1 (n€Zy4, u_qg =0), (2)

where u = {u,, }32, € 1? ([1, Chap. VII, Sec. 1]). Solving the eigenvalue and eigenfunction problem,
we obtain the set {p,(z)}52, of polynomials defined by the three-term recurrence relation

ZL‘pn(l‘) = an+1pn+1($) + bnpn(x) + anpn—l(x)
(n € Zy, po(x) =c >0, p-1(z) =0, ag = 0).

It is known ([1, Chap. VII, Sec. 1], [3, Chap. II, Sec. 8]) that if the entries of the Jacobian
matrix (1) are bounded, then there exists a unique positive Borel measure p such that Supp(u)

is compact in R and the polynomials p,(z) (n = 0,1,2,...) form an orthonormal system with
respect to the measure p.

Let us consider Nevai’s class .Z of Jacobian matrices (1) for which
lim a, =1/2, lim b, =0.
n—oo n—oo

We have [3, Chap. II, Sec. 9] Supp(u) = [—1,1] U S, where S is a finite or countable set of real
numbers outside [—1, 1] without accumulation points other than —1 and 1. We say that a discrete
Sturm-Liouville operator .Z belongs to the class 4 if the associated Jacobian matrix belongs to
the class .#, Supp(pu) = [—1,1], and

o0

Z(‘an — apy1| + [bn — bnt1]) < o0,

n=0

In this case, the measure p is absolutely continuous on the interval (—1,1) and the weight
function p/(z) = w(x) is continuous and positive for all z € (—1,1) ([9], [11]).
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Ezamples of eigenfunction systems for operators in the class % ([4], [6], [10]).

1. The classical Jacobi polynomials pﬁf”ﬂ ) () (a, 8 > —1) orthonormal on [—1,1] with respect

to the weight function w(z) = (1 — 2)*(1 + z)?.
2. The Pollaczek polynomials w(®?) (z) orthonormal on [—1, 1] with respect to a weight function
w(®Y) (1) satisfying the conditions Suppw(®?) (z) = [~1,1] for a,b € R, a > |b|, and

 (acos 6 + b)} [1 +exp {S,We(acose + b)H -

Sin

w ¥ (cos 0) = 2exp { ,6 i

(these polynomials are the“singular case” of orthogonal polynomials, because the Pollaczek weight

does not belong to the Szego class).

3. The loaded Gegenbauer polynomials qga)(a:) obtained by orthogonalizing the system

{2}, with respect to the inner product

1
(f:9)a = / fgdpa,
-1
. T(2a+2)
©220H1T2(g 4 1)
(here L,M >0, o > —1/2, and 6(z) is the delta-function).

2. Semicontinuous summation methods for the Fourier series. To each function f €
L}L[—l, 1] we assign its Fourier series in the generalized eigenfunctions p,(z), n = 0,1,2, ..., namely,

it (1 — 2%z + Lo(x — 1) + Md(z + 1)

o] 1
S(fs2) ~ S en(Fpnla), cn(f)Z(f,pn>=/1fpndu (n=0,1,2,...),
n=0 -

dp =w(x)dr + Lé(x — 1) + Mo(z + 1), L>0, M>0,

and consider the behavior as h — 0 of the Kojima—Schur regular semicontinuous linear means
Un(f) = Un(f;2:8) = > Aa(h)en(Fpa(z)  (x € [-1,1])
n=0

generated by the sequence
A={N,(R)}, Ao(h) =1, Ay(h) =XNa,h)|pen, (n=1,2,...), (3)

where A(z, h) is a generating function of two variables, x € [0,00), and h > 0. The sequence (3) is
said to be convez (concave) if

A2 =A%\, (h) =0 (A2<0),

n

A2 =A, —Apy1, An=AN(h) = \o(h) — Ausa(h), n=0,1,2,....

n
We say that the sequence (3) is piecewise conver if A2 changes sign finitely many times.
By U.(f;x;A) we denote the maximal function supj~q |Ux(f;x; A)|.

Theorem 1. Let .Z be a discrete Sturm—Liouville operator belonging to the class %A, and let
K be an arbitrary compact set in (—1,1). If the sequence (3) is convex (concave) and its elements
satisfy the condition

An(h) =0(1/Inn) (n — o0) (4)

for every h > 0, then the following statements are valid.
1. If a function f € C(K)UL%(E), E = [-1,1]\ K, is continuous on K, then

lim Uy, (f;2;A) = f(x) (5)
h—0
uniformly on every compact subset Ky C int K.
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2. For the maximal function, the following estimates are valid:

([ 1tsiasaipute)as ) e & [ 1wput i) ¥ o (l<p<oa)

1/p
/ w(z)dr < ¢ </ |f(z)[Pw(x) dm) < 00 (1 <p<o0).
{zeK|Us(f;z;A)>¢>0} ¢cp K

3.If feLL(K)U Li(E), then relation (5) holds almost everywhere in K .
Theorem 2. Suppose that a piecewise convex sequence (3) satisfies condition (4) and
[An(R)| + n|AN,(R)] < C (n=1,2,...)

for all h > 0. Then all statements of Theorem 1 hold.

Corollary 1. Suppose that a discrete Sturm—Liouville operator £ belongs to the class % and
K is an arbitrary compact set in (—1,1). If the sequence

An(h) = exp(—u®(n)h) (6)
is generated by \(z, h) = exp(—u®(x)h), where u(x) € C?(0,+00), u"(r) <0, 0 < a < 1, and
exp(—hu®(z))Inz = O(1) (x = 400) (7)

for every h > 0, then, for any function f € Ll (K)U Li(E), E = [-1,1]\ K, relation (5) holds
almost everywhere. Moreover, if the function f is continuous on K, then relation (5) is valid on
every compact set Ko C int K.

Corollary 2. Suppose that a discrete Sturm—Liouville operator £ belongs to the class B, K
is an arbitrary compact set in (—1,1), and the sequence \,(h) is defined by formula (6). If the
function

V(w) = ahu®(@){[u'(2)] = (o = D[/ (@) — w(@)u" (@)} (a>0)

has a finite number of zeros on (0,+00), condition (7) holds, and there is a constant C = Cy, o > 0
such that

zhexp(—hu®(z))u® (z)| (z)| < C

for all h > 0 and = € (1,+00), then the conclusions of Theorem 2 are valid for o > 1.
Examples. 1. Let u(z) = x, i.e.,

Xo(h) =1, X, h) =exp(—hx®) (x >0). (8)

Then, for all « > 0, the sequence defined by (8) satisfies all conditions of Corollary 1 and
Corollary 2.

2. Suppose fixed a polynomial m,,(z) = agz™ + a1z™ ' +---, ap > 0, m = 0,1,2,.... Then,
for Up(f;2;A) = > 52 g exp(—hmm (k))er (f)pr(x), the statement of Theorem 2 is valid.

3. Generalized heat equations. Let {p,(x)}>%, be a complete system of polynomials of de-
gree n orthonormal on [—1, 1] with respect to the measure . These polynomials are eigenfunctions
of a differential operator D with respect to the continuous variable x, i.e.,

D:cpn = _,Unpn(m)a n2071727"'7 Hn — +OO, n — +OO,

and eigenfunctions of a discrete Sturm-Liouville operator .Z € % with respect to the discrete
variable n. The generalized solution (in Bochner’s sense [7], [8])) of Dirichlet’s problem for the
generalized heat equation

ou(x,t)

ot :Dmu(l‘vt)v ’LL(I‘,O) :f(l'),
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has the form

[e'e] 1
uwt) = 3 expl=patien( Donle), eulf) = [ F(s)pals) ducs)

n=0

(n=0,1,2,...).
We can investigate this series by using the results obtained above.

Remark. For the trigonometric Fourier series, results of this paper were obtained jointly with
Nakhman in [2] and [5].
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