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Abstract. The existence of unconditional bases of reproducing kernels in the Fock-type spaces
Fϕ with radial weights ϕ is studied. It is shown that there exist functions ϕ(r) of arbitrarily slow
growth for which ln r = o(ϕ(r)) as r → ∞ and there are no unconditional bases of reproducing
kernels in the space Fϕ . Thus, a criterion for the existence of unconditional bases cannot be given
only in terms of the growth of the weight function.
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Introduction

Given a subharmonic function ϕ(λ) in the plane, we set

Fϕ =

{
f ∈ H(C) : ‖f‖2 :=

∫
C

|f(λ)|2e−2ϕ(λ) dm(λ) <∞
}
,

where H(C) is the space of entire functions and dm is the planar Lebesgue measure. Then Fϕ is
a Hilbert space in which the point functionals δλ : f → f(λ) are continuous for all λ ∈ C. Since
the Hilbert spaces are self-dual, it follows that each of these functionals is generated by an element
K(z, λ) ∈ Fϕ in the sense that

f(λ) =

∫
C

f(z)K(z, λ)e−2ϕ(z) dm(z) for any f ∈ Fϕ and λ ∈ C.

The function K(z, λ) is called the reproducing kernel of the space Fϕ (see [1]); we have K(z, λ) ∈
Fϕ for each fixed λ. Obviously,

‖δλ‖2 = ‖K( · , λ)‖2 = K(λ, λ) for any λ ∈ C.

A basis {hn}∞n=1 in a Hilbert space is said to be unconditional [2] if there exists a number P > 1
such that

1

P

N∑
n=1

|an|2‖hn‖2 �
∥∥∥∥

N∑
n=1

anhn

∥∥∥∥
2

� P
N∑
n=1

|an|2‖hn‖2

for any finite set of numbers an ∈ C, n = 1, . . . , N .
In [3] the existence of unconditional bases consisting of values K(z, λn) of the reproducing

kernel in a space Fϕ was studied (in what follows, instead of “basis consisting of values of the
reproducing kernel” we say “basis of reproducing kernels”). This paper considers twice continuously
differentiable radial weights ϕ(z) = ϕ(|z|) such that the function

ρ(z) = (Δϕ(z))−1/2 =

(
ϕ′(r)
r

+ ϕ′′(r)
)−1/2

, r = |z|,

satisfies the conditions

0 < inf
r>0

ρ(r), ρ(r) = o(r), r → ∞,

ρ(r + ρ(r)) = (1 + o(1))ρ(r), r → ∞, ρ(2r) � ρ(r), r > 0.
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We prove that if ln2 r = o(ϕ(r)) as r → ∞, then the space L2(ϕ) has no unconditional bases of
reproducing kernels, and if ϕ(r) = lnα(r + 1) for 1 < α � 2, then such bases exist.

If was shown in [4] that the space Fϕ has unconditional bases of reproducing kernels if (ϕ(et))′′
is a nonincreasing positive function and ϕ satisfies additional regularity assumptions.

In this paper we show that there exist arbitrarily slowly growing functions ϕ(r) for which
ln r = o(ϕ(r)) as r → ∞ and the space Fϕ has no unconditional bases of reproducing kernels.
Thus, a criterion for the existence of unconditional bases cannot be stated only in terms of the
growth of the weight function.

1. Notation, Preliminaries, and Statements of Results

If two nonnegative functions f and g satisfy the condition

f(x) � Cg(x) for any x ∈ X,

where C is a constant, then we write

f(x) ≺ g(x), x ∈ X.
The symbols � and � have obvious meaning.

Definition 1. Given a continuous function f on B(z, r), we set

‖f‖r = max
w∈B(z,r)

|f(w)|.

Let d(f, z, r) be the distance from f to the space of harmonic functions on B(z, r), i.e.,

d(f, z, r) = inf{‖f −H‖r : H is harmonic on B(z, r)}.
Given a continuous function u on C and a positive number p, we set

τ(u, z, p) = sup{r : d(u, z, r) � p}.
Lemma 1.1 in [5] asserts that, in the case where u is a continuous subharmonic function, the

quantity τ = τ(u, λ, p) is completely determined by the following condition: If H(z) is the least
harmonic majorant of a function u on the disk B(λ, τ), then

max
z∈B(λ,τ)

(H(z) − u(z)) = 2p. (1)

For example, it is easy to show that if u(z) = |z|2 , then
τ(u, λ, p) =

√
p for any λ ∈ C and p > 0.

Let us state Theorem 5 of [6] as applied to the weight spaces Fϕ .

Theorem A. Let Kϕ(z, λ) be the reproducing kernel of the space Fϕ , and let K(z) := Kϕ(z, z).
Suppose that, for any sufficiently large p > 0, there exists a number δ = δ(p) > 0 and a sequence
of disks B(ζj, Rj) (which depends on p) such that the function

τ(z, p) = τ(lnK, z, p)

satisfies the conditions

(i) infz∈B(λ,2τ(λ)) τ(z) � δτ(λ) for all λ ∈ B(ζj , Rj);
(ii) maxz∈B(ζj ,Rj)

τ(z) = o(Rj) as j → ∞.

Then the space Fϕ has no unconditional bases of reproducing kernels.

Remark. In the statement of this theorem in [6] the existence of δ was required for all p > 0,
but the proof used the function τ(z) = τ(lnK, z, ln(5P )), where P is the constant in the definition
of an unconditional basis. Therefore, the statement given above is valid, too.

In this paper we prove the following theorem.
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Theorem. Given any positive function η(t), t > 0, increasing without bound, there exists a
radial subharmonic function ϕ(z) such that

ϕ(r) = O(η(r) ln r), r → ∞,

and the space Fϕ has no unconditional bases of reproducing kernels.

Remark. We can always find a positive function γ(t), t > 0, which increases without bound
and satisfies the conditions γ � η and

γ′(t) � γ(t)

t ln t
, t > 1.

We construct a function ϕ(r) = O(γ(r) ln r), r → ∞, which satisfies the condition in the theorem.

2. Proof of the Theorem

1. Scheme of the construction of a radial subharmonic function ϕ(z). Take a differ-
entiable positive function μ(t), t > 0, increasing without bound and such that μ(0) = μ′(0) = 0.
We set

u(z) =

∫ |z|

0

μ(t)

t
dt.

For r = |z| 
= 0, we have

Δu(z) = u′′(r) +
u′(r)
r

=
μ′(r)
r

> 0;

therefore, u(z) is a twice differentiable positive radial subharmonic function in the plane. Let

dμ̃(z) =
Δu(z) dm(z)

2π
=
μ′(|z|) dm(z)

2π|z|
be the Riesz measure associated with u. Given a measure ν , by ν(t) we denote the ν -measure of
the disk B(0, t). We have

μ̃(t) = μ(t), t > 0.

Take a sequence Tn > 1, n ∈ N, increasing without bound and satisfying the condition
2Tn < Tn+1 , n ∈ N. We denote the restriction of the measure μ̃ to the annulus

Sn = {z : Tn < |z| < 2Tn}
by μn and set

ν =
∑
n

μn.

The function

ϕ(z) =

∫ |z|

0

ν(t)

t
dt

is positive, differentiable, and subharmonic in the plane. We impose certain conditions on the
function μ(t) and the sequence Tn in order that the function ϕ satisfy the assumptions of the
theorem.

2. Bounding the function ϕ from above.

Proposition 1. If

γ0(t) =

√
γ(t)

2
, μ(t) = γ0(t) ln

+ t, t > 0, Tn = γ−1
0 (n),

then

ϕ(r) � γ(r) ln r, r > 1.
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Proof. By the definition of the measures μn , we have

μn(t) =

⎧⎪⎨
⎪⎩
0, t < Tn,

μ(t)− μ(Tn), Tn � t � 2Tn,

μ(2Tn)− μ(Tn), 2Tn < t.

Accordingly, if

n(r) = max{n : Tn � r}, r > 0,

i.e., Tn(r) � r < Tn(r)+1 , then

ν(r) =

n(r)−1∑
n=1

(μ(2Tn)− μ(Tn)) + (μ(r)− μ(Tn(r)), Tn(r) � r < 2Tn(r), (2)

ν(r) =

n(r)∑
n=1

(μ(2Tn)− μ(Tn)), 2Tn(r) � r < Tn(r)+1. (3)

Let

x2 = ln(2Tn), x1 = lnTn.

Then, using the assumptions on the function γ , we obtain

μ(2Tn)− μ(Tn)= γ0(e
x2)x2 − γ0(e

x1)x1=(γ0(e
x)x)′(x∗)(x2 − x1)� 2γ0(e

x∗)(x2 − x1),

where x∗ � x2 . If n � n(r) − 1, then x∗ � x2 = ln(2Tn) < lnTn+1 � lnTn(r) � ln r. If n = n(r)
but 2Tn(r) � r, then x∗ � x2 = ln(2Tn) � ln r. Thus,

μ(2Tn)− μ(Tn) � 2γ0(r) ln 2 < 2γ0(r).

The difference

μ(r)− μ(Tn(r)) < 2γ0(r)

with Tn(r) � r < 2Tn(r) is estimated in a similar way. These estimates and relations (2)–(3) imply

ν(r) < 2n(r)γ0(r), r > 0.

Let β(t) = γ−1
0 (t). Then β(n(r)) � r or n(r) � γ0(r), because Tn(r) � r. Thus,

ν(r) < 2γ20(r) = γ(r), r > 0,

and

ϕ(r) =

∫ r

1

ν(t) dt

t
� γ(r) ln r, r > 1.

This completes the proof of Proposition 1.

Remark. The assumption on the function γ ensures that 2Tn < Tn+1 for Tn = β(n).

3. Estimate of the characteristic τ for the functions u and ϕ.

Proposition 2. Let δ > 0 be a sufficiently small number, and let

Sn(δ) := {z : (1 + δ)Tn � |z| � (2− δ)Tn}, n ∈ N.

For any p > 0 and n larger some n(p, δ), we have√
p

2

r√
γ0(r)

� τ(ϕ, z, p) � 6
√
p

r√
γ0(r)

, z ∈ Sn(δ).

Proof. Since the derivative of γ satisfies the condition in the remark to the main theorem, it
follows that so does the derivative of γ0 . Therefore, for r > e, we have

γ0(r)

r
� μ′(r) = γ′0(r) ln r +

γ0(r)

r
� γ0(r)

r
+
γ0(r)

r
� 2

γ0(r)

r
, r > e.
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Thus, if r = |z|, then
γ0(r)

r2
� Δu(z) =

μ′(r)
r

� 2
γ0(r)

r2
. (4)

It also follows from the conditions on the function γ that if r > 4, then

γ0(2r)− γ0(r) =

∫ 2r

r
γ′0(t) dt � γ0(2r)

∫ 2r

r

d ln t

ln t
= γ0(2r) ln

ln(2r)

ln r
� γ0(2r)

2
,

whence

γ0(2r) � 2γ0(r).

Take any point z0 ∈ C and any numbers ρ, p > 0. The least harmonic majorant H(z) of the
function v(z) = |z − z0|2 on the disk B(z0, ρ) equals identically ρ2 , and the measure associated
with it equals (2/π) dm(z). Therefore, if G(z, w) is the Green function of B(z0, ρ), then

ρ2 = max
z∈B(z0,ρ)

(H(z)− v(z)) =
2

π
max

z∈B(z0,ρ)

∫
B(z0,ρ)

G(z, w) dm(w).

This implies

max
z∈B(z0,ρ)

∫
B(z0,ρ)

G(z, w) dm(w) =
π

2
ρ2. (5)

Let h(z) be the least harmonic majorant of u on the disk B(z0, ρ), where ρ � r0/2 (r0 = |z0|).
Then the first inequality in (4) and relation (5) give

max
z∈B(z0,ρ)

(h(z) − u(z)) =
1

2π
max

z∈B(z0,ρ)

∫
B(z0,ρ)

G(z, w)Δu(w) dm(w)

� 2γ0(r0/2)

9πr20
max

z∈B(z0,ρ)

∫
B(z0,ρ)

G(z, w) dm(w) =
γ0(r0/2)

9r20
ρ2 � γ0(r0)ρ

2

18r20
.

If r0 is such that γ0(r0) � 144p and ρ = 6r0
√
p/γ0(r0), then the last estimate implies

max
z∈B(z0,ρ)

(h(z) − u(z)) � 2p.

By virtue of relation (1), this means that

τ(u, z0, p) � 6
√
p

r0√
γ0(r0)

.

Similar estimates imply

max
z∈B(z0,ρ)

(h(z) − u(z)) � 4γ0(r0)

r20
ρ2,

so that if r0 is such that γ0(r0) � p
√
2 and ρ = (r0/

√
2)
√
p/γ0(r0), then

max
z∈B(z0,ρ)

(h(z) − u(z)) � 2p.

Thus,

τ(u, z0, p) �
√
p

2

r0√
γ0(r0)

.

We have proved the following inequalities for any positive p and any r = |z| satisfying the condition
r � γ−1

0 (144p): √
p

2

r√
γ0(r)

� τ(u, z, p) � 6
√
p

r√
γ0(r)

. (6)

If follows from (6) that if n is so large that

6
√
p√

γ0(Tn)
<
δ

2
,
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then the disk B(z, τ(u, z, p)) is contained in the annulus Sn = {z : Tn < |z| < 2Tn} for all z ∈ Sn(δ);
therefore, by virtue of (1), we have

τ(u, z, p) = τ(ϕ, z, p).

Now Proposition 2 follows from (6).

4. Estimate of the Bergman function K(z) of the space Fϕ .

Proposition 3. The following relation holds :

K(z) � 1

τ2(ϕ, z, 1)
e2ϕ(z), z ∈ Sn(δ), n > n(p, δ),

or, in view of Proposition 2,

K(z) � γ0(r)

r2
e2ϕ(z), z ∈ Sn(δ), n > n(p, δ).

Proof. The Bergman function K(z) = K(z, z) equals the squared norm ‖δz‖2 of the point
functional. The upper bound can be obtained simply by using properties of subharmonic functions.
We set τ(z) = τ(ϕ, z, 1) and let h be the least harmonic majorant of ϕ on the disk B(z) :=
B(z, τ(z)), so that

0 � h(w) − ϕ(w) � 1, w ∈ B(z).

The subharmonicity of the function e−2h|F |2 for F ∈ Fϕ implies

e−2h(z)|F (z)|2 � 1

πτ2(z)

∫
B(z)

e−2h(w)|F (w)|2 dm(w).

It follows that

K(z) � e2

πτ(z)2
e2ϕ(z).

Proposition 2 gives the upper estimate

K(z) � 2e2γ0(r)

πr2
e2ϕ(z), r = |z|, (7)

for z ∈ Sn(δ) and n > n(p, δ).
Let us estimate the function K(z) from below. First, note that

K(z) =
∞∑
n=0

|z|2n
a2n

,

where

a2n = ‖zn‖2F∈Fϕ
= 2π

∫ ∞

0
t2n+1e−2ϕ(t) dt,

or

a2n = 2π

∫ ∞

−∞
e2(n+1)x−2ψ(x) dx;

here ψ(x) = ϕ(ex) is a convex function on R. Let ψ̃ denote the Young complement of ψ, and let

ψ̃(y) = sup
x∈R

(xy − ψ(x)).

By xn we denote the point at which the supremum is attained for y = n+ 1, i.e.,

ψ′(xn) = n+ 1. (8)

Performing straightforward calculations and taking into account (4), we see that if t = ex ∈ S̃m :=
(Tm; 2Tm) for some m, then

ψ′′(x) = ν ′(t)t = μ′(t)t � γ0(t). (9)

We denote the interval {t : |r − t| � τ(z)} by I(r), where r = |z|, and take any positive δ < 1/4.

Let r = |z| ∈ S̃k(2δ) := [(1 + 2δ)Tk ; (2− 2δ)Tk]. Then I(r) ⊂ S̃k(δ).
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According to Theorem 2(a) in [7], for any p > 0, we have

a2n = 2π

∫ ∞

−∞
e2(n+1)x−2ψ(x) dx � 1

ρ2(ψ̃, n+ 1, p)
e2

˜ψ(n+1), n ∈ N.

Here ρ2 = ρ2(ψ̃, y, p) is defined by [7, formula (1)], i.e.,

ρ2 = sup

{
t > 0 :

∫ y+t

y−t
|ψ̃′(τ)− ψ̃′(y)| dτ � p

}
.

Thus,

K(z) � 1

r2

∑
rn∈I(r)

e2((n+1) ln r− ˜ψ(n+1))ρ2(ψ̃, n+ 1, p). (10)

Let us prove that

ρ2(ψ̃, n+ 1, 4) �
√
γ0(rn), rn = exn , (11)

for sufficiently large n. First, we show that if |t − (n + 1)| � √
γ0(rn), then e

˜ψ′(t) ∈ S̃k . Indeed,
take t = ψ′(ln T ), where T = Tk or T = 2Tk . We have

|t− (n+ 1)| = |ψ′(lnT )− ψ′(ln rn)| = ψ′′(t1)| ln(T/rn)|,
where t1 is between lnT and ln rn . Therefore, e

t1 ∈ S̃k and

|t− (n+ 1)| � γ0(e
t1) � γ0(rn).

We set ρ =
√
γ0(rn). If |t − (n + 1)| � ρ, then it follows from the above considerations that

e
˜ψ′(t) ∈ S̃k ; hence∫ y+ρ

y−ρ
|ψ̃′(t)− ψ̃′(n+ 1)| dt � sup

|t−(n+1)|�ρ
2̃ψ′′(t)ρ2 = 2γ0(rn) sup

|t−(n+1)|�ρ
ψ̃′′(t)

= 2γ0(rn) sup
|t−(n+1)|�ρ

1

ψ′′(ψ̃′(t))
� 2γ0(rn) sup

|t−(n+1)|�ρ

1

γ0(e
˜ψ′(t))

� 2γ0(2Tk)

γ0(Tk)
<

2γ0(Tk+1)

γ0(Tk)
=

2(k + 1)

k
� 4.

This implies estimate (11).
From (10) and (11) we obtain

K(z) � 1

r2

∑
rn∈I(r)

e2((n+1) ln r− ˜ψ(n+1))
√
γ0(rn) . (12)

Let yr denote the point at which the supremum supy∈R(y ln r − ψ̃(y)) is attained. Then

ψ(ln r) = yr ln r − ψ̃(yr), ψ̃′(yr) = ln r.

It follows from properties of Young complementary functions that if y(t) is the point at which

supy∈R(yt− ψ̃(y)) = ψ(t) is attained, then ψ̃′(y(t)) = t and

ty − ψ̃(y)− ψ(t) = −ψ̃(y) + ψ̃(y(t)) + ψ̃′(y(t))(y − y(t)).

Considering the Taylor expansion of ψ̃(y) centered at y(t), we obtain

ty − ψ̃(y)− ψ(t) = − ψ̃
′′(y1)
2

(y − y(t))2,

where y1 is a point between y and y(t). Assuming that rn ∈ I(r) and t = ln r, we set y = n + 1
and y(t) = yr and use the known formulas

ψ′(ψ̃′(x)) ≡ x, ψ′′(ψ̃′(x))ψ̃′′(x) ≡ 1.
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The relations

n+ 1 = ψ′(ln rn), ln rn = ψ̃′(n + 1), ψ̃′(yr) = ln r, ψ′(ln r) = yr

imply

(n + 1) ln r − ψ̃(n+ 1)− ψ(ln r) = − 1

2ψ′′(ψ̃′(y1))
(ψ′(ln rn)− ψ′(ln r))2.

Let r1 = e
˜ψ′(y1) . Since y1 is between n + 1 and yr , it follows that r1 is between the points

e
˜ψ′(n+1) = rn and e

˜ψ′(yr) = r. In particular, r1 ∈ S̃k , whence ψ
′′(ln r1) � γ0(r1) � γ0(r)/2. Thus,

(n+ 1) ln r − ψ̃(n+ 1)− ψ(ln r) � − 1

γ0(r)
(ψ′(ln rn)− ψ′(ln r))2. (13)

By virtue of the mean value theorem, we have

|ψ′(ln rn)− ψ′(ln r)| =
∣∣∣∣ψ

′′(ln t)
t

∣∣∣∣|rn − r|,

where t is a point between rn and r. Therefore,

|ψ′(ln rn)− ψ′(ln r)| ≺
∣∣∣∣γ0(t)t

∣∣∣∣τ(z) �
√
γ0(r). (14)

Substituting this estimate into (13), we obtain

(n+ 1) ln r − ψ̃(n+ 1)− ψ(ln r) � −1.

We return to estimate (12). If N(r) is the number of positive integers n for which rn ∈ I(r), then

K(z) � N(r)
√
γ0(r)

r2
e2ψ(ln r).

If rn ∈ I(r), then (14) implies

|(n+ 1)− yr| = |ψ′(ln rn)− ψ′(ln r)| ≺
√
γ0(r),

whence

N(r) �
√
γ0(r).

Thus,

K(z) � γ0(r)

r2
e2ϕ(r).

This completes the proof of Proposition 3.

5. Estimate of the characteristic τ for the function lnK(z). We set

K0(z) =
γ0(r)

r2
e2ϕ(r), r = |z|.

It is easy to derive from the condition on the function γ in the remark to the main theorem that

lim
r→∞ ln

γ0(3r/2)

γ0(r/2)
= 0.

Proposition 4. For sufficiently large n,√
p

8

r√
γ0(r)

� τ(lnK0, z, p) � 6
√
p

r√
γ0(r)

, z ∈ Sn(δ), r = |z|.

Proof. Take any p > 0 and any positive integer N so large that

ln
γ0(3r/2)

γ0(r/2)
<
p

2
, τ(z) := τ(ϕ, z, p) <

r

2
(15)
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for all r ∈ S̃n with n � N . We set τ0(z) := τ(lnK0, z, p). Take r ∈ S̃n(δ), n � N , and positive
t = min(τ0(z), r/2). Let 2h be the harmonic function on B(z, t) nearest to lnK0 on this disk in
the sense of the distance in Definition 1. Then

sup
w∈B(z,t)

|2ϕ(w) + ln γ0(r)− 2 ln |w| − 2h(w)|

� sup
w∈B(z,t)

|2ϕ(w)+ ln γ0(|w|)− 2 ln |w| − 2h(w)| + sup
w∈B(z,t)

| ln γ0(r)− ln γ0(|w|)|

� sup
w∈B(z,t)

| lnK0(w)− 2h(w)| + ln
γ0(3r/2)

γ0(r/2)
.

By the choice of N and t, we have

sup
w∈B(z,t)

|2ϕ(w) + ln γ0(r)− 2 ln |w| − 2h(w)| < 2p;

hence the harmonic function h1(w) = h(w) − 1
2 ln γ0(r) + ln |w| on B(z, t) obeys the estimate

sup
w∈B(z,t)

|ϕ(w) − h1(w)| < p.

This means that τ(z) = τ(ϕ, z, p) � t. If t = τ0(z), then τ(z) � τ0(z). If t = r/2, then τ(z) � r/2,
which contradicts the choice of N . By virtue of Proposition 2, we have

τ(lnK0, r, p) � 6
√
p

r√
γ0(r)

.

To obtain a lower bound, we set t = τ(ϕ, z, p/4) and use h to denote the harmonic function on
B(z, t) nearest to ϕ on this disk in the sense of the distance in Definition 1. Then

sup
w∈B(z,t)

| lnK0(w) − 2h(w) + 2 ln |w| − ln γ0(r)|
� sup

w∈B(z,t)
|2ϕ(w) − 2h(w)| + sup

w∈B(z,t)
| ln γ0(|w|) − ln γ0(r)| < p,

because, according to (15), t = τ(ϕ, z, p/4) � τ(ϕ, z, p) < r/2. This means that, for the harmonic
function h1(w) = 2h(w) − 2 ln |w|+ ln γ0(r), we have

sup
w∈B(z,t)

| lnK0(w) − h1(w)| < p.

Therefore,

τ(lnK0, z, p) � t = τ

(
ϕ, z,

p

4

)
�

√
p

8

r√
γ0(r)

.

This proves Proposition 4.

Proposition 3 implies

e−CK0(z) � K(z) � eCK0(z), z ∈
⋃
n

Sn(δ),

for some C > 0. Using these inequalities, in the same way as above, we obtain

τ(lnK, z, p + C) � τ(lnK0, z, p), z ∈ Sn(2δ),

τ(lnK0, z, p + C) � τ(lnK, z, p), z ∈ Sn(2δ),

for all p > 0 and sufficiently large n. Therefore, if p � 2C , then

τ(lnK0, z, p/2) � τ(lnK0, z, p − C) � τ(lnK, z, p) � τ(lnK0, z, 3p/2),

and Proposition 4 implies
√
p

4

r√
γ0(r)

� τ(lnK, z, p) � 6

√
3p

2

r√
γ0(r)

, z ∈ Sn(2δ), r = |z|,
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for sufficiently large n. It remains to apply Theorem A for the disks B(ζj, Rj), where

|ζj| = 3Tj/2, Rj = (1/4 − δ)Tj

for δ < 1/4.
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