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Abstract. Finite-order invariants (Vassiliev invariants) of knots are expressed in terms of weight
systems, that is, functions on chord diagrams (embedded graphs with a single vertex) satisfying the
four-term relations. Weight systems have graph analogues, the so-called 4-invariants of graphs, i.e.,
functions on graphs that satisfy the four-term relations for graphs. Each 4-invariant determines a
weight system.

The notion of a weight system is naturally generalized to the case of embedded graphs with an
arbitrary number of vertices. Such embedded graphs correspond to links; to each component of a link
there corresponds a vertex of an embedded graph. Recently, two approaches have been suggested
to extend the notion of 4-invariants of graphs to the case of combinatorial structures corresponding
to embedded graphs with an arbitrary number of vertices. The first approach is due to V. Kleptsyn
and E. Smirnov, who considered functions on Lagrangian subspaces in a 2n-dimensional space over
F2 endowed with a standard symplectic form and introduced four-term relations for them. The
second approach, due to V. Zhukov and S. Lando, gives four-term relations for functions on binary
delta-matroids.

In this paper, these two approaches are proved to be equivalent.
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Finite-order invariants (Vassiliev invariants) of knots are expressed in terms of weight systems,
that is, functions on chord diagrams satisfying four-term relations. The vector space over C spanned
by chord diagrams considered modulo four-term relations is endowed with a Hopf algebra structure.
The notion of a weight system is naturally extended from functions on chord diagrams (which can
be interpreted as embedded graphs with a single vertex) to functions on arbitrary embedded graphs.

In [1] to each embedded graph a Lagrangian subspace in a symplectic space over the field F2 was
associated. Kleptsyn and Smirnov rediscovered this construction in [7]. They introduced four-term
relations in the vector space spanned by Lagrangian subspaces and showed that linear functionals
satisfying these four-term relations produce weight systems. They also constructed a Hopf algebra
of Lagrangian subspaces and its quotient by the four-term relations.

Meanwhile, in [10] Lando and Zhukov constructed a Hopf algebra of binary delta-matroids,
introduced four-term relations for them, and constructed the quotient Hopf algebra by the four-
term relations. The correspondence between delta-matroids and embedded graphs allows one to
associate a weight system to a linear functional on the quotient Hopf algebra. The main result
of the present paper is the proof of the equivalence of these two approaches; in particular, we
establish an isomorphism between the Hopf algebra of Lagrangian subspaces and the Hopf algebra
of binary delta-matroids. This isomorphism is given by a mapping νE , which establishes (according
to Theorem 2.1) a one-to-one correspondence between the set of Lagrangian subspaces in VE ,
which is the vector space spanned by the elements of a finite set E and their duals, and binary
delta-matroids on the set E .

∗The article was prepared within the framework of the Academic Fund Program at the National Research
University Higher School of Economics (HSE) in 2016–2017 (grant 16-05-0007) and supported within the framework
of a subsidy granted to the HSE by the Government of the Russian Federation for the implementation of the Global
Competitiveness Program.
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1. Necessary Information About Delta-Matroids

A set system (E; Φ) is a pair consisting of a finite set E and a set Φ ⊂ 2E of subsets of E . The
set E is called the ground set, and the elements of Φ are called the feasible subsets of this system.

Two set systems (E1; Φ) and (E2; Φ2) are said to be isomorphic if there exists a one-to-one
correspondence E1 → E2 , which identifies Φ1 ⊂ 2E1 with Φ2 ⊂ 2E2 . Below we will not distinguish
between isomorphic set systems.

A set system (E; Φ) is said to be proper if the set Φ is nonempty. In our paper we consider
only proper set systems, unless otherwise is stated explicitly. We denote the symmetric difference
operation by Δ: AΔB = (A \ B) � (B \ A). A delta-matroid is a set system (E; Φ) that satisfies
the following symmetric exchange axiom (SEA): for any two feasible subsets φ1, φ2 ∈ Φ and any
element e ∈ φ1Δφ2 , there exists an element e′ ∈ φ1Δφ2 such that φ1Δ{e, e′} ∈ Φ.

Let G be an (abstract) simple graph. We will consider more general objects, namely, framed
graphs, that is, graphs each of whose vertices is labeled by an element 0 or 1 of the field F2 . To
each framed graph G with vertex set V (G) there corresponds its adjacency matrix A(G) (of size
|V (G)| × |V (G)|), in which the entry at the intersection of row v and column v′ (v �= v′) is the
element 1 of the field F2 if the vertices v and v′ are neighboring (that is, connected by an edge) and
the element 0 otherwise. In turn, the diagonal elements are equal to the labels of the corresponding
vertices.

A framed graph G is said to be nondegenerate if its adjacency matrix A(G), considered as
a matrix over the field F2 , is nonsingular, i.e., its determinant equals 1. We define a set system
(V (G); Φ(G)), Φ(G) ⊂ 2V (G) , in the following way:

V (G) is the vertex set of G,

Φ(G) = {U ⊂ V (G) | GU is nondegenerate},
where GU denotes the subgraph in G induced by the vertex set U .

Theorem 1.1 [2]. The set system (V (G); Φ(G)) is a delta-matroid.

We refer to this delta-matroid as the nondegeneracy delta-matroid of the graph G.
The nondegeneracy delta-matroids of framed graphs are examples of binary delta-matroids. To

introduce the notion of a binary delta-matroid, we need the operation of twisting. For a set system
D = (E; Φ) and a subset E′ ⊂ E , we define the twist D ∗E′ of the set system D by the subset E′
as

D ∗ E′ = (E; ΦΔE′) = (E; {φΔE′ | φ ∈ Φ}).
Obviously, the twisting of set systems by a given subset is an involution: D ∗ E′ ∗ E′ = D.

Theorem 1.2 [4]. The twist of the nondegeneracy delta-matroid of a framed graph by any
subset is a delta-matroid.

Definition 1.1 [4]. A delta-matroid is said to be binary if it results from the twisting of the
nondegeneracy delta-matroid of a framed graph by some (possibly empty) subset.

We denote the set of binary delta-matroids with ground set E by BE .

2. Binary Delta-Matroids and Lagrangian Subspaces (a Set-Theoretic Bijection)

In this section we establish a one-to-one correspondence between the set of binary delta-matroids
(on a finite set E) and the set of Lagrangian subspaces in the symplectic space VE over F2 associated
with the set E .

Let E be a finite set, and let E∨ be its copy. We denote the element of E∨ corresponding to
an element e in E by e∨ . Let ∨ : E �E∨ → E �E∨ be the bijection of E �E∨ which interchanges
e and e∨ for all e ∈ E . For Y ⊂ E � E∨ , by Y ∨ we denote the image of Y under the mapping ∨ .

A symplectic structure on a vector space is a nondegenerate skew symmetric form on it. Sym-
plectic structures exist only on even-dimensional spaces. Let VE denote the 2|E|-dimensional space
over F2 spanned by the elements of the set E �E∨ . We introduce a symplectic structure ( · , · ) on
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VE by the rule (e, e∨) = (e∨, e) = 1 (the pairings of the remaining pairs of basis vectors are set to
zero).

A subspace L of a symplectic space is said to be isotropic if the restriction of the symplectic
form to L is zero, i.e., (u, v) = 0 for all u and v in L. The dimension of an isotropic subspace of
a symplectic space cannot exceed half the dimension of the symplectic space itself. An isotropic
subspace whose dimension is half the dimension of the symplectic space is called a Lagrangian
subspace. Let LE denote the set of Lagrangian subspaces in VE .

Definition 2.1 (of a mapping νE )
∗ . Let L be an arbitrary Lagrangian subspace in VE , and

let νE(L) denote the set system νE(L) = (E; ΨL), where a subset Y ⊂ E belongs to ΨL if and
only if L ∩ 〈Y ∨ � (E\Y )〉 = 0; here the angle brackets denote the vector subspace in VE spanned
by the elements in brackets and 0 is the zero vector of the space VE .

Example 2.2. Let E be a 2-element set, E = {1, 2}; then L = 〈1∨+2+2∨, 1+2〉 is a Lagrangian
subspace in VE . It consists of four elements, namely, 0, 1∨ +2+2∨ , 1+ 2, and 1+1∨ +2∨ . In this
case, νE(L) = (E; {{1}, {2}, {1, 2}}). (In [10] this set system was denoted by s25 .) Indeed, we have

for Y = ∅, 〈Y ∨ � (E \ Y )〉 = 〈1, 2〉, L ∩ 〈1, 2〉 � 1 + 2,

for Y = {1}, 〈Y ∨ � (E \ Y )〉 = 〈1∨, 2〉, L ∩ 〈1∨, 2〉 = 0,

for Y = {2}, 〈Y ∨ � (E \ Y )〉 = 〈1, 2∨〉, L ∩ 〈1, 2∨〉 = 0,

for Y = {1, 2}, 〈Y ∨ � (E \ Y )〉 = 〈1∨, 2∨〉, L ∩ 〈1∨, 2∨〉 = 0.

Theorem 2.1. The mapping νE is a bijection between the set LE of Lagrangian subspaces and
the set BE of binary delta-matroids on E .

We split the proof of this theorem into several lemmas.

Definition 2.3. We say that a Lagrangian subspace L in VE is graphic if, for each e ∈ E ,
there exists an element ve ∈ L such that (ve, e) = 1 and (ve, e

′) = 0 for all e′ ∈ E , e′ �= e.

From dimension considerations, the collection {ve}, e ∈ E , of such elements forms a basis in
the space L.

Example 2.4. The Lagrangian subspace L in Example 2.2 is not graphic. Indeed, for the
element e = 1 ∈ E , there are two elements ve such that (e, ve) = 1 (namely, 1∨ + 2 + 2∨ and
1 + 1∨ + 2∨), but for any such element ve , the equality (2, ve) = 1 holds as well.

The subspace 〈1∨, 2∨〉 is an example of a graphic Lagrangian subspace in V〈1∨,2∨〉 . (For e = 1,
we can take ve = 1∨ , and for e = 2, ve = 2∨ .)

Lemma 2.5. The mapping νE determines a bijection between the graphic Lagrangian subspaces
of VE and the nondegeneracy delta-matroids of framed graphs on the vertex set E .

Proof. Let L ⊂ VE be a graphic Lagrangian subspace; to this subspace we assign a symmetric
|E| × |E∨|-matrix A(L) over F2 in which the element at the intersection of row e and column
e′∨ is (ve, e

′∨) for any e ∈ E and e′∨ ∈ E∨ . (The symmetry of this matrix follows from the
isotropy of L: indeed, for any different e and e′ , the relations (ve, e) = (ve′ , e

′) = 1 (for e �= e′∨),
(ve, e

′) = (ve′ , e) = 0, and (ve, ve′) = 0 imply (ve, e
′∨) = (ve′ , e

∨).) One can obtain an arbitrary
symmetric matrix in this way. Conversely, from any symmetric matrix one can uniquely reconstruct
a Lagrangian subspace. Indeed, L is the Lagrangian subspace in VE spanned by the vectors ve =
e∨ +

∑
e′∈E A(L)e,e′∨e

′ .
On the other hand, to each framed graph G with vertex set E its adjacency matrix A(G) over

F2 is associated. Putting A(L) = A(G), we obtain a one-to-one correspondence between the two
sets. Let us prove that under this correspondence the set system νE(L) assigned to the Lagrangian
subspace L is matched to the nondegeneracy delta-matroid of the graph G. Indeed, the subset
Y ⊂ E is feasible, i.e., Y ∈ ΦL , if and only if the submatrix A|Y is nonsingular over F2 , or,
equivalently, the subspace L ∩ 〈Y ∨ � (E\Y )〉 contains only the zero vector.

∗A similar mapping was considered in [12].
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Let us prove the last statement, that the subspace L∩〈Y ∨�(E\Y )〉 contains a nonzero vector if
and only if there exists a nonzero linear combination

∑
e∈E λeve (here ve = e∨+

∑
e′∈E A(L)e,e′∨e

′)
in L belonging to 〈Y ∨ � (E \ Y )〉. This means that there exist λe ∈ F2 , e ∈ E , not all equal to 0
and such that

∑
e∈E λev

∗
e = 0, where

v∗e =

{
e∨ +

∑
e′∈Y A(L)e,e′∨e

′ if e ∈ E \ Y ,
∑

e′∈Y A(L)e,e′∨e
′ if e ∈ Y

(here the v∗e are the restrictions of ve to Y �(E∨\Y )). This statement is equivalent to the singularity

of the matrix

(
0 A|Y
E ∗

)

(here 0 is the zero matrix of appropriate size) and hence of the matrix

A|Y . We have arrived at a contradiction.

Given any L ∈ LE and e ∈ E , let L ∗ e denote the Lagrangian subspace obtained from L by
the linear transformation of the space VE interchanging e and e∨ and acting trivially on the other
vectors of the basis. The operation ∗e is called the local duality at e ∈ E for Lagrangian subspaces.

Lemma 2.6. For any L ∈ LE and e ∈ E , νE(L) ∗ e = νE(L ∗ e). In other words, the local
duality of Lagrangian subspaces descends to twisting of delta-matroids under the mapping νE .

Proof. Let Y ⊂ E be an arbitrary subset. Note that

(L ∗ e) ∩ 〈Y ∨ � (E \ Y )〉 = L ∩ 〈(Y ∨Δ{e∨}) � (E \ (YΔ{e}))〉.
It follows that Y is a feasible subset for νE(L∗e) if and only if L∩〈(Y ∨Δ{e∨})�(E\(YΔ{e}))〉 = 0.
Thus, YΔe is feasible for νE(L), or, equivalently, Y is feasible for νE(L) ∗ e.

Clearly, the operations ∗e and ∗e′ at (not necessarily distinct) elements e, e′ ∈ E commute with
each other; therefore, the operation ∗E′ is well defined for an arbitrary subset E′ ⊂ E .

Lemma 2.7. For any Lagrangian subspace L ∈ LE , there exists a subset E′ ⊂ E such that
the Lagrangian subspace L ∗ E′ is graphic.

Proof. We begin with choosing a “good” basis of L. We proceed as follows.
Choose a vector e1 in the standard basis E � E∨ of VE so that there exists a vector v1 ∈ L

such that (e1, v1) = 1. (We pick v1 for the first element of the “good basis.”) Then we pick a vector
e2 in the standard basis in VE so that there exists a vector v2 ∈ L for which (e2, v2) = 1 and
add the vector v′2 = v2 − (e1, v2)v1 to the “good basis.” We proceed in this way until we obtain a
basis in L (like in the Gram–Schmidt process). Then to L we apply local duality over the set of
those e1, . . . , e|E| that belong to E∨ . We obtain a subspace L1 . (The corresponding matrix A(L1)
is symmetric, because L1 is a Lagrangian space.)

Lemmas 2.5, 2.6, and 2.7 imply the following assertion.

Corollary 2.8. The mapping νE takes every Lagrangian subspace in VE to a binary delta-
matroid over the set E .

Now we can complete the proof of Theorem 2.1.
Let us prove that νE : LE → BE is an injection. Suppose the contrary. Then there exist

distinct Lagrangian subspaces L1, L2 ∈ LE such that νE(L1) = νE(L2). Let E′ ⊂ E be the set
corresponding to L1 in Lemma 2.7. Then

νE(L1 ∗ E′) = νE(L1) ∗ E′ = νE(L2) ∗E′ = νE(L2 ∗E′)

by Lemma 2.6. But it was shown in Lemma 2.5 that the equality νE(L1 ∗E′) = νE(L2 ∗E′) implies
L1 ∗ E′ = L2 ∗ E′ . Therefore, L1 ∗ E′ ∗E′ = L2 ∗E′ ∗ E′ , i.e., L1 = L2 , which is a contradiction.

Now let us prove that νE : LE → BE is a surjection. Indeed, for every binary delta-matroid
B ∈ BE , there exists a subset E′ ⊂ E such that B ∗ E′ is a graphic delta-matroid. There exists a
Lagrangian subspace L ∈ LE such that νE(L) = B ∗E′ . Hence νE(L)∗E′ = B and, by Lemma 2.6,
νE(L) ∗E′ = νE(L ∗ E′), i.e., νE(L ∗ E′) = B .

This completes the proof of Theorem 2.1.
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Fig. 1. A ribbon graph without disks around the centers of vertices and the
elements he and he∨ of the first relative homology group H1(FΓ, ∂FΓ) assigned
to the edge e

3. Lagrangian Subspaces and Binary Delta-Matroids of Embedded Graphs

Let GE the set of connected ribbon graphs with edges labeled by the elements of E .
In [1] a mapping from GE to LE was constructed. It has the following form. Let Γ be a connected

ribbon graph with edge set E regarded as a 2-surface formed by closed topological disk-vertices to
which closed topological disk-edges are attached so that

• edges and vertices intersect in disjoint line segments;
• each such segment lies in the closure of precisely one edge and one vertex;
• each edge contains two such segments.

Given a ribbon graph Γ, let FΓ denote the two-dimensional surface with boundary obtained by
removing small open disks from the centers of the disk-vertices.

To each e ∈ E we assign an element he of the relative homology group H1(FΓ, ∂FΓ). This
element is represented by a segment along the edge e connecting the boundaries of the disks that
are removed from the vertices incident to e. In turn, to each element e∨ ∈ E∨ we assign the element
he∨ in H1(FΓ, ∂FΓ) represented by a segment across the edge e connecting the opposite sides of
this edge (see Fig. 1).

To each continuous cycle γ : S1 → FΓ we associate the vector
∑

e∈E((γ, he)he + (γ, he∨)he∨)
in VE . (The parentheses ( · , · ) in this formula denote the intersection form of the absolute and
relative first homology groups for the given surface with boundary FΓ .)

As shown in [1] and [7], the subspace of VE formed by the vectors corresponding to all cycles γ
is Lagrangian. We denote this subspace by πE(Γ).

On the other hand, Bouchet [4] associated each ribbon graph with a set system whose ground
set is the set of edges of the graph: a subset of edges is feasible if the restriction of the given graph
to this subset is a quasi-tree, that is, a ribbon graph with connected boundary. Bouchet showed
that the set system assigned to a ribbon graph in such a way is a delta-matroid. We denote this
delta-matroid by ρE(Γ).

Theorem 3.1. The mapping νE is compatible with the mappings πE and ρE in the sense that
ρE(Γ) = νE(πE(Γ)) for an arbitrary Γ ∈ GE .

Proof. Let first Γ be a ribbon graph with a single vertex, i.e., a (framed) chord diagram. Then
the statement is true, since both mappings are compatible with the mapping which takes a chord
diagram Γ to the adjacency matrix of its intersection graph. Conversely, each of the mappings is
compatible with the twist operation on the corresponding ribbon graphs ρE(Γ ∗ e) = (πE(Γ)) ∗ e.
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Given an arbitrary ribbon graph Γ, take a set E′ ⊂ E such that Γ ∗ E′ has a single vertex; then
(ρE(Γ)) ∗ E′ = νE(πE(Γ) ∗ E′) = νE(πE(Γ)) ∗ E′ , i.e., (ρE(Γ)) ∗ E′ = νE(πE(Γ)) ∗ E′ , and hence
ρE(Γ) = νE(πE(Γ)) is as required.

4. Hopf Algebra Isomorphism

Let n = |E|, and let Ln denote the set of isomorphism classes of Lagrangian subspaces LE ⊂ VE

with respect to the bijections of n-element sets.
Let Bn denote the set of isomorphism classes of binary delta-matroids on n elements.
In [7] Kleptsyn and Smirnov introduced the structure of a graded commutative and cocommu-

tative Hopf algebra on the infinitely dimensional vector space

CL = CL0 ⊕CL1 ⊕ · · · ,
where CLn is the vector space over C freely spanned by the set Ln . Multiplication in this Hopf
algebra is given by the operation of direct sum of Lagrangian subspaces in the direct sum of
symplectic spaces, which is extended to CL by linearity. The comultiplication CL → CL ⊗CL
takes a Lagrangian subspace L ⊂ VE to a sum of tensor products of Lagrangian subspaces:

L �→
∑

I⊂E

LI ⊗ LE\I ,

where, given a subset I of E , the Lagrangian subspace LI ⊂ VI is the symplectic reduction of
the Lagrangian subspace L (see [7]). This multiplication can be naturally transferred to the vector
space CL spanned by the Lagrangian subspaces considered up to renumbering the elements of
finite sets.

Meanwhile, in [10], a graded Hopf algebra

CB = CB0 ⊕ CB1 ⊕ · · ·
of binary delta-matroids was constructed; here the subspace CBn is freely spanned over C by the
set Bn. Multiplication in this Hopf algebra is given by the direct sum of set systems extended
to CB by linearity. The coproduct of a given set system (E; Ψ) is the sum

μ(E; Ψ) =
∑

E′⊂E

Ψ|E′ ⊗Ψ|E\E′,

where the set Ψ|E′ consists of those elements of Ψ that are contained in E′ .
The mapping νE (see Definition 2.1) is equivariant with respect to the bijections of finite sets

both on the set of Lagrangian subspaces and on the set of binary delta-matroids. Hence the set of
such mappings defines a graded linear mapping

ν : CL → CB, νn : CLn → CBn, n = 0, 1, 2, . . . .

This linear mapping turns out to be an isomorphism.

Theorem 4.1. The mapping ν : CL → CB is a graded isomorphism of Hopf algebras.

Proof. The mapping ν transfers multiplication and comultiplication in the Hopf algebra of
Lagrangian subspaces to multiplication and comultiplication, respectively, in the algebra of binary
delta-matroids. This follows directly from the definitions.

5. Four-Term Relations and Weight Systems

In [14] Vassiliev introduced the four-term relations for functions on chord diagrams. He proved
that any graph invariant of order at most n determines a function on chord diagrams that satisfies
these relations. Such a function is called a weight system. Every four-term relation corresponds to a
chord diagram and to a pair of chords with neighboring endpoints in this diagram. The remaining
three diagrams in this relation can be built from the initial one by applying one of the two (mutually
commuting) Vassiliev moves and their compositions. In [9] Vassiliev moves were extended to framed
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diagrams, which are chord diagrams associated to ribbon graphs with possibly twisted ribbons, and
the corresponding four-term relations were described.

In [7] Kleptsyn and Smirnov extended Vassiliev moves to Lagrangian subspaces. As above, let
E be a finite set, and let VE be the vector space over F2 spanned by the elements of the set E�E∨ .
Given two distinct elements e, e′ ∈ E , the first Vassiliev move assigned to the pair e, e′ is the linear
mapping VE → VE preserving all basis vectors except for the vectors e∨ and e′∨ , on which it acts
as follows:

e∨ �→ e∨ + e′; e′∨ �→ e′∨ + e.

Note that the first Vassiliev move is symmetric with respect to the transposition of the elements e
and e′ .

The second Vassiliev move for the pair e, e′ is the linear mapping VE → VE obtained from the
first move by conjugation with respect to the twist along e′ ∈ E ; see Section 2. The description of
the second move, in contrast to that of the first one, depends on the order of elements in the pair
e, e′ . The action of each Vassiliev move on the set of Lagrangian subspaces is induced by its action
on VE .

In [10] the first and second Vassiliev moves for binary delta-matroids BE were defined. The
second Vassiliev move was defined by using the recently introduced (see [13]) concept of handle
sliding for delta-matroids. It was also shown in [10] (see Proposition 4.10) that the action of the
first and second Vassiliev moves on the space VE as defined by Kleptsyn and Smirnov generates
that defined by the author and Lando for binary delta-matroids. Taking into account Theorem 2.1,
we obtain the following statement.

Theorem 5.1. The graded Hopf algebra isomorphism ν : CL → CB descends to a graded
isomorphism ν : FCL → FCB of the quotients of the Hopf algebras CL and CB by the corre-
sponding four-term relations.
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