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Abstract. For semicontinuous summation methods generated by Λ = {λn(h)} (n = 0, 1, 2, . . . ;
h > 0) of Fourier series in eigenfunctions of a discrete Sturm–Liouville operator of class B , some
results on the uniform a.e. behavior of Λ-means are obtained. The results are based on strong- and
weak-type estimates of maximal functions. As a consequence, some statements on the behavior of
the summation methods generated by the exponential means λn(h) = exp(−uα(n)h) are obtained.
An application to a generalized heat equation is given.
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1. The Discrete Sturm–Liouville operator. Let

J =

⎛
⎜⎜⎝

b0 a1 0 0 0 . . .
a1 b1 a2 0 0 . . .
0 a2 b2 a3 0 . . .
. . . . . . . . . . . . . . . . . .

⎞
⎟⎟⎠ (1)

be an infinite Jacobian (tridiagonal) symmetric matrix with an+1 > 0 and bn ∈ R. Let L be the
discrete Sturm–Liouville operator generated by the differences

(Lu)n = an+1un+1 + bnun + anun−1 (n ∈ Z+, u−1 = 0), (2)

where u = {un}∞n=0 ∈ l2 ([1, Chap. VII, Sec. 1]). Solving the eigenvalue and eigenfunction problem,
we obtain the set {pn(x)}∞n=0 of polynomials defined by the three-term recurrence relation

xpn(x) = an+1pn+1(x) + bnpn(x) + anpn−1(x)

(n ∈ Z+, p0(x) = c > 0, p−1(x) = 0, a0 = 0).

It is known ([1, Chap. VII, Sec. 1], [3, Chap. II, Sec. 8]) that if the entries of the Jacobian
matrix (1) are bounded, then there exists a unique positive Borel measure μ such that Supp(μ)
is compact in R and the polynomials pn(x) (n = 0, 1, 2, . . . ) form an orthonormal system with
respect to the measure μ.

Let us consider Nevai’s class M of Jacobian matrices (1) for which

lim
n→∞ an = 1/2, lim

n→∞ bn = 0.

We have [3, Chap. II, Sec. 9] Supp(μ) = [−1, 1] ∪ S , where S is a finite or countable set of real
numbers outside [−1, 1] without accumulation points other than −1 and 1. We say that a discrete
Sturm–Liouville operator L belongs to the class B if the associated Jacobian matrix belongs to
the class M , Supp(μ) = [−1, 1], and

∞∑
n=0

(|an − an+1|+ |bn − bn+1|) < ∞.

In this case, the measure μ is absolutely continuous on the interval (−1, 1) and the weight
function μ′(x) = w(x) is continuous and positive for all x ∈ (−1, 1) ([9], [11]).
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Examples of eigenfunction systems for operators in the class B ([4], [6], [10]).

1. The classical Jacobi polynomials p
(α,β)
n (x) (α, β > −1) orthonormal on [−1, 1] with respect

to the weight function w(x) = (1− x)α(1 + x)β .

2. The Pollaczek polynomials w(a,b)(x) orthonormal on [−1, 1] with respect to a weight function

w(a,b)(x) satisfying the conditions Suppw(a,b)(x) = [−1, 1] for a, b ∈ R, a > |b|, and

w(a,b)(cos θ) = 2 exp

{
θ

sin θ
(acos θ + b)

}[
1 + exp

{
π

sin θ
(acos θ + b)

}]−1

(these polynomials are the“singular case” of orthogonal polynomials, because the Pollaczek weight
does not belong to the Szegö class).

3. The loaded Gegenbauer polynomials q
(α)
n (x) obtained by orthogonalizing the system

{xn}∞n=0 with respect to the inner product

〈f, g〉α =

∫ 1

−1
fg dμα,

dμα =
Γ(2α + 2)

22α+1Γ2(α+ 1)
(1− x2)αdx+ Lδ(x− 1) +Mδ(x + 1)

(here L,M � 0, α � −1/2, and δ(x) is the delta-function).

2. Semicontinuous summation methods for the Fourier series. To each function f ∈
L1
μ[−1, 1] we assign its Fourier series in the generalized eigenfunctions pn(x), n = 0, 1, 2, . . . , namely,

S(f ;x) ∼
∞∑
n=0

cn(f)pn(x), cn(f) = 〈f, pn〉 =
∫ 1

−1
fpn dμ (n = 0, 1, 2, . . . ),

dμ = w(x) dx + Lδ(x− 1) +Mδ(x + 1), L � 0, M � 0,

and consider the behavior as h → 0 of the Kojima–Schur regular semicontinuous linear means

Uh(f) = Uh(f ;x; Λ) =

∞∑
n=0

λn(h)cn(f)pn(x) (x ∈ [−1, 1])

generated by the sequence

Λ = {λn(h)}, λ0(h) = 1, λn(h) = λ(x, h)|x=n (n = 1, 2, . . . ), (3)

where λ(x, h) is a generating function of two variables, x ∈ [0,∞), and h > 0. The sequence (3) is
said to be convex (concave) if

Δ2
n = Δ2λn(h) � 0 (Δ2

n � 0),

Δ2
n = Δn −Δn+1, Δn = Δλn(h) = λn(h)− λn+1(h), n = 0, 1, 2, . . . .

We say that the sequence (3) is piecewise convex if Δ2
n changes sign finitely many times.

By U∗(f ;x; Λ) we denote the maximal function suph>0 |Uh(f ;x; Λ)|.
Theorem 1. Let L be a discrete Sturm–Liouville operator belonging to the class B , and let

K be an arbitrary compact set in (−1, 1). If the sequence (3) is convex (concave) and its elements
satisfy the condition

λn(h) = O(1/ ln n) (n → ∞) (4)

for every h > 0, then the following statements are valid.
1. If a function f ∈ C(K) ∪ L2

μ(E), E = [−1, 1] \K , is continuous on K , then

lim
h→0

Uh(f ;x; Λ) = f(x) (5)

uniformly on every compact subset K0 ⊂ intK .
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2. For the maximal function, the following estimates are valid :

(∫

K
[U∗(f ;x; Λ)]pw(x) dx

)1/p

� Cp

(∫

K
|f(x)|pw(x) dx

)1/p

< ∞ (1 < p < ∞),

∫

{x∈K|U∗(f ;x;Λ)>ζ>0}
w(x) dx � C

ζp

(∫

K
|f(x)|pw(x) dx

)1/p

< ∞ (1 � p < ∞).

3. If f ∈ L1
w(K) ∪ L2

μ(E), then relation (5) holds almost everywhere in K .

Theorem 2. Suppose that a piecewise convex sequence (3) satisfies condition (4) and

|λn(h)| + n|Δλn(h)| � C (n = 1, 2, . . . )

for all h > 0. Then all statements of Theorem 1 hold.

Corollary 1. Suppose that a discrete Sturm–Liouville operator L belongs to the class B and
K is an arbitrary compact set in (−1, 1). If the sequence

λn(h) = exp(−uα(n)h) (6)

is generated by λ(x, h) = exp(−uα(x)h), where u(x) ∈ C2(0,+∞), u′′(x) < 0, 0 < α � 1, and

exp(−huα(x)) ln x = O(1) (x → +∞) (7)

for every h > 0, then, for any function f ∈ L1
w(K) ∪ L2

μ(E), E = [−1, 1] \K , relation (5) holds
almost everywhere. Moreover, if the function f is continuous on K , then relation (5) is valid on
every compact set K0 ⊂ intK .

Corollary 2. Suppose that a discrete Sturm–Liouville operator L belongs to the class B , K
is an arbitrary compact set in (−1, 1), and the sequence λn(h) is defined by formula (6). If the
function

V (x) = αhuα(x){[u′(x)]2 − (α− 1)[u′(x)]2 − u(x)u′′(x)]} (α > 0)

has a finite number of zeros on (0,+∞), condition (7) holds, and there is a constant C = Cu,α > 0
such that

xh exp(−huα(x))uα−1(x)|u′(x)| � C

for all h > 0 and x ∈ (1,+∞), then the conclusions of Theorem 2 are valid for α > 1.

Examples. 1. Let u(x) = x, i.e.,

λ0(h) = 1, λ(x, h) = exp(−hxα) (x > 0). (8)

Then, for all α > 0, the sequence defined by (8) satisfies all conditions of Corollary 1 and
Corollary 2.

2. Suppose fixed a polynomial πm(x) = a0x
m + a1x

m−1 + · · · , a0 > 0, m = 0, 1, 2, . . . . Then,
for Uh(f ;x; Λ) =

∑∞
k=0 exp(−hπm(k))ck(f)pk(x), the statement of Theorem 2 is valid.

3. Generalized heat equations. Let {pn(x)}∞n=0 be a complete system of polynomials of de-
gree n orthonormal on [−1, 1] with respect to the measure μ. These polynomials are eigenfunctions
of a differential operator D with respect to the continuous variable x, i.e.,

Dxpn = −μnpn(x), n = 0, 1, 2, . . . , μn → +∞, n → +∞,

and eigenfunctions of a discrete Sturm–Liouville operator L ∈ B with respect to the discrete
variable n. The generalized solution (in Bochner’s sense [7], [8])) of Dirichlet’s problem for the
generalized heat equation

∂u(x, t)

∂t
= Dxu(x, t), u(x, 0) = f(x),



157

has the form

u(x, t) =

∞∑
n=0

exp(−μnt)cn(f)pn(x), cn(f) =

∫ 1

−1
f(s)pn(s) dμ(s)

(n = 0, 1, 2, . . . ).

We can investigate this series by using the results obtained above.

Remark. For the trigonometric Fourier series, results of this paper were obtained jointly with
Nakhman in [2] and [5].
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