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Abstract. In this note we consider the homogenization problem for a matrix locally periodic
elliptic operator on R

d of the form A ε = − divA(x, x/ε)∇. The function A is assumed to be
Hölder continuous with exponent s ∈ [0, 1] in the “slow” variable and bounded in the “fast”
variable. We construct approximations for (A ε − μ)−1 , including one with a corrector, and for
(−Δ)s/2(A ε − μ)−1 in the operator norm on L2(R

d)n . For s �= 0, we also give estimates of the
rates of approximation.
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1. Introduction. Homogenization theory studies the asymptotic behavior of solutions to differ-
ential equations with rapidly oscillating coefficients. The solutions of the classical homogenization
problems are known to converge, in a certain sense, to solutions of problems whose coefficients no
longer oscillate. It is a matter of considerable interest not only to prove convergence but also to
find its rate. “Operator error estimates” make it possible to achieve both of these goals: they yield
convergence in the strongest operator topology and, at the same time, provide its rate.

The classical periodic homogenization problems for elliptic operators are rather well studied,
and operator error estimates for these problems are now very well known. The next natural step is
to extend these estimates to the case of locally periodic operators, when the coefficients depend on
both “fast” and “slow” variables. We set Q = [−1/2, 1/2)d . By C0,s(R̄d; L̃∞(Q)) we denote the space
of complex-valued functions in L∞(Rd × R

d) that are Hölder continuous with exponent s ∈ [0, 1]
(uniformly continuous if s = 0) in the first variable and periodic with respect to the lattice Z

d in
the second. Let A = {Akl}dk,l=1, where Akl ∈ C0,s(R̄d; L̃∞(Q))n×n . Consider the operator A ε from
the complex Sobolev space H1(Rd)n to its dual H−1(Rd)n given by

A ε = D∗AεD =

d∑

k,l=1

DkA
ε
klDl, (1)

where D = −i∇ and Aε(x) = A(x, x/ε). Suppose that A ε is coercive uniformly in ε for small ε;
in other words, we suppose that there are a cA > 0 and a CA � 0 such that

Re(AεDu,Du)L2(Rd) + CA‖u‖2L2(Rd) � cA‖Du‖2L2(Rd) (2)

for all u ∈ H1(Rd)n and ε ∈ E = (0, ε0]. It then follows that A ε is m-sectorial, so whenever μ is
outside the corresponding sector S , the operator (A ε−μ)−1 is defined, and its norm is uniformly
bounded. Our aim is to study the behavior of (A ε − μ)−1 as ε → 0. In this note we will construct
the first two terms of an approximation for (A ε − μ)−1 in the operator norm on L2(R

d)n and
the first term of an approximation for Ds(A ε − μ)−1 (here Ds is the differentiation of order s

defined via the fractional Laplacian (−Δ)s/2) in the same operator norm. For each approximation,
we provide an operator bound for the error.

The results that we discuss here have not been fully known. Operator error estimates for
locally periodic elliptic operators were previously studied in [2] and [3], where the leading terms of
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approximations for (A ε − μ)−1 and D(A ε − μ)−1 were obtained. However, in [2] the function A
was required to be sufficiently smooth in both variables, and in [3] this function was assumed to
be Lipschitz in the first variable (that is, s = 1 in our notation). The second term of a uniform
approximation for the resolvent was known only in the special case when the fast and slow variables
are “separated” (in the sense that Aε(x) = A(x1, x2/ε), where x = (x1, x2); this means that
A is periodic with respect to a lattice of nonfull rank) and the coefficients are Lipschitz in the
slow variable [5] (see also [4]). We thus extend these results in two directions: First, we relax
the condition on smoothness as much as possible while requiring that Aε remain measurable.
Second, we refine the approximation of the resolvent of A ε . Note also that, unlike Borisov [2] and
Pastukhova with Tikhomirov [3], we replace the self-adjointness and semiboundedness hypotheses
by the assumption that A ε is sectorial (as in [5]). A detailed exposition of the results for s = 1
can be found in [6].

2. Main results. In order to construct the approximations, we need, as usual, to introduce
a solution of an auxiliary problem on the cell Q. For x ∈ R

d and ξ ∈ C
d×n , let Nξ(x, · ) be the

periodic vector-valued solution of the problem

D∗A(x, · )(DNξ(x, · ) + ξ) = 0,

∫

Q
Nξ(x, y) dy = 0, (3)

in the cell Q (i.e., Nξ(x, · ) belongs to the periodic Sobolev space H̃1(Q)n and satisfies (3)).
Such Nξ(x, · ) exists and is unique by virtue of the uniform coercivity of A ε . Moreover, Nξ(x, · )
depends linearly on ξ , so that the map ξ �→ Nξ is an operator of multiplication by a function; we
denote this function by N . Clearly, N has the same smoothness in the first variable as A; hence
N ∈ C0,s(R̄d; H̃1(Q)).

The notion of an effective operator is central to homogenization theory. The effective operator
A 0 is the map from H1(Rd)n to H−1(Rd)n defined by

A 0 = D∗A0D, (4)

where

A0(x) =

∫

Q
A(x, y)(I +D2N(x, y)) dy. (5)

It follows from the smoothness properties of A and N that A0 ∈ C0,s(R̄d). Moreover, the opera-
tor A 0 turns out to be coercive and satisfy a relation of the form (2) with the same constants as
for A ε . Thus, we conclude that the effective operator is also m-sectorial (but the sector may differ
from S ).

Theorem 1. Let A ∈ C0,s(R̄d; L̃∞(Q)), and let μ /∈ specA 0 . If s = 0, then (A ε − μ)−1

converges, as ε → 0, in the operator norm on L2(R
d)n to (A 0 − μ)−1 . On the other hand, if

s ∈ (0, 1], then there is a neighborhood Eμ ⊂ E of 0 such that, for any ε ∈ Eμ and f ∈ L2(R
d)n ,

‖(A ε − μ)−1f − (A 0 − μ)−1f‖L2(Rd) � Cμε
s‖f‖L2(Rd).

The constant Cμ is explicitly described in terms of s, n, d, μ, cA , CA , ‖A‖C0,s , and the distance
from μ to specA 0 , and the interval Eμ depends in addition on ε0 . In particular, Eμ = E provided
that μ /∈ S .

The next result concerns an approximation of the resolvent in the fractional Sobolev space
Hs(Rd)n , and hence we will assume that s �= 0. Suppose also that if s �= 1, then the func-
tion A belongs to the generalized space C0,s,2(R̄d; L̃∞(Q)) of Hölder continuous functions, i.e., A
is uniformly bounded and [A]C0,s,2 =

∫∞
0 t−2s−1ω(A; t) dt is finite. Here ω(A; t) is the modulus of

continuity of A as a vector-valued map taking values in L∞(Q). The norm of A in this space is
‖A‖C0,s,2 = ‖A‖C + [A]C0,s,2 . (Note that the class C0,s,2 is embedded in C0,s, and it is nothing
but the Besov space Bs∞,2.) In this case, we also have N ∈ C0,s,2(R̄d; H̃1(Q)), and, as a result,
A0 ∈ C0,s,2(R̄d).
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The classical corrector of homogenization theory is not quite suitable for our purposes. Instead,
we use the operator K ε

μ from L2(R
d)n to Hs(Rd)n defined by

K ε
μ f(x) =

∫

Q
N(x+ εz, ε−1x)D(A 0 − μ)−1f(x+ εz) dz. (6)

Under the above assumptions, K ε
μ is continuous.

Theorem 2. Suppose that either s ∈ (0, 1) and A ∈ C0,s,2(R̄d; L̃∞(Q)) or s = 1 and A ∈
C0,1(R̄d; L̃∞(Q)). If μ /∈ specA 0 , then, for any ε ∈ Eμ and f ∈ L2(R

d)n ,

‖Ds(A ε − μ)−1f −Ds(A 0 − μ)−1f − εDsK ε
μ f‖L2(Rd) � Cμε

s‖f‖L2(Rd).

The constant Cμ is explicitly described in terms of s, n, d, μ, cA , CA , ‖A‖C0,s,2 (if s < 1) or
‖A‖C0,1 (if s = 1), and the distance from μ to specA 0 , and the interval Eμ is the same as in
Theorem 1.

The corrector in this form was first proposed in [3] for the case s = 1. We note that K ε
μ

involves the rapidly oscillating function x �→ N(x+ εz, ε−1x), so that the operator norm of DsK ε
μ

on L2(R
d)n increases without bound as ε → 0. Nevertheless, thanks to the factor ε, the norm

of the term εDsK ε
μ f is small provided that s < 1. Thus, Theorem 1 implies the convergence

of Ds(A ε − μ)−1 . A similar result can be proved for Dr(A ε − μ)−1 with r � s under even weaker
requirements on the coefficients. Below, α∧β denotes the minimum of α and β .

Theorem 3. Let A ∈ C0,s(R̄d; L̃∞(Q)), and let μ /∈ specA 0 . If s = 0 and r ∈ (0, 1), then
Dr(A ε − μ)−1 converges, as ε → 0, in the operator norm on L2(R

d)n to Dr(A 0 − μ)−1 . On the
other hand, if s ∈ (0, 1) and r ∈ [s, 1), then, for any ε ∈ Eμ and f ∈ L2(R

d)n ,

‖Dr(A ε − μ)−1f −Dr(A 0 − μ)−1f‖L2(Rd) � Cμε
s∧(1−r)‖f‖L2(Rd).

The constant Cμ is explicitly described in terms of s, r , n, d, μ, cA , CA , ‖A‖C0,s , and the distance
from μ to specA 0 , and the interval Eμ is the same as in Theorem 1.

We emphasize that, under our assumptions, the image of K ε
μ is contained only in Hs(Rd)n .

Therefore, if we want to better approximate Dr(A ε − μ)−1 for r > s, we surely cannot use K ε
μ .

Let us return to the approximation of the resolvent of A ε . Recall that Theorem 1 provides the
leading term of an approximation. We now construct the second term. It is called a corrector as well,
but this corrector is substantially different from K ε

μ and has much more complicated structure.
Let (A ε − μ)+ denote the adjoint of A ε − μ. For (A ε − μ)+ , we can define analogues of all

objects introduced thus far. We will mark these analogues by the symbol “+” as well. According
to elliptic regularity theory, the operator (A 0 − μ)−1 continuously maps L2(R

d)n to H1+s(Rd)n .
If s � 1/2, then the first-order differential operator

L =

∫

Q
(N+( · , y))∗D∗

1A( · , y)(I +D2N( · , y)) dy

is well defined and bounded as a map from H1/2(Rd)n to H−1/2(Rd)n . Therefore, the operator

Lμ = (A 0 − μ)−1D∗LD(A 0 − μ)−1

is continuous on L2(R
d)n . Next, let ΔhA(x, y) = A(x+ h, y)−A(x, y). We set

Mε(x) = ε−1

∫

Q
(I +D2N

+(x, x/ε+ z))∗ΔεzA(x, x/ε + z)(I +D2N(x, x/ε + z)) dz

and define a bounded operator M ε
μ on L2(R

d)n as

M ε
μ = (A 0 − μ)−1D∗MεD(A 0 − μ)−1.

The corrector that we are looking for is then given by

C ε
μ = (K ε

μ − Lμ)− M ε
μ + ((K ε

μ )+ − L +
μ )∗. (7)
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Theorem 4. Suppose that either s ∈ [1/2, 1) and A ∈ C0,s,2(R̄d; L̃∞(Q)) or s = 1 and A ∈
C0,1(R̄d; L̃∞(Q)). If μ /∈ specA 0 , then, for any ε ∈ Eμ and f ∈ L2(R

d)n ,

‖(A ε − μ)−1f − (A 0 − μ)−1f − εC ε
μf‖L2(Rd) � Cμε

2s/(2−s)‖f‖L2(Rd).

The constant Cμ is explicitly described in terms of s, n, d, μ, cA , CA , ‖A‖C0,s,2 (if s < 1) or
‖A‖C0,1 (if s = 1), and the distance from μ to specA 0 , and the interval Eμ is the same as in
Theorem 1.

A corrector of this type was first obtained in [1] for the purely periodic case. In [5] (see also [4])
the operator C ε

μ had a similar form but did not contain the term M ε
μ . However, it is generally

impossible to remove M ε
μ from C ε

μ while retaining the same order of error; see [6] for an example.
This term is therefore a distinguishing feature of nonperiodic problems.

On the other hand, if we replace C ε
μ by M ε

μ , then the error will be of order ε1∧2s/(2−s) . It turns
out that a similar result holds for any s ∈ (0, 1) and for a broader class of coefficients.

Theorem 5. Let s ∈ (0, 1), and let A ∈ C0,s(R̄d; L̃∞(Q)). If μ /∈ specA 0 , then, for any ε ∈ Eμ

and f ∈ L2(R
d)n ,

‖(A ε − μ)−1f − (A 0 − μ)−1f − εM ε
μf‖L2(Rd) � Cμε

1∧2s/(2−s)‖f‖L2(Rd).

The constant Cμ is explicitly described in terms of s, n, d, μ, cA , CA , ‖A‖C0,s , and the distance
from μ to specA 0 , and the interval Eμ is the same as in Theorem 1.

3. Sketch of the proof. Our proof is based on results concerning operators with Lipschitz
coefficients, and therefore we begin with this case.

For s = 1, we develop the method of [5]. The idea of the method is to obtain an operator
identity of the form

(A ε − μ)−1 − (A 0 − μ)−1 − εK ε
μ = (A ε − μ)−1(. . .)(A 0 − μ)−1,

which is interpreted as a generalized resolvent identity. The key point is that the leading contribution
of (A ε−μ)−1 is canceled by that of the sum of (A 0−μ)−1 and εK ε

μ , so that the remaining terms
in brackets on the right-hand side are small. This makes it possible to relatively easily obtain all
desired estimates at once. We emphasize that the estimates in Theorems 1, 2, and 4 for s = 1 are
sharp with respect to order and, generally, cannot be improved.

The case of operators with Hölder continuous coefficients is treated, by way of standard molli-
fiers, as a “limiting” case of operators with Lipschitz coefficients. Fix a nonnegative function J ∈
C∞
c (B1(0)) such that

∫
RdJ(x) dx = 1. We set Jδ(x) = δ−dJ(x/δ) and Aδ(x, y) =

∫
RdJδ(x −

z)A(z, y) dz . According to the results that we have already proved, the resolvent of the regular-
ized operator A ε(δ) = D∗Aε

δD can be approximated in terms of the effective operator A 0(δ) and
the correctors K ε

μ (δ) and C ε
μ(δ) . Further, the resolvents of A ε(δ) and A 0(δ) and the correc-

tors K ε
μ (δ) and C ε

μ(δ) converge, as δ → 0, in the corresponding operator norms to the resolvents
of A ε and A 0 and the correctors K ε

μ and C ε
μ , respectively. Moreover, the convergence rates are

uniformly bounded by the rate of the convergence of Aδ to A. It remains to choose an optimal
subsequence δ(ε).

It is noteworthy that, in the case s = 1, the estimates involve the Lipschitz seminorm of the
coefficients. Since that of Aδ increases without bound as δ → 0, the orders of the error terms will
be worse for s < 1. For instance, if s = 0, then the above argument shows only that (A ε − μ)−1

converges in norm but says nothing about the rate of convergence.
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