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Abstract. A method for approximation of the operator e−itH , where H = − 1
2

d2

dx2 + V (x), in the
strong operator topology is proposed. The approximating operators have the form of expectations
of functionals of a certain random point field.
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1. Introduction

Consider the operator

H = −1

2

d2

dx2
+ V (x) (1)

with domain W 2
2 (R). The potential V is assumed to be real and bounded, which implies the self-

adjointness of the operator H . We introduce the free Hamiltonian

H0 = −1

2

d2

dx2
. (2)

The family of operators e−itH forms a group of unitary operators on L2(R). The operator e
−itH

takes each function ϕ ∈ W 2
2 (R) to the solution u(t, x) of the Cauchy problem for the Schrödinger

equation

i
∂u

∂t
= Hu (3)

with u(0, x) = ϕ(x).
As is known (see [1], [5], and [13]), for the heat equation ∂u/∂t = −σ2Hu (here σ2 is any

positive parameter), the solution of the Cauchy problem with initial function u(0, x) = ϕ(x) admits
a probabilistic representation in the form of the expectation of a functional of a Wiener process
(the Feynman–Kac formula); namely,

u(t, x) = e−tσ2Hϕ(x) = E[ϕ(x+ σw(t))e−σ2
∫ t
0 V (x+σw(τ)) dτ ], (4)

where w(t) is a standard Wiener process.
This relation means that the evolution of the initial function ϕ under the action of the heat

operator can be modeled by statistical methods; for this purpose, it is sufficient to have means for
generating trajectories of a Wiener process.

In this paper, an ideologically similar approach is developed for the operator e−itH . We con-
struct an approximation of e−itH in the strong operator topology by the expectations of functionals
of a certain random point field. As in the case of the heat operator, this approach makes it possible
to model the evolution of a wave function by statistical methods, generating realizations of a ran-
dom point field. Note also that the squared modulus of a wave function always equals a probability
density function. The evolution of a wave function generates the corresponding evolution of the
probability density. In the literature, such an evolution of a probability density is also called a
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quantum random walk (see, e.g., [10]). The approach which we propose makes it possible, in partic-
ular, to model a quantum random walk by classical probabilistic-statistical methods. We emphasize
that, in this paper, we do not pretend to study the spectrum of the operator or the asymptotic
behavior of solutions.

The main idea of our approach is as follows. We rewrite Eq. (3) in the form

∂u

∂t
=
σ2

2

∂2u

∂x2
+ U0(x)u, (5)

where σ = eiπ/4 and U0(x) = −iV (x).
Let us consider (5) as the heat equation but with a complex coefficient multiplying ∂2/∂x2 .
If σ were a real number, then, by virtue of the Feynman–Kac formula (4), the solution of the

Cauchy problem u(0, x) = ϕ(x) for Eq. (5) would admit the probabilistic representation

u(t, x) = E[ϕ(x+ σw(t))e
∫ t
0 U0(x+σw(τ)) dτ ], (6)

where w(t) is a standard Wiener process. The expectation in (6) can be expressed in terms of an
integral with respect to the Wiener measure PW on the space C0[0,∞) of continuous functions
w( · ) satisfying the condition w(0) = 0 as∫

C0[0,∞)
[ϕ(x+ σw(t))e

∫ t
0 U0(x+σw(τ)) dτ ]PW (dw( · )). (7)

The main purpose of this paper is to attach meaning to the expression on the right-hand side
of (6) for σ = eiπ/4 , ϕ ∈ L2(R), and V ∈ L∞(R). In this case, the expectation in (6) is no longer
a Lebesgue integral with respect to a probability measure (and, therefore, cannot be expressed
in terms of the integral (7) with respect to the Wiener measure), because ϕ and U0 are func-
tions of a real variable, and we cannot substitute a complex variable into them without additional
assumptions. Thus, we can aim only at constructing a regularization of this integral.

Importantly, such a regularization cannot be constructed by simply approximating the functions
ϕ and U0 by entire analytic functions. Indeed, even if these functions can be extended over the
whole complex plane to entire functions (see [4]), there immediately arise insurmountable difficulties
related to the presence of the expectation in (6), because the function U0 is bounded on the real
axis and, hence, grows at least exponentially in the complex plane. To obviate the difficulties caused
by the rapid growth of entire analytic functions, in this paper, instead of Wiener process we use the

family ξ
(1)
ε (t) of jump centered Lévy processes with a Lévy measure of a special form concentrated

on the positive half-axis. This family of Lévy processes weakly converges (in the Skorokhod space)
to a Wiener process as ε → 0, and its trajectories are always bounded from below; finally, for

each fixed ε, the process ξ
(1)
ε (t) generates an operator semigroup whose generator is easy to write

out. Apparently, such an approximation of a Wiener process first appeared in [2]; subsequently,
this approach has been effectively used to construct probabilistic representations of solutions to
the Cauchy problem for evolution equations with generators not satisfying the maximum principle,
such as the differentiation operator of order higher than 2 or the Riemann–Liouville operator (see
[11] and [12]).

Let us explain the above considerations by the substantially simpler example in which the
potential V vanishes. In this case, for ϕ ∈ L2(R) and real σ, representation (6) can be rewritten
as

u(t, x) = Eϕ(x+ σw(t)) =
1

2π
E

∫ ∞

−∞
e−ipxe−iσpw(t)ϕ̂(p) dp. (8)

The integral (8) with σ = eiπ/4 generally diverges for any function ϕ ∈ L2(R). One of the
possible ways to regularize this divergent integral is to approximate the function ϕ̂ by ϕ̂ · 1[−M,M ]

with large M . This corresponds to the approximation in L2(R) of the function ϕ itself by entire
functions of exponential type. This regularization method was used in [7]; from the point of view
of operator theory, this method is most natural: in fact, the approximation described above means
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that a differential operator is approximated by bounded operators with the use of cuts of its symbol
in the Fourier image. Nevertheless, from the probabilistic point of view, this method turns out to be
very inconvenient. Its drawback is that, in this case, for any fixed M , (8) gives the expectation of
an exponentially growing function of w(t), so that the obtained formula is of little use for practical
calculations.

In [6] the authors proposed another method for regularizing the divergent integral (8), which
evaluated the expectation of only bounded functionals of processes. The initial function ϕ was
approximated by the sum of two functions, one of which had bounded analytic continuation to
any subset of the form Im z � −M in the complex plane and the second, to a subset of the form
Im z � M with any M > 0. Simultaneously, an asymmetric approximation of the Wiener process

w(t) by centered Lévy processes ξ
(1)
ε (t) with Lévy measure concentrated on R+ was used. The

trajectories of these processes are always bounded from below by some constant (depending on
ε). Then, the solution was approximated by a quantity similar to (8) (see (10) and Theorem 1 in

Section 2), but the argument of the first of the two functions was x + σξ
(1)
ε (t) and that of the

second was x − σξ
(1)
ε (t). The quantity under the sign of expectation turned out to be bounded:

the structure of the formulas is such that the analytic function can increase only in a part of the

complex plane never reached by the process x+ σξ
(1)
ε (t) (or x− σξ

(1)
ε (t)).

In Sections 3 and 4 of this paper we use the above “asymmetric” approximation of a Wiener
process to construct a regularization of integral (6) for any bounded potential V . Unlike in the
case of Wiener processes, as the probability space for Lévy processes it is convenient to take the
space of point configurations with Poisson measure rather than the space of trajectories (because
the processes used for approximation have pure jump trajectories).

The main results of this paper are Theorems 5 and 6. Note that the methods which we use
are easy to generalize to the case of any dimension (i.e., to the case of the operator e−itΔ/2). It
is also easy to see that the requirement that the potential be real can be replaced by the weaker
condition ImV � 0; the only difference is that, in the latter case, the corresponding operator
exponential ceases to be a unitary operator. In fact, the only essential condition is the boundedness
of the potential. Note also that the construction of the regularization of integral (6) is the same for
potentials tending to zero at infinity and those not tending to zero (e.g., periodic), although these
operators may have quite different spectral properties.

In this paper we do not touch the question of representing solutions of the Schrödinger equation
in terms of integrals with respect to the Feynman measure, because such a representation is not
probabilistic: the Feynman measure, in contrast to the Wiener measure, is only a finitely additive
complex-valued (and hence not probabilistic) set function. A detailed exposition of the theory of
integration with respect to the Feynman measure can be found in the book [15], which also contains
an extensive survey of the literature on the theory of Feynman integral.

All random variables and random processes considered in this paper are assumed to be de-
fined on a certain base probability space (Ω,F ,P); the symbol E is used to denote mathematical
expectation (Lebesgue integral) with respect to the measure P.

By W k
2 (R) we denote the Sobolev space of functions defined on R and having square integrable

generalized derivatives up to order k. We endow the space W k
2 (R) with the following norm (which

is equivalent to the standard one):

‖ψ‖2
W k

2 (R)
=

∫
R

(1 + |p|2k)|ψ̂(p)|2 dp,

where ψ̂ denotes the direct Fourier transform of the function ψ, which is defined in this paper as

ψ̂(p) =

∫
R

eipxψ(x) dx.
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2. The Case of the Absence of a Potential

In this section we largely describe ideas and approaches of [6].
Suppose given a function ϕ ∈ L2(R). We represent it in the form of a sum as

ϕ = ϕ+ + ϕ− = P+ϕ+ P−ϕ,

where P+ and P− are the Riesz projections acting on the function ϕ (provided that ϕ̂ ∈ L1(R) ∩
L2(R)) so that

ϕ+(x) =
1

2π

∫ 0

−∞
e−ipxϕ̂(p) dp, ϕ−(x) =

1

2π

∫ ∞

0
e−ipxϕ̂(p) dp.

Note that the functions ϕ+ and ϕ− can be analytically continued to the upper and lower
half-planes, respectively.

Let ν(dt, dx) be the Poisson random measure on [0,∞) × [0,∞) with intensity measure

Eν(dt, dx) =
dt dx

x3
.

For each ε > 0, we define the random process

ξε(t) =

∫ t

0

∫ eε

ε
x ν(ds, dx) � 0.

Note that this is a homogeneous random process with independent increments (see [14]). Con-
sider the centered process

ξ(1)ε (t) = ξε(t)−Eξε(t). (9)

.
For p ∈ R, we have

Eeipξ
(1)
ε (t) = exp

(
t

∫ eε

ε
(eipx − 1− ipx)

dx

x3

)
.

Next, following [6], we consider the semigroup of the operators P t
ε on L2(R) defined by

P t
εϕ(x) = E[ϕ+ ∗ htε(x+ σξ(1)ε (t)) + ϕ− ∗ htε(x− σξ(1)ε (t))] (10)

for ϕ ∈ L2(R), where σ = eiπ/4 and the function htε is determined by its Fourier transform

ĥtε(p) = ĥtε(|p|) = exp(−1
6σ|p|3tε(e− 1)). (11)

The proofs of the following assertions can be found in [6].

Theorem 1. 1. For any t � 0 and ε > 0, P t
ε is a pseudodifferential operator with symbol

e−itp2/2H(t, ε, p),

where

H(t, ε, p) = exp

(
t

∫ eε

ε

(
ei|p|σx − 1− i|p|σx− 1

2
(i|p|σx)2 − 1

6
(i|p|σx)3

)
dx

x3

)
. (12)

2. For any t � 0, ε > 0, and p ∈ R,

|H(t, ε, p)| � 1. (13)

Note that, by virtue of (12), the generator Aε of the semigroup of P t
ε is a pseudodifferential

operator with symbol ĝε(p), where

ĝε(p) = − ip
2

2
+

∫ eε

ε

(
ei|p|σx − 1− i|p|σx− 1

2
(i|p|σx)2 − 1

6
(i|p|σx)3

)
dx

x3
. (14)

Theorem 2. There exists a constant C > 0 such that

‖P t
εϕ− e−itH0ϕ‖L2 � C tε2‖ϕ‖W 4

2

for any function ϕ ∈W 4
2 (R) and any t � 0.
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Corollary. For any t � 0 and ϕ ∈ L2(R),

‖P t
εϕ− e−itH0ϕ‖L2 −→

ε→0
0.

In the following sections, we generalize Theorem 2 (and its corollary) to the case of a Hamil-
tonian of the general form (1). For this purpose, we need to introduce some more notation.

Given ε > 0 and t > 0, we define an operator Rt
ε : L2(R) → L2(R) by setting

Rt
εϕ(y) = ϕ+ ∗ htε(y) + ϕ− ∗ htε(−y)

=
1

2π

∫ 0

−∞
e−ipyĥtε(|p|)ϕ̂(p) dp +

1

2π

∫ ∞

0
eipyĥtε(|p|)ϕ̂(p) dp (15)

for ϕ ∈ L2(R), where the function htε is defined by (11).
Throughout the paper, Ta denotes the shift operator: Taϕ(x) = ϕ(a + x). In this notation,

formula (10) defining the semigroup of operators P t
ε can be rewritten as

P t
εϕ(x) = EF t

ε(x, σξ
(1)
ε (t)), (16)

where the function F t
ε is defined by

F t
ε(x, y) = Rt

ε,yTxϕ(y) = ϕ+ ∗ htε(x+ y) + ϕ− ∗ htε(x− y). (17)

In this formula, the subscript y in the notation Rt
ε,y of an operator means that this operator

acts on the variable y.
Let us show that the quantity under the sign of expectation in (16) is bounded. First, note

that, given any function ϕ ∈ L2(R), the function F t
ε(x, y) with fixed ε, t, and x can be continued

to an entire analytic function of y.
Since the process ξε(t) is nonnegative, it follows that

ξ(1)ε (t) = ξε(t)−Eξε(t) � −Eξε(t) = −tε−1 e− 1

e
. (18)

We set A = (e− 1)/(
√
2e) and B = (e− 1)/(6

√
2). Relation (18) implies the inequality (recall

that σ = eiπ/4)

Im(σξ(1)ε (t)) � −tAε−1.

In what follows, we need z-uniform estimates of the uniform norm and the L2-norm of the
function F t

ε( · , z) on {z : Im z � −tAε−1}. The following assertions are valid.

Lemma 1. For any t > 0,

sup
x∈R

sup
Im z�−tAε−1

|F t
ε(x, z)| � t−1/6G(ε, t)‖ϕ‖2,

where

G2(ε, t) =

∫ ∞

0
e2(t

2/3Aε−1v−Bv3ε) dv.

Proof. By virtue of (15) and (11), for any z satisfying the condition Im z � −tAε−1 , we have

|F t
ε(x, z)| �

1

2π

∫ ∞

−∞
eAt|p|ε−1

e−Bt|p|3ε|ϕ̂(p)| dp

� 1

2π

(∫ ∞

−∞
e2At|p|ε−1

e−2Bt|p|3ε dp
)1/2

‖ϕ̂(p)‖2

=
1√
π

(∫ ∞

0
e2Atpε−1

e−2Btp3ε dp

)1/2

‖ϕ‖2 = t−1/6G(ε, t)‖ϕ‖2 . �

Lemma 1 immediately implies that the quantity under the sign of expectation in (16) is bounded.
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Lemma 2. There exists a constant D > 0 such that, for any t > 0,

sup
Im z�−tAε−1

‖F t
ε( · , z)‖2 � etDε−2‖ϕ‖2.

Proof. Relations (15) and (17) imply

F t
ε(x, z) =

1

2π

∫ 0

−∞
e−ip(x+z)ĥtε(|p|)ϕ̂(p) dp +

1

2π

∫ ∞

0
e−ip(x−z)ĥtε(|p|)ϕ̂(p) dp

=
1

2π

∫ ∞

−∞
e−ipxei|p|zĥtε(|p|)ϕ̂(p) dp.

Thus, for any z satisfying the condition Im z � −tAε−1 , we have

‖F t
ε( · , z)‖2 � max

p>0
|eipzĥtε(p)| · ‖ϕ‖2 � max

p>0
(e−tp3BεetpAε−1

) · ‖ϕ‖2

= etDε−2‖ϕ‖2, where D =
2(e − 1)

3e
√
e
. �

3. Construction of an Evolution Family of Operator Functionals

In the preceding two sections we showed how to construct a probabilistic approximation of
the evolution operator in the case of the absence of a potential. As an approximation of the op-
erator e−itH0 we used the operator P t

ε = etAε , where Aε is the pseudodifferential operator with
symbol (14). The operator P t

ε admits the probabilistic representation (10) in the form of the ex-
pectation of a functional of a stochastic process.

The idea of the further considerations is to construct an analogue of the Feynman–Kac formula
for the operator Aε + U0 . To do this, first of all, we must construct the functional of a process
trajectory under the sign of expectation. This functional is constructed in the form of an integral
with respect to the Poisson random measure with Lebesgue intensity on the positive half-axis. We
begin with constructing such an integral representation for the functional used in the Feynman–Kac
formula (6), and then we show how to “adapt” it to the operator Aε + U0 .

Let U0 be a bounded measurable function, and let γ( · ) be a locally bounded measurable
function on [0,∞). Given γ( · ) and 0 � s � t, we define an operator Φst(γ) acting on the function
ϕ as

[Φst(γ)ϕ](x) = e
∫ t
s
U0(x+γ(τ)−γ(s)) dτ ϕ(x+ γ(t)− γ(s)). (19)

We make two observations. First, the operator Φst(γ) is determined by the restriction of the
function γ to the interval [s, t] rather than by the whole function γ , and secondly, the operators
Φst(γ) form an evolution family in the sense that, for any u and s � u � t, we have

Φst(γ) = Φsu(γ)Φut(γ); (20)

in this formula, it is assumed that first we apply the operator Φut(γ) and then the operator Φsu(γ).
Now, we obtain another expression for Φst(γ). Denoting the function U0+1 by U and expanding

the exponential in (19) in a Taylor series, we obtain

[Φst(γ)ϕ](x) = e−(t−s)e
∫ t
s U(x+γ(τ)−γ(s)) dτ ϕ(x+ γ(t)− γ(s))

= e−(t−s)
∞∑
k=0

1

k!

(∫ t

s
U(x+ γ(τ)− γ(s)) dτ

)k

ϕ(x+ γ(t)− γ(s))

= e−(t−s)
∞∑
k=0

∫
s<t1<···<tk<t

U(x+ γ(t1)− γ(s)) · · ·U(x+ γ(tk)− γ(s))

× ϕ(x+ γ(t)− γ(s))dt1 · · · dtk. (21)

This expression can be written as an integral with respect to a Poisson random field. Namely,
let X = X (R+) be a space of configurations on R+ . Each point X in the space X is a strictly



107

increasing sequence {t1, t2, . . . } of positive numbers, and this sequence is locally finite, i.e., each
bounded interval contains only finitely many terms of the sequence. Next, let P0 be the Poisson
measure on X whose intensity measure is the Lebesgue measure (see, e.g., [9]).

In this notation, formula (21) takes the form

[Φst(γ)ϕ](x) =

∫
X

P0(dX)

( ∏
τ∈X∩(s,t)

U(x+ γ(τ)− γ(s))

)
ϕ(x+ γ(t)− γ(s)). (22)

Note that the space X with probability measure P0 is in no way related to our initial proba-
bility space (Ω,F ,P) and serves only the purpose of simplifying long expressions.

Let us transform the integrand in (22) for fixed X = {t1, t2, . . . } ∈ X . First, we introduce a
family of operators Nk(y1, . . . , yk+1) parameterized by k = 0, 1, 2, . . . and y1, . . . , yk+1 , yj ∈ R. We
define them as

[Nk(y1, . . . , yk+1)ϕ](x) = U(x+y1)U(x+y1+y2) · · ·U(x+y1+ · · ·+yk)ϕ(x+y1+ · · ·+yk+1). (23)

We refer to the family of operators Nk as the base family.
Using the base family of operators, we define a two-parameter family of operators Hs,t(γ,X),

which already depend on a function γ and a configuration X ∈ X . We define the operators
Hs,t(γ,X) only for those s and t which do not belong to X . This is enough for our purposes.

Let X = {t1, t2, . . . }. For j ∈ N, we use the notation

m(tj−1, tj) = γ(tj)− γ(tj−1).

Let l = card(X ∩ (0, s)), and let k = card(X ∩ (s, t)). For s, t /∈ X , we set

[Hs,t(γ,X)ϕ](x) = [Nk(m(s, tl+1),m(tl+1, tl+2), . . . ,m(tl+k−1, tl+k),m(tl+k, t))ϕ](x)

= U(x+m(s, tl+1))U(x+m(s, tl+2)) · · ·U(x+m(s, tl+k))ϕ(x +m(s, t)).

A direct calculation shows that, for fixed X and γ , the operators Hs,t(γ,X) form an evolution
family, i.e., for any fixed s � u � t such that s, u, t /∈ X , we have

Hs,t(γ,X) = Hs,u(γ,X)Hu,t(γ,X).

Next, using (22), we can easily show that the operator Φst(γ) has the integral representation

Φst(γ) =

∫
X

P0(dX)Hs,t(γ,X) =

∫
X ∩[s,t]

P0(dX)Hs,t(γ,X). (24)

Indeed, as is known (see, e.g., [9, Chap. 2, Sec. 2.4]), the Poisson measure has the property that
the conditional measure given that a fixed interval [s, t] contains precisely k points of a configuration
X (the number k can take values 0, 1, 2, . . . ) does not depend on X ∩ (R \ [s, t]) and coincides with
the uniform distribution on the simplex {τ = (τ1, . . . , τk) : s < τ1 < τ2 < · · · < τk < t} up to the

multiplier e−(t−s) .
Note also that the evolution property (20) of the family Φst(γ) follows from (24) and the

independence of the values of the Poisson measure on disjoint intervals. Moreover, the condition
s, t /∈ X imposed in the definition of the operators Hs,t(γ,X) is not restrictive, because it holds for
P0-almost all X at fixed s and t.

For our purposes, we need yet another evolution family, which is constructed by analogy with
the preceding one but has another base family of operators. First, we introduce notation. As above,
by Ta we denote the operator of shift by a; the expression Ty1

a means that this operator acts on
the variable y1 : T

y1
a ϕ(y1, y2) = ϕ(y1 + a, y2). In this notation, formula (23) can be rewritten as

[Nk(y1, . . . , yk+1)ϕ](x) = Ty1
x U(y1)T

y2
y1U(y2) . . .T

yk
yk−1

U(yk)T
yk+1
yk ϕ(yk+1). (25)

The new base family of operators is constructed from the chain of operators (25) by “interweav-
ing” the operators Rt

ε into this chain. Namely, we define a new family of operators



108

NR
k (τ1, . . . , τk+1, y1, . . . , yk+1), which additionally depend on nonnegative parameters τ1, . . . , τk+1 ,

by setting

[NR
k (τ1, . . . , τk+1, y1, . . . , yk+1)ϕ](x)

= Rτ1
ε,y1T

y1
x U(y1)R

τ2
ε,y2T

y2
y1U(y2) · · ·Tyk

yk−1
U(yk)R

τk+1
ε,yk+1T

yk+1
yk ϕ(yk+1). (26)

In this formula, the second subscript in the notation of the operator R indicates the variable
on which this operator acts. The objects constructed above depend also on ε, but we do not show
this dependence in the notation.

As above, using the base family of operators, we define a two-parameter family of operators
HR

s,t(γ,X) depending now on a function γ and a configuration X ∈ X . We again assume that
s, t /∈ X . Let l = card(X ∩ (0, s)), and let k = card(X ∩ (s, t)). We set

[HR
s,t(γ,X)ϕ](x) = [NR

k (tl+1 − s, tl+2 − tl+1, . . . , tl+k − tl+k−1, t− tl+k,m(s, tl+1),

m(tl+1, tl+2), . . . ,m(tl+k−1, tl+k),m(tl+k, t))ϕ](x). (27)

Lemma 3. For fixed X and γ , the operators HR
s,t(γ,X) form an evolution family, i.e., for any

s � u � t such that s, u, t /∈ X ,

HR
s,t(γ,X) = HR

s,u(γ,X)HR
u,t(γ,X).

Proof. We prove only the assertion

HR
0,t(γ,X) = HR

0,s(γ,X)HR
s,t(γ,X)

under the assumption X ∩ (0, t) = {t1, t2}, where 0 < t1 < s < t2 < t; this means that, in (27), we
have l = card(X ∩ (0, s)) = 1 and k = card(X ∩ (s, t)) = 1. The general case is treated in a similar
way.

First, we prove an auxiliary assertion, namely, the relation

NR
1 (s1, s2, y1, y2)N

R
1 (s3, s4, y3, y4) = NR

2 (s1, s2 + s3, s4, y1, y2 + y3, y4) (28)

for any s1, s2, s3, s4 > 0 and any y1 , y2 , y3 , and y4 .
Let ϕ ∈ L2(R). We set

ψ(x) = [NR
1 (s3, s4, y3, y4)ϕ](x) = Rs3

ε,y3T
y3
x U(y3)R

s4
ε,y4T

y4
y3ϕ(y4).

Then

[NR
1 (s1, s2, y1, y2)N

R
1 (s3, s4, y3, y4)ϕ](x)

= [NR
1 (s1, s2, y1, y2)ψ](x) = Rs1

ε,y1T
y1
x U(y1)R

s2
ε,y2T

y2
y1R

s3
ε,y3T

y3
y2U(y3)R

s4
ε,y4T

y4
y3ϕ(y4). (29)

The middle part of this expression is easy to transform. Namely, by virtue of (15), we have

Rs2
ε,y2T

y2
y1R

s3
ε,y3T

y3
y2g(y3) = Rs2

ε,y2T
y2
y1(g+ ∗ hs3ε (y2 + y3) + g− ∗ hs3ε (y2 − y3))

= g+ ∗ hs2+s3
ε (y1 + y2 + y3) + g− ∗ hs2+s3

ε (y1 − y2 − y3)

= Rs2+s3
ε,z Tz

y1g(z)|z=y2+y3

for any g ∈ L2(R). Substituting the last expression into the right-hand side of (29), we obtain (28).
Next, using (28), we obtain

HR
0,s(γ,X)HR

s,t(γ,X) = NR
1 (t1, s − t1,m(0, t1),m(t1, s))N

R
1 (t2 − s, t− t2,m(s, t2),m(t2, t))

= NR
2 (t1, t2 − t1, t− t2,m(0, t1),m(t1, t2),m(t2, t)) = HR

0,t(γ,X). �

Now, we define a new family of operators ΦR
st(γ) depending only on γ (and on ε) by setting

ΦR
st(γ) =

∫
X

P0(dX)HR
s,t(γ,X) =

∫
X ∩[s,t]

P0(dX)HR
s,t(γ,X). (30)
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The independence of the values of a Poisson measure on disjoint intervals and Lemma 3 imply
that the family of operators ΦR

st(γ) has the evolution property

ΦR
st(γ) = ΦR

su(γ)Φ
R
ut(γ) for any s � u � t. (31)

Note also that, for any constant C , we have ΦR
st(γ+C) = ΦR

st(γ). Moreover, using the invariance
of a Poisson measure with respect to shifts, we can easily show that

ΦR
s+a,t+a(γ) = ΦR

st(Taγ) (32)

for each a > 0.

4. The Case of a Hamiltonian of General Form

In this section we obtain results similar to those of Section 2 but for the case of an arbitrary
real bounded potential V . As above, we introduce the notation

U0(x) = −iV (x), U(x) = U0(x) + 1.

Now, for each t � 0, we define an operator Qt
ε by setting

Qt
εϕ(x) = E[ΦR

0t(σξ
(1)
ε ( · ))ϕ](x) (33)

for ϕ ∈ L2(R), where σ = eiπ/4 and ξ
(1)
ε ( · ) is the random process defined by (9). The operator

ΦR
0t(γ), which depends on the trajectory γ as a parameter, is defined by (30) at s = 0, but in (33)

we use the trajectory of the process σξ
(1)
ε instead of γ .

First, we check that the operator Qt
ε is well defined, because in the initial definition the argument

of ΦR
0t(γ) was assumed to be a real process γ . The following assertion is valid.

Theorem 3. 1. There exists a constant C = C(ε, V ) > 0 such that

sup
x∈R

|[ΦR
0t(σξ

(1)
ε ( · ))ϕ](x)| � C‖ϕ‖2

with probability 1.

2. For any x ∈ R, the function [HR
0t(σξ

(1)
ε ( · ),X)ϕ](x) regarded as a function on Ω × X is

integrable with respect to the measure P×P0 and

E[ΦR
0t(σξ

(1)
ε ( · ))ϕ](x) =

∫
X

P0(dX)E[HR
0t(σξ

(1)
ε ( · ),X)ϕ](x)

=

∞∑
k=0

∫
Xk

P0(dX)E[HR
0t(σξ

(1)
ε ( · ),X)ϕ](x), (34)

where Xk = {X ∈ X : card(X ∩ (s, t) = k}.
3. For any k = 0, 1, . . . ,∫
Xk

P0(dX)E[HR
0t(σξ

(1)
ε ( · ),X)ϕ](x)

= e−t

∫
0<t1<···<tk<t

dt1 · · · dtkP t1
ε (UP t2−t1

ε (· · ·P tk−tk−1
ε (UP t−tk

ε ϕ) · · · ))(x). (35)

Proof. Using (26) and Lemmas 1 and 2, we obtain the following inequality for all k � 1 (here
t0 = 0 and tk+1 = t):

sup
x∈R

sup
Im zj�−(tj−tj−1)Aε

|[NR
k (t1, t2 − t1 . . . , t− tk, z1, . . . , zk+1)ϕ](x)| � ‖U‖k∞G(ε, t1)t−1/6

1 eDtε−2‖ϕ‖2.

Thus, for X ∈ Xk , we obtain

|[HR
0t(σξ

(1)
ε ( · ),X)ϕ](x)| � ‖U‖k∞t−1/6

1 G(ε, t) ekDtε−2‖ϕ‖2.
Integrating the last inequality with respect to the measure P0 , we obtain assertions 1 and 2 of

the theorem. Assertion 3 follows from the independence of the increments of the process ξ
(1)
ε .
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Theorem 4. The operators Qt
ε form a one-parameter semigroup (i.e., Qt+s

ε = Qt
εQ

s
ε) with

generator Aε + U0 (the symbol of the pseudodifferential operator Aε is defined by (14)).

Proof. The semigroup property of the operators Qt
ε follows from relations (31), (32), and (33)

and the fact that the process ξ
(1)
ε has independent homogeneous increments.

To calculate the generator of the semigroup, we use formulas (34) and (35). Clearly, in (34) it
suffices to retain the two terms corresponding to k = 0 and k = 1. For k = 0, we have

e−tP t
εϕ(x) = ϕ(x)(1 − t) + tAεϕ(x) + o(t), t→ 0,

and for k = 1, we have

e−t

∫ t

0
dt1P

t1
ε UP

t−t1
ε ϕ(x) = tU(x)ϕ(x) + o(t), t→ 0.

The last two relations imply that the generator of the semigroup Qt
ε is Aε +U − 1 = Aε +U0 .

Now, let us show that, for small ε, the operator Qt
ε approximates e−itH . First, we additionally

assume that the potential V has four bounded derivatives. We set

L = max(‖V ‖∞, ‖V (1)‖∞, ‖V (2)‖∞, ‖V (3)‖∞, ‖V (4)‖∞).

Theorem 5. If V ∈ C(4) , then there exists a constant C > 0 such that

‖Qt
εϕ− e−itHϕ‖2 � Ct(1 + t4)ε2‖ϕ‖W 4

2

for any function ϕ ∈W 4
2 (R) and any t � 0.

Proof. By virtue of Theorem 4 and relation (2), we have

Qt
ε = e−it(iAε+V ), e−itH = e−it(H0+V ).

In view of Theorems 1 and 2, it is natural to regard the operator iAε as a small perturbation
of H0 . We need a series of auxiliary assertions.

Lemma 4. For any ε > 0,
‖Qt

ε‖L2→L2 � 1.

Proof. The generator Dε of the semigroup Qt
ε has the form Dε = Aε − iV , where −Aε is an

m-accretive operator (see, e.g., [8, Chap. V, Sec. 3, Subsec. 10; Chap. IX, Sec. 1, Subsec. 2]) and the
operator V is bounded and self-adjoint. Thus, −Dε is m-accretive, which proves the lemma.

Lemma 5. There exists a positive constant C such that

‖e−itH‖W 4
2→W 4

2
� C(1 + L4t4).

Proof. The proof of this lemma repeats that of Lemma 2 in [7] with almost no changes.

To prove the theorem, we use the identity (see [8, Chap. IX, Sec. 2, Subsec. 1])

Qt
εϕ = e−iHtϕ+

∫ t

0
(Qt−τ

ε BeiHτ )ϕdτ, (36)

where B = Aε− iH0 and ϕ ∈W 4
2 .

By virtue of Lemmas 4 and 5 and identity (36), to prove the theorem, it suffices to estimate
‖B‖W 4

2→L2
. First, note that, by virtue of (36), B is the pseudodifferential operator with symbol

b̂ε(p) = ip2/2 + ĝε(p). For ϕ ∈W 4
2 (R), we have

‖Bϕ‖2L2
=

1

2π

∫
|ϕ̂(p)|2 |̂bε(p)|2 dp.

Note that, for |p|ε � 1, we have |̂bε(p)|2 � C|p|4ε2 , and for |p|ε > 1, we have |̂bε(p)|2 � C|p|3ε.
Thus,

‖Bϕ‖2L2
� Cε4

∫
|p|ε�1

|ϕ̂(p)|2|p|8dp + Cε2
∫
|p|ε>1

|ϕ̂(p)|2|p|6dp � Cε4‖ϕ‖2W 4
2
.
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The last inequality directly implies the estimate

‖B‖W 4
2→L2

� Cε2. �

Theorem 6. Let V be any bounded real potential. Then, for any function ϕ ∈ L2(R),

lim
ε→0

‖Qt
εϕ− e−itHϕ‖2 = 0.

Proof. First, suppose that V ∈ C(4)(R). Then we have ‖e−itH‖L2→L2 = 1 and ‖Qt
ε‖L2→L2 � 1,

and the Sobolev class W 4
2 (R) is dense in the space L2(R). Therefore, the assertion of the theorem

follows directly from Theorem 5 and the Banach–Steinhaus theorem (see, e.g., [3, II.1.18]).

In the general case, we choose and fix a sequence {Vn} of functions in the class C(4)(R) which
converge to V almost everywhere with respect to the Lebesgue measure and are uniformly bounded.

Let Hn denote the Hamiltonian −1
2

d2

dx2 + Vn(x).
Note that, for each ϕ ∈ L2(R), we have

‖(Hn −H)ϕ‖2 = ‖(Vn − V )ϕ‖2 → 0, n→ ∞. (37)

It follows from (37) that, for all ϕ ∈ L2(R), we have

e−itHnϕ− e−itHϕ = −i
∫ t

0
e−i(t−τ)Hn(Hn −H)e−iτHϕdτ.

This relation and (37) immediately imply

‖e−itHnϕ− e−itHϕ‖2 → 0, n→ ∞,

which proves the theorem.

References

[1] A. D. Wentzell, Course in the Theory of Stochastic Processes, McGraw-Hill, New York, 1981.
[2] A. M. Vershik and N. V. Smorodina, “Nonsingular transformations of symmetric Lévy pro-

cesses,” Zap. Nauchn. Sem. POMI, 408 (2012), 102–114; English transl.: J. Math. Sci., 119:2
(2014), 123–129.

[3] N. Dunford and J. T. Schwartz, Linear Operators, vol. 1: General Theory, Intersci., New York,
1958.

[4] H. Doss, “Sur une résolution stochastique de l’equation de Schrödinger à coefficients analy-
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