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Abstract. The Schrödinger operator with complex decaying potential on a lattice is considered.
Trace formulas are derived on the basis of classical results of complex analysis. These formulas are
applied to obtain global estimates of all zeros of the Fredholm determinant in terms of the potential.
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1. Introduction. Let us consider a Schrödinger operator H = Δ+ V on �2(Zd), d � 3, where
Δ is the discrete Laplace operator on the lattice Z

d , which is defined by

(Δf)(n) =
1

2

∑

|m−n|=1

fm, f = (fn)n∈Zd ∈ �2(Zd), n = (nj)
d
j=1 ∈ Z

d.

The operator V = (Vn)n∈Zd , Vn ∈ C, is a complex potential acting as (V f)(n) = Vnfn , n ∈ Z
d ,

and satisfying the condition

V ∈ �2/3(Zd). (1)

Here �q(Zd), q > 0, is the space of all sequences f = (f)n∈Zd such that ‖f‖q < ∞, where

‖f‖q = ‖f‖�q(Zd) =

{
supn∈Zd |fn|, q = ∞,
(∑

n∈Zd |fn|q
)1/q

, q ∈ (0,∞).

Note that �q(Zd), q � 1, is a Banach space equipped with the norm ‖ · ‖q . It is well known that
the spectrum of the Laplace operator is absolutely continuous and satisfies the identity σ(Δ) =
σac(Δ) = [−d, d]; see, e.g., [10]. Since the perturbation V is of trace class, it follows from Weyl’s
theorem that the essential spectrum of the Schödinger operator H is

σess(H) = [−d, d].

However, this condition does not exclude the appearance of a singular continuous spectrum on the
interval [−d, d]. The main goal of this paper is to find new trace formulas for the operator H with
complex-valued potential V and use these formulas for estimating the complex eigenvalues in terms
of the potential.

Note that some of the results obtained in this paper are new even in the case of real-valued
potentials because of the presence of a measure ν (see Theorem 3), which appears in the canonical
factorization of the corresponding Fredholm determinant. The nontriviality of such measures is
ensured by the condition (1) on the potential V . We believe that it would be interesting to study
the connection between properties of the potential V and the measure ν .

Uniform bounds for the eigenvalues of Schrödinger operators on R
d with complex-valued po-

tentials decaying at infinity have recently attracted the attention of many specialists in the field.
Estimates for one eigenvalue were obtained, e.g., in the papers [8], [4], and [19], and estimates
for sums of powers of eigenvalues were found in [5], [15], [3], [1], [7], and [20]. The latter results
generalize the celebrated Lieb–Thirring inequalities [16] to the non-self-adjoint case. Note that no
results on the number of eigenvalues of Schrödinger operators with complex-valued potentials have

∗This work was supported by RSF grant No. 15-11-30007.



226

been obtained. We mention the recent paper [6], in which this problem was discussed in detail for
odd dimensions.

Most of the results concerning discrete Schrödinger operators were obtained for self-adjoint
operators; see, e.g., [22] for the case Z

1 . Schrödinger operators with decaying potentials on the
lattice Z

d were considered by Boutet de Monvel with Sahbani [2], Isozaki with Korotyaev [10],
Kopylova [13], Rosenblum with Solomjak [18], and Shaban with Vainberg [21] (see also the refer-
ences therein). In [10] Isozaki and Korotyaev studied the inverse scattering problem for discrete
Schrödinger operators with finitely supported potential. In [11] Isozaki and Morioka proved that, in
this case, the point spectrum of the operator H does not appear in the interval (−d, d). Scattering
on periodic metric graphs was considered by Korotyaev and Saburova [14].

In this paper we use classical results of complex analysis, which lead us to a new class of trace
formulas for discrete Schrödinger operators with complex-valued potentials. In particular, we use
the canonical factorization of analytic functions in the Hardy space. Such factorizations of Fredholm
determinants allow us to obtain trace formulas, which give estimates of complex eigenvalues via

the �
2/3
p norm of the potential.

2. Definitions. Let Dr = {z ∈ C : |z| < r} ⊂ C denote the disc of radius r > 0, and let
D = D1 . By T = ∂D we denote the boundary of the disc D. It is convenient to introduce a new
spectral parameter z ∈ D by

λ = λ(z) =
d

2

(
z +

1

z

)
∈ Λ := C \ [−d, d], z ∈ D.

The function λ(z) has the following properties.
• The function z → λ(z) conformally maps the disc D onto the spectral domain Λ.
• The function λ(z) maps z = 0 to λ = ∞ and the boundary ∂D onto the cut [−d, d].

• The inverse mapping z( · ) : Λ → D is given by z = d−1(λ − √
λ2 − d2), λ ∈ Λ, and has the

asymptotics z(λ) = (d/2)λ−1 +O(1)λ−3 as |λ| → ∞. This asymptotics defines a branch of z(λ).
Let us introduce Hardy spaces Hp = Hp(D), 0 < p � ∞. Let F be analytic in D. We say that

F belongs to the Hardy space Hp if ‖F‖Hp < ∞, where

‖F‖Hp =

{
supr∈(0,1)( 1

2π

∫
T
|F (reiϑ)|p dϑ)1/p, 0 < p < ∞,

supz∈D |F (z)|, p = ∞.

3. Main results. Let B1 denote the space of trace class operators in �2(Zd). Since V ∈ B1 ,
we can define the Fredholm determinant D(z), z ∈ D, for the pair Δ, Δ+ V as follows (see [9] for
properties of Fredholm determinants):

D(z) = det(I + V (Δ− λ(z))−1), z ∈ D.

Note that if λ0 ∈ Λ is an eigenvalue of the operator H , then z0 = z(λ0) ∈ D is a zero of the
Fredholm determinant D with the same multiplicity.

Theorem 1. Let V satisfy condition (1). Then the determinant D(z) is analytic in D and
continuous up to the boundary. It has N , 0 � N � ∞, zeros zj such that

0 < r0 = |z1| � · · · � |zj | � |zj+1| � . . . , (2)

and

‖D‖H∞ � eC‖V ‖2/3 , (3)

where the constant C depends only on d. Moreover, the function logD(z) defined by the condition
logD(0) = 0 is analytic in the disc Dr0 whose radius r0 > 0 is defined by (2), and its Taylor
expansion in Dr0 is

logD(z) = −c1z − c2z
2 − c3z

3 − c4z
4 − · · · ,
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where

c1 = d1a, a = 2/d, c2 = d2a
2, c3 = d3a

3 − c1, c4 = d4a
4 − c2, . . . ,

d1 = TrV, d2 = TrV 2, d3 = Tr(V 3 + (3d/2)V ), . . . , dn = Tr(Hn −Hn
0 ), . . . .

The main analytical difficulty in the proof of inequality (3) is the analysis of A(λ) = |V |1/2(Δ−
λ)−1|V |1/2 as an operator function from Λ to B1 . Roughly speaking, it is required to obtain a
uniform bound supλ∈Λ‖A(λ)‖B1 < ∞. We are not aware of such bounds, but our results impose
too strong condition (1) on the potential V .

For the function D, we define a Blaschke product B(z), z ∈ D, by

B = 1 as N = 0 and B(z) =

N∏

j=1

|zj |
zj

(zj − z)

(1− zjz)
as N � 1. (4)

Theorem 2. Let V satisfy condition (1), and let N � 2. Then the zeros zj of D in the disc
D (see (2)) satisfy the inequality

N∑

j=1

(1− |zj |) < ∞.

Moreover, the Blaschke product B(z), z ∈ D, defined by (4) is absolutely convergent in the disc
{|z| < 1}, B ∈ H∞ , and the function logB has the following Taylor expansion in the disc Dr0 :

logB(z) = B0 −B1z −B2z
2 − · · · for z → 0, (5)

where |Bn| � 2r−n
0

∑N
j=1(1− |zj |) and

B0 = logB(0) < 0, B1 =

N∑

j=1

(
1

zj
− zj

)
, . . . , Bn =

1

n

N∑

j=1

(
1

znj
− znj

)
, . . . .

Below we introduce the canonical factorization of the determinant D and describe its main
properties.

Theorem 3. Let V satisfy condition (1). Then there is a singular measure ν � 0 on [−π, π]
such that the determinant D has canonical factorization

D(z) = B(z)e−Kν(z)eKD(z), Kν(z) =
1

2π

∫ π

−π

eit + z

eit − z
dν(t),

KD(z) =
1

2π

∫ π

−π

eit + z

eit − z
log |D(eit)| dt,

(6)

for all |z| < 1, where log |D(eit)| ∈ L1(−π, π) and

supp ν ⊂ {t ∈ [−π, π] : D(eit) = 0}.
Remarks. 1. For details on canonical factorization, see, e.g., [12].

2. Note that since dν � 0 and Re eit+z
eit−z

� 0 for all (t, z) ∈ T × D, it follows that the function

Din(z) := B(z)e−Kν(z) satisfies the inequality |Din(z)| < 1.

Theorem 4 (trace formulas). Let V satisfy the condition (1). Then

ν(T)

2π
−B0 =

1

2π

∫ π

−π
log |D(eit)| dt � 0, (7)

−cn +Bn =
1

π

∫

T

e−int dμ(t), n = 1, 2, . . . , (8)
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where dμ(t) = log |D(z)| dt − dν(t), B0 = logB(0) = log
(∏N

j=1 |zj |
)
< 0, and the Bn are defined

in (5). In particular,

N∑

j=1

(
1

zj
− zj

)
=

2

d
TrV +

1

π

∫

T

e−it dμ(t), (9)

N∑

j=1

(
1

z2j
− z2j

)
=

4

d2
TrV 2 +

1

π

∫

T

e−2it dμ(t), (10)

and
N∑

j=1

Imλj = Tr ImV − d

2π

∫

T

sin t dμ(t),

N∑

j=1

Re
√

λ2
j − d2 = TrReV +

d

2π

∫

T

cos t dμ(t).

(11)

There are papers devoted to the spectral shift function for non-self-adjoint trace class pertur-
bations (see, e.g., the recent work [17] and references therein). In [17, pp. 812 and 822] other trace
formulas were derived from the factorization of perturbation determinants in C+ . However, the
paper [17] does not contain bounds for eigenvalues in terms of the norm of the perturbation, which
is the aim of the study of this paper. We believe that formulas (7)–(11) are new.

Let us briefly describe the proof. The main problem is proving the integrability of log |D(eit)|,
t ∈ [−π, π], which follows from (3) and well-known results on Hardy spaces. All functions in (6) have
Taylor expansions in the disc. Substituting these expansions into (6) and comparing the coefficients
of the same powers of z , we obtain formulas (7) and (8).

Theorem 5. Let V satisfy condition (1). Then the following estimates hold:

∑
(1− |zj |) � −B0 � C(d)‖V ‖2/3 −

ν(T)

2π
, (12)

N∑

j=1

Imλj � Tr ImV + C(d)‖V ‖2/3, ImV � 0, (13)

N∑

j=1

√
λ2
j − d2 � TrV + C(d)‖V ‖2/3, V � 0. (14)

Remarks. 1. Some assertions of Theorems 4 and 5 are new even for real-valued potentials.
2. Let us briefly describe the proof of Theorem 5. The inequality 1 − x � − log x, x ∈ (0, 1],

implies

−B0 = −B(0) = −
∑

j

log |zj | �
∑

j

(1− |zj |).

Inequality (3) gives
∣∣∣∣
∫

T

dμ(t)

∣∣∣∣ � C(d)‖V ‖2/3 − ν(T). (15)

Substituting the last two inequalities into (7), we obtain (12), and substituting (15) into (11), we
obtain (13) and (14).
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