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Abstract. We prove a theorem on the completeness of the system of root functions of the
Schrödinger operator L = −d2/dx2 + p(x) on the half-line R+ with a potential p for which L
appears to be maximal sectorial. An application of this theorem to the complex Airy operator
Lc = −d2/dx2 + cx, c = const, implies the completeness of the system of eigenfunctions of Lc for
the case in which |arg c| < 2π/3. We use subtler methods to prove a theorem stating that the system
of eigenfunctions of this special operator remains complete under the condition that |arg c| < 5π/6.
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Introduction

This article mainly studies the operator

Lc = − d2

dx2
+ cx (1)

on the half-line x ∈ [0,+∞) with the Dirichlet boundary condition at zero. We are interested in
the case where the constant c is not real. The main result is given by Theorem 1, which states that
the eigenfunctions of this operator correspond to simple eigenvalues and form a complete system in
the space L2(R+) provided that |arg c| < 5π/6.

We also consider the operator

Lc,α = − d2

dx2
+ cxα, x ∈ [0,∞), (2)

where α > 0 and c ∈ C \ (−∞, 0]. It is convenient to study this operator as a special case of
operators of the more general form

Ly = −y′′ + p(x)y, p(x) = q(x)± ir(x), x ∈ [0,∞), (3)

where
r(x) � M0, q(x) � c0r(x) +M1, lim

x→+∞
x−αr(x) � a > 0, α > 0, (4)

and M0 , M1 , and c0 are real (possibly, negative) constants. It suffices to assume that the functions q
and r are locally integrable. We obtain Theorem 2, which states that if conditions (4) are satisfied
and the operator LD is generated by the differential expression (3) and the Dirichlet boundary
condition at zero, then the system of its root functions is complete in L2(R+) provided that |γ| <
2απ/(2+α), where γ = arg(±i+ c0) ∈ (0, π). Moreover, this system is a basis for the Abel–Lidskii
summation method.

Note that the potential cxα can be represented in the form |c|(cos γ + i sin γ)xα ; hence the
completeness theorem for the operator (2) holds for |arg c| < 2απ/(2 + α). In particular, if c = i,
then the completeness theorem holds for α > 2/3. Although Theorem 2 seems to be more general,
it only gives the completeness result for the operator (1) with |arg c| < 2π/3. We obtain a proof
of Theorem 2 from the general theory stemming from Keldysh’s paper [1]. This theory was further
developed by numerous authors (see [2, Sec. 4] for details). The theorem given here generalizes a
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theorem due to Lidskii [3], who proved it under the assumption that the constant c0 in (4) is zero.
The claim in Theorem 1 for |arg c| ∈ [2π/3, 5π/6) (which does not follow from Theorem 2) is a
much subtler result, and it is the most important part of the paper.

We obtained the results presented here in 1999, soon after we had discussed these problems
with Davies (see the paper [4]). However, we postponed the publication, because we hoped to solve
the completeness problem for the operator Lc completely (no pun intended). Recently, Mityagin
has drawn our attention to the following problem stated by Almog [5]: Is the eigenfunction system
of the operator Li,α = −d2/dx2 + ixα complete for α ∈ (0, 2/3]? We do not know the answer, but
the relation between this problem and the result stated in Theorem 1 is obvious. In particular, we
have no doubt that the following conjecture is true: there exists a number α0 < 2/3 such that the
eigenfunctions of the operator Li,α form a complete system in L2(R+) for α ∈ (α0, 2/3].

Here we consider operators on the half-line R+ , but the results remain valid for the entire
line if one extends the potentials to the entire line as even functions (see the remark at the end
of the paper). The complex Airy operator is usually understood to be the operator Lc with c =
i (e.g., see [6]), but we preserve the name for arbitrary c ∈ C \ {0}. The Airy operator was
studied in connection with the Orr–Sommerfeld problem, well known in fluid mechanics (see the
papers [7]–[10] and references therein). This operator is also related to other problems of mechanics
(e.g., see Almog [6]). For nonself-adjoint operators, it is important not only to know where the
spectrum is located but also to have some information on the ε-pseudospectrum σε := {λ ∈ C :
‖(L − λI)−1‖ � ε−1}. On this topic, note, e.g., the papers by Trefethen–Embree [11], Krejc̆ĭŕık–
Siegl–Tater–Viola [12], and Henry–Krejc̆ĭŕık [13].

One can single out yet another three directions of research in the study of the Schrödinger
operator with complex potential p = q + ir. The first direction deals with the case in which the
function r is in some sense subordinate to q, so that the corresponding operator is a perturbation
of a self-adjoint operator. Here we note the papers [2] and [14]—[20] by Adduci, Djakov, Mityagin,
Shkalikov, Siegl, and Viola. In the second direction, the potential is pure imaginary, q(x) ≡ 0.
Here we note the papers [4] and [21]–[26] by Davies, Henry, Krejc̆ĭŕık, Kuijlaars, Shkalikov, and
Tumanov. The third direction deals with the Schrödinger operator with PT -symmetric potential,
p(x) = −p(−x). Here we note the papers [27]–[29] by Bender, Boettcher, Eremenko, Gabrielov,
Krejc̆ĭŕık, Shapiro, and Siegl. In the context of the present paper, it is important to note that the
complex Airy operator with c = i was studied on the half-line and the entire line in the paper by
Grebenkov–Helffer–Henry [30]. In particular, it was proved there that the eigenfunctions of this
operator on the half-line form a complete system but not a basis and that the spectrum of this
operator on the entire line is empty.

To make the exposition simple and specific, we restrict ourselves to the Dirichlet boundary
condition. The theorems and their proofs remain valid if one replaces the Dirichlet condition with
the condition y′(0) + hy(0) = 0, h ∈ R.

1. Definition of the Operator Lc and Its Main Properties

Let us give a more precise definition of the operator Lc with the Dirichlet boundary condition.
Namely, Lc is the operator defined on the space L2(R+) by the differential expression

l(y) = −y′′ + cxy, x ∈ [0,+∞),

with the domain

D(Lc) = {y ∈ L2(R+) : y ∈ W 2
2,loc, l(y) ∈ L2(R+), y(0) = 0}.

The constant c is assumed to be complex and satisfy c ∈ C \ (−∞, 0]. In other words, we are
interested in the case of γ := arg c ∈ (−π, π). Obviously, the operator Lc is densely defined,
because its domain contains infinitely differentiable functions compactly supported on (0,+∞);
the set of these functions is well known to be dense in L2(R+).
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In what follows, we deal with special functions satisfying the Airy equation y′′ = zy. It is well
known (e.g., see [31, Sec. IV.1] and [32, Sec. 10.4]) that this equation has two linearly independent
solutions Ai(z) and Bi(z) with the initial conditions

Ai(0) =
1

32/3Γ(2/3)
, Ai′(0) = − 1

31/3Γ(1/3)
,

Bi(0) =
1

31/6Γ(2/3)
, Bi′(0) =

31/6

Γ(1/3)
;

the Wronskian W (Ai,Bi) of these functions satisfies

W (Ai,Bi) = Ai(z)Bi′(z)−Ai′(z)Bi(z) = 1/π.

Both functions are entire functions of order 3/2 and type 2/3. In any domain |arg z| < π−ε, where
ε > 0 is arbitrarily small, the function Ai(z) admits the following asymptotic representations as
|z| → ∞:∗

Ai(z) =
1

2
√
π
z−1/4e−2z3/2/3(1 +O(z−3/2)),

Ai′(z) = − 1

2
√
π
z1/4e−2z3/2/3(1 +O(z−3/2)).

(5)

The representations (5) can be differentiated arbitrarily many times. Clearly, the functions Ai(z)
and Ai′(z) exponentially decay as |z| → ∞ along any ray in the sector |arg z| < π/3. Finally, the
following representation holds on the ray arg z = π for the function Ai(−x), x > 0:

Ai(−x) =
1√
π
|x|−1/4

(
sin

(
2

3
|x|3/2 + π

4

)
+O(|x|−3/2)

)
, |x| → ∞.

All zeros zk of Ai(z) are simple and lie on the ray arg z = −π, and one has

zk = −
[
3

2
π

(
k − 1

4

)]2/3
+O(k−4/3), k = 1, 2, . . . . (6)

Instead of Bi(z), it will be convenient to use the function U(z) := Bi(z)−√
3Ai(z), which satisfies

the initial conditions

U(0) = 0, U ′(0) =
2 · 31/6
Γ(1/3)

; furthermore, W (Ai, U) =
1

π
.

In the sector |arg z| < π/3, this function has the asymptotic representation

U(z) =
1√
π
z−1/4e2z

3/2/3(1 +O(z−3/2)), U ′(z) =
1√
π
z1/4e2z

3/2/3(1 +O(z−3/2)). (7)

Thus, the functions U(z) and U ′(z) grow exponentially as |z| → ∞ along any ray in this sector. The
asymptotic representations of U(z) and U ′(z) are also well known in other sectors of the complex
plane, but here we do not need them.

Proposition 1. The domain D(Lc) coincides with the set of functions of the form

y(x) = πc−1/3

[
Ai(c1/3x)

∫ x

0
U(c1/3t)f(t) dt+ U(c1/3x)

∫ ∞

x
Ai(c1/3t)f(t) dt

]
, (8)

where f(x) ranges over the entire space L2(R+). For each function y ∈ D(Lc), one has

x1/2y(x) → 0, y′(x) → 0 as x → +∞, x1/2y(x), y′(x) ∈ L2(R+). (9)

Equation (8) defines a bounded operator on L2(R+), which is the inverse of Lc .

∗From now on, the branch of zα is fixed by the condition arg z ∈ [−π, π).
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Proof. First, note that the ray c1/3x, x > 0, lies in the sector |arg z| < π/3 of the complex
plane. This means that the function Ai(c1/3t) decays exponentially, and hence the improper integral
in (8) converges. Since f ∈ L2(R+), it follows that the function y defined in (8) lies in W 1

2 [0, b] for
every finite b. By differentiating, we obtain

y′(x) = π

[
Ai′(c1/3x)

∫ x

0
U(c1/3t)f(t) dt+ U ′(c1/3x)

∫ ∞

x
Ai(c1/3t)f(t) dt

]
, (10)

whence it follows that y′ ∈ W 1
2 [0, b] for every finite b. By differentiating once more, we obtain

y′′ = π[Ai′(c1/3x)U(c1/3x)− U ′(c1/3x)Ai(c1/3x)]f(x)

+ πc1/3
[
Ai′′(c1/3x)

∫ x

0
U(c1/3t)f(t) dt+ U ′′(c1/3x)

∫ ∞

x
Ai(c1/3t)f(t) dt

]

= −f(x) + cxy(x);

i.e., y ∈ W 2
2 [0, b] for each b > 0 and l(y) = f ∈ L2(R+). Since y(0) = 0, it follows that y ∈ D(Lc).

The converse is true as well. Namely, let y ∈ D(Lc) and l(y) = f ∈ L2(R+). By a classical theorem
on the general form of a solution of a differential equation,

y = C1Ai(c
1/3x) + C2U(c1/3x)

+ πc−1/3

[
Ai(c1/3x)

∫ x

0
U(c1/3t)f(t) dt+ U(c1/3x)

∫ ∞

x
Ai(c1/3t)f(t) dt

]
,

where C1 and C2 are constants. It follows from the relation y(0) = 0 that C1 = 0, while the
condition y ∈ L2(R+) and the estimate (12), which will be proved below, imply that C2 = 0; i.e., y
admits the representation (8). Thus, formula (8) defines the inverse operator L −1

c . Its boundedness
follows from the estimate |y(x)| � M‖f‖ on every finite interval [0, b] and the estimate (12). Here
and in what follows, the letter M (or M1 , or M2) stands for various positive constants, and
‖ · ‖ = ‖ · ‖L2(R+) .

Let us prove relations (9). First, note that, by virtue of (7), there exists a constant M such
that the estimate

|U(c1/3t)| � Mt−1/4 exp(at3/2), a := (2/3)|c|1/2 cos(γ/2),
holds for t > 0. (Recall that γ = arg c.) It is easily seen that the function g(t) = t−1/4 exp(at3/2)
increases for sufficiently large t � b = b(a). Hence

∣∣∣∣
∫ x

0
U(c1/3t)f(t) dt

∣∣∣∣ �
(∫ b

0
+

∫ x−1

b
+

∫ x

x−1

)
|U(c1/3t)| |f(t)| dt

� M1‖f‖+M‖f‖x1/4exp[a(x3/2 − x1/2)] +Mx−1/4exp(ax3/2)

(∫ x

x−1
|f(t)|2 dt

)1/2

for x > b+1. Here the constant M1 depends on b alone. When passing to the second inequality, we
have taken into account the fact that the length of the integration interval in the second integral
is less than x and used the inequality (x− 1)3/2 � x3/2 − x1/2 , which holds for sufficiently large x.
This estimate, together with the representation (5), implies that

∣∣∣∣Ai(c1/3x)
∫ x

0
U(c1/3t)f(t) dt

∣∣∣∣
� Mx−1/4 exp(−ax3/2)‖f‖+M exp(−ax1/2)‖f‖+Mx−1/2

(∫ x

x−1
|f(t)|2 dt

)1/2

for sufficiently large x. We have estimated the first summand in (8). In a similar way, we estimate

the second summand. The function g(t) = t1/2 exp(−at3/2) is decreasing for sufficiently large t,
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and hence∣∣∣∣
∫ ∞

x
Ai(c1/3t)f(t) dt

∣∣∣∣ � M

(∫ ∞

x+1
g2(t)t−3/2 dt

)1/2

‖f‖+M

∫ x+1

x
g(t)t−3/4 |f(t| dt

� 21/2Mx−1/4g(x+1)‖f‖ +Mg(x)x−3/4

(∫ x+1

x
|f(t)|2dt

)1/2

for large x. Since (x+ 1)3/2 � x3/2 + x1/2 , we have

|U(c1/3x)| � Mx1/4g−1(x), g(x + 1)g−1(x) � M exp(−ax1/2),

and hence the absolute value of the second term on the right-hand side in (8) can be estimated by

M exp(−ax1/2)‖f‖+Mx−1/2

(∫ x+1

x
|f(t)|2dt

)1/2

.

By adding the resulting estimates, we arrive at the inequality

|y(x)| � M2 exp(−ax1/2)‖f‖+M2x
−1/2

(∫ x+1

x−1
|f(t)|2dt

)1/2

, x > b+ 1, (11)

which proves the first relation in (9). The second relation in (9) can be obtained in the same way
except that (10) is used instead of (8) and we take into account the fact that the estimates for the

derivatives Ai′ and U ′ differ from the estimates for the functions themselves by the factor x1/2 .
Let us prove that x1/2y(x) ∈ L2(R+). It follows from the estimate (11) that∫ ∞

b
|x1/2y(x)|2 dx � M‖f‖2

∫ ∞

b
x exp(−2ax1/2) dx+M

∫ ∞

b

∫ x+1

x−1
|f(t)|2dt dx

� M‖f‖2 +M

∫ ∞

b−1
|f(t)|2

∫ t+1

t−1
dx dt � M‖f‖2. (12)

The inclusion y′ ∈ L2(R+) can be obtained in a similar way with regard to the fact that |y′(x)|
is bounded by the right-hand side of (11) multiplied by x1/2 . This completes the proof of the
proposition.

Proposition 2. The numerical range of the operator Lc lies in the closed sector Sγ of the
complex plane bounded by the rays arg λ = 0 and arg λ = γ , where γ = arg c.

Proof. The quadratic form of our operator is given by

(Lcy, y) =

∫ ∞

0
(−y′′y + cxyy) dx = −y(x)y′(x)

∣∣∣∣
∞

0

+

∫ ∞

0
|y′|2 dx+ c

∫ ∞

0
x|y|2 dx.

It remains to note that y(0) = 0 and y(x)y′(x) → 0 as x → ∞ by (9).

Proposition 3. The operator Lc is closed and has zero deficiency numbers (the dimension of
the kernel and the codimension of the range). The adjoint operator L ∗

c coincides with the opera-
tor Lc .

Proof. The first claim follows from Proposition 1, because we have presented the inverse op-
erator L −1

c , which is bounded and hence closed. Consequently, the inverse of the inverse is closed
as well. To prove the second claim, let us verify the Lagrange identity. Let y(x) ∈ D(Lc), and let
u(x) ∈ D(Lc). Then

(Lcy, u) =

∫ ∞

0
(−y′′(x)u(x) + cy(x)u(x)) dx

=

∫ ∞

0
(−y(x)u′′(x) + y(x)cu(x)) dx + y(x)u′(x)

∣∣∣∣
∞

0

− y′(x)u(x)
∣∣∣∣
∞

0

=

∫ ∞

0
(−y(x)u′′(x) + y(c)cu(x)) dx = (y,Lcu).
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Set Lcy = z and Lcu = v. It follows from the Lagrange identity that

(z,L −1
c v) = (Lcy, u) = (y,Lcu) = (y, v) = (L −1

c z, v) ∀z, v ∈ L2(R+).

Consequently, L −1
c = (L −1

c )∗ . But then Lc = L ∗
c .

Proposition 4. The resolvent Rc(λ) = (Lc − λI)−1 is well defined and is a bounded operator
for each λ ∈ C \ Sγ , where the sector Sγ is defined in Proposition 2. Further,

‖Rc(λ)‖L2(R+) �
1

dist(λ, Sγ)
. (13)

Proof. For γ = 0, the operator Lc is self-adjoint and positive, Sγ = R+ , and the claim to

be proved is well known. Let γ 
= 0. By Proposition 2, both operators T1 = ei(π/2−γ) sign γ · Lc

and T2 = −i sign γ · Lc are accretive (i.e., Re(Tjy, y) � 0 for each y ∈ D(Lc) = D(Tj), j = 1, 2).
By Proposition 3, both operators are closed and have zero deficiency numbers; i.e., they are closed
maximal accretive operators. Hence the operators T1 − zI and T2 − zI are invertible for each z in
the open left half-plane (e.g., see [33, Chap. III.10]), and

‖(T1 − zI)−1‖ � |Re z|−1 and ‖(T2 − zI)−1‖ � |Re z|−1.

These estimates are obviously equivalent to the estimate (13).

It follows from Proposition 2 that the numerical range of the operator Lc lies in the sector Sγ .

Hence the operator T = e−iγ/2Lc is sectorial, and it follows from Proposition 3 that this operator
is m-sectorial. For each m-sectorial operator, there exists a unique sectorial sesquilinear form
associated with it. Let us find an explicit expression for this form.

Proposition 5. The closed sectorial sesquilinear form t of the operator T = e−iγ/2Lc is given
by

t[u, v] = e−iγ/2

∫ ∞

0
u′(x)v′(x) dx+ |c|eiγ/2

∫ ∞

0
xu(x)v(x) dx,

u, v ∈ D(t) = {y ∈ L2(R+) : y
′, x1/2y ∈ L2(R+)}. (14)

Proof. Define the form t0[u, v] = (Tu, v) on the domain D(T ) = D(Lc). By integrating by
parts in the same way as in the proof of Proposition 2, we obtain

t0[u, v] = e−iγ/2

∫ ∞

0
u′(x)v′(x) dx+ |c|eiγ/2

∫ ∞

0
xu(x)v(x) dx.

Obviously, the linear manifold D(t) defined above is a closed set in the norm corresponding to
the inner product

[u, v] =

∫ ∞

0
(xu(x)v(x) + u′(x)v′(x)) dx;

i.e., D(t) equipped with this inner product is a Hilbert space. Note that D(Lc) is a core of the
form t (see [33, Chap. VI, Theorem 2.1]). Hence the domain of the closure of t0 coincides with
D(t), and the form t corresponding to the operator T is given by (14).

Proposition 6. For each λ in the resolvent set, the operator Rc(λ) = (Lc−λI)−1 is compact.
The spectrum of the operator Lc is discrete and consists of a sequence of simple eigenvalues

λn = tnc
2/3, n ∈ N, where tn > 0 and tn = [(3π/2)(n − 1/4)]2/3 +O(n−4/3). (15)

The corresponding eigenfunctions are

yn(x) = Ai(−tn + xc1/3), n = 1, 2, . . . . (16)
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Proof. The compactness of the resolvent of the operator T = e−iγ/2Lc is equivalent to that
of the resolvent of the operator H = ReT (see [33, Chap. VI, Theorem 3.3]). The operator H is
generated by the quadratic form h = Re t; i.e.,

h[u, v] = cos
γ

2

∫ ∞

0
u′(x)v′(x) dx+ |c| cos γ

2

∫ ∞

0
xu(x)v(x) dx, D(h) = D(t).

The operator H can be uniquely reconstructed from the quadratic form; hence from Proposition 5
we obtain

Hy = cos(γ/2)(−y′′ + |c|xy),
D(H) = {y ∈ L2(R+) : y ∈ W 2

2,loc, −y′′ + |c|xy ∈ L2(R+), y(0) = 0}. (17)

The compactness of the resolvent (H − λ)−1 follows from Molchanov’s criterion (e.g., see [34,
Sec. VII.24]). Thus, the resolvent Rc(λ) is compact, and the spectrum σ(Lc) is discrete. Let us
write out the eigenvalue equation

−y′′ + cxy = λy, y(0) = 0, y ∈ L2(R+).

We make the change of variables t = −λc−2/3 + xc1/3 . Then the equation acquires the form
−y′′tt + ty = 0; i.e.,

y(x) = C1 Ai(c
1/3x− λc−2/3) +C2U(c1/3x− λc−2/3). (18)

In view of (5) and (7), we find that C2 = 0, and since y(0) = 0, we arrive at the eigenvalue equation

Ai(−λc−2/3) = 0. It remains to note that all zeros of the function Ai(z) are simple, and relations
(15) now follow from (6). By substituting λ = λn into (18), we obtain relations (16).

2. Completeness Theorem for the Operator Lc

Theorem 1. The eigenfunction system of the operator Lc is complete and minimal in L2(R+)
under the condition |arg c| < (5π)/6.

Proof. The minimality of the eigenfunction system {yn} of the operator Lc follows from the
well-known relations

(yn, zk) = cnδnk, cn 
= 0,

where {zk} is the eigenfunction system of the adjoint operator Lc . To prove the completeness, we
use the Levinson method (see [35, Supplement 4]), taking into account the presence of the function

Ai(w+ c1/3x), which generates the eigenfunctions yn for w = −tn . To be definite, we shall consider
the case of Im c � 0; i.e., γ ∈ [0, π), where γ = arg c. The case of γ ∈ (−π, 0] can be treated in
a similar way. (The estimates given below should be carried out in the same way but in sectors
symmetric with respect to the real line.)

We split the proof into several steps. Let a function f ∈ L2(R+) be orthogonal to the eigen-
functions of Lc . Consider the function

F (w) =
F0(w)

Ai(w)
, F0(w) =

∫ ∞

0
Ai(w + xc1/3)f(x) dx. (19)

At the first step, we show that F is an entire function of order ρ � 3/2 and finite type for ρ = 3/2.
At the second step, we prove that F admits the estimate

|F (w)| � M‖f‖R1/2, R = |w| � 1, (20)

in the sector
S = {w ∈ C : −π + γ/3 � arg w � π − 2γ/3}. (21)

At the third step, we show that there exists a number α0 ∈ (0, γ/3) such that the estimate (20)
remains valid in the sector S′ = S ∪ S0 , where

S0 = {w ∈ C : −π + α0 � arg w � −π + γ/3}. (22)

The number α0 cannot be computed in closed form (it is a root of a transcendental equation), but
one can show that the opening angle of the complementary sector C\S′ is less than 2π/3 provided
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that γ < 5π/6. Then it follows that the estimate (20) holds in the entire complex plane. At the
fourth step, we show that F (w) ≡ 0, and the fifth step gives f(x) ≡ 0. Let us proceed to the
implementation of our plan.

Step 1. Let us show that the function F0 in (19) is well defined and holomorphic in the parameter
w ∈ C. Take an arbitrary number δ ∈ (0, π/4] such that γ/2+δ < π/2. Let w run over the compact
set |w| � R. We represent the function F0 in the form

F0(w) =

(∫ x0

0
+

∫ ∞

x0

)
Ai(w + xc1/3)f(x) dx := F1(w) + F2(w),

x0 = x0(R) =
R

|c|1/3 sin(2δ/3) .

The first integral is proper, and hence it is holomorphic in the parameter w in the disk |w| � R.
To prove that the second integral is holomorphic, note that∣∣∣∣arg

(
1 +

w

c1/3x

)∣∣∣∣ � 2δ

3
=⇒ arg(w + c1/3x)3/2 ∈

[
γ

2
− δ,

γ

2
+ δ

]

for x > x0(R). Then

Re(w + c1/3x)3/2 � |w + c1/3x|3/2 cos(γ/2 + δ) � (3/2)a1(|c|1/3x−R)3/2 (23)

for x > x0(R) and |w| � R, where a1 := (2/3) cos(γ/2 + δ). Consequently,

|Ai(w + c1/3x)| � M exp(−(2/3)Re(w + c1/3x)3/2) � M exp(−a1(|c|1/3x−R)3/2) (24)

for x > x0(R) by (5) and (23). A similar estimate with right-hand side multiplied by |w+ c1/3x|1/4
holds for Ai′(w + c1/3x)3/2 . It follows that the integral F2(w) converges uniformly with respect to
the parameter w in the disk |w| � R and remains uniformly convergent after the differentiation
with respect to w; i.e., the function F2 is holomorphic in the disk |w| � R. Since R is arbitrary,
we see that F0 = F1+F2 is an entire function. Further, so is F (w), because all the points w = −tk
are its removable singularities. (By our assumption, the function F0(w) vanishes at these points,
while the function Ai(w) has simple zeros there.)

Now let us estimate the growth of F0(w) as |w| → ∞. The length of the integration interval in
the integral F1 is proportional to R, and hence

|F1(w)| � MR1/2‖f‖ exp((2/3)(R + |c|1/3x0)3/2) � MR1/2‖f‖ exp(M1R
3/2). (25)

Set v(x) = exp(−a1(|c|1/3x−R)3/2 + x), where the number a1 is defined in (23). This function is
decreasing for x > x0 provided that the number x0 = x0(R) is sufficiently large. Hence it follows
from (24) that

|F2(w)| � M

∫ ∞

x0

exp(−a1(|c|1/3x−R)3/2 + x)|f(x)|e−x dx

� 2−1/2M‖f‖ exp{−a1(|c|1/3x0(R)−R)3/2 + x0)}, x0 =
R

|c|1/3 sin(2δ/3) . (26)

Consequently, |F2(w)| → 0 as w → ∞. It follows from (25) that F0 = F1 +F2 is an entire function
of order � 3/2 and of finite type if the order is 3/2. Then the entire function F (w) defined as the
ratio of the entire functions F0(w) and Ai(w) has the growth characteristic that does not exceed
the maximum of the growth characteristics of the numerator and denominator (e.g., see [35, Sec.
I.9]); i.e., F has order ρ � 3/2 and finite type if ρ = 3/2.

Step 2. Consider the sectors

S1 = {w ∈ C : −π + γ/3 � arg w � −π/3 + ε},
S2 = {w ∈ C : π/3− ε � arg w � π − 2γ/3}, (27)
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where the number ε ∈ (0, π/3) will be chosen below. According to (26) and (5),

|F2(w)|
|Ai(w)| � M‖f‖ exp

(
2

3

(
cos

3ϕ

2
− cos(γ2 + δ)(1 − sin(2δ3 )

3/2

sin3/2 2δ
3

)
R3/2 +

R

|c|1/3 sin 2δ
3

)
, (28)

where ϕ = argw. The estimate cos(3ϕ/2) � sin(3ε/2) holds in the union S1∪S2 of sectors defined
in (27). Take a number ε > 0 such that

sin
3ε

2
− cos(γ2 + δ)(1 − sin 2δ

3 )
3/2

sin3/2 2δ
3

< 0.

Then as R → ∞ we obtain the estimate

|F2(w)|/|Ai(w)| = o(1)‖f‖. (29)

Further, once more applying (5), we obtain

|F1(w)|/|Ai(w)| � MR1/2‖f‖max
x>0

exp(ξ(x)), (30)

where

ξ(x) =
2

3

(
R3/2 cos

3ϕ

2
− Re(w + c1/3x)3/2

)
, x ∈ [0,+∞). (31)

Note that ξ′(x) = −Re(c1/3(w + c1/3x)1/2), whence it follows that ξ′(x) � 0 provided that

arg(w + c1/3x) ∈ [−π, π − 2γ/3]. (32)

In this case, ξ(x) is not increasing, and since ξ(0) = 0, we have ξ(x) � 0. Hence, under condition
(32), from inequality (30) we obtain

|F1(w)|/|Ai(w)| � M‖f‖R1/2 as |w| = R → ∞. (33)

Let us verify that condition (32) holds in the union S1 ∪ S2 for every x � 0. Let us analyze

two cases. If ϕ ∈ [−π + γ/3,−π/3 + ε], then both vectors w and c1/3x lie in the half-plane
−π+ γ/3 � arg z � γ/3, and hence so does their sum. If ϕ ∈ [π/3− ε, π− 2γ/3], then both vectors

w and c1/3x lie in the sector 0 � arg z � π − 2γ/3 of opening angle � π, and hence so does their
sum. In both cases, condition (32) is satisfied, and we have proved that the estimate (33) holds in
the union S1∪S2 of sectors given by (27). In view of the estimate (29), we find that the asymptotic
estimate

|F (w)| � M‖f‖R1/2 (34)

holds in the union S1 ∪ S2 . The sector S is defined by formula (21), and the opening angle of the
sector S \ (S1 ∪S2) is less than 2π/3. By applying the Phragmén–Lindelöf theorem to the function

F̃ (w) = F (w)(w + 1)−1/2 , we find that the estimate (34) holds in the entire sector S .

Step 3. It remains to estimate the function F in the remaining sector S′′ = C \S . The opening
angle of the sector S′′ is γ ; hence an estimate for F in the remaining sector can also be obtained
from the Phragmén–Lindelöf theorem if γ < 2π/3. Now consider the case of γ ∈ [2π/3, 5π/6); here
additional estimates are needed.

Let −π < ϕ < −π + γ/3. The estimate of the fraction |F2(w)|/|Ai(w)| does not change (this
fraction is still bounded by some constant), because cos(3ϕ/2) < 0 and we can use the estimate
(28). Let us prove the estimate (33) in the sector S0 defined by formula (22), where α0 < γ/3.
Let us study the function ξ(x) defined in (31) for its maximum. Recall that the branch of the
function z3/2 has been fixed by the choice of the argument arg z ∈ [−π, π). It is easily seen that

if ϕ ∈ (−π,−π + γ/3), then the ray w + c1/3x, x > 0, meets the ray (−∞, 0), and hence the

curve (w + c1/3x)3/2 , x ∈ [0,+∞), has a jump discontinuity at some point, which we denote by
x1 . Note, however, that the value of the jump at x1 is pure imaginary, so that the function ξ(x) is
continuous. Let us study the function ξ separately on the intervals x ∈ (0, x1) and x ∈ (x1,+∞).

On the first interval, ξ′(x) < 0, because the argument of w+ c1/3x varies from ϕ (at x = 0) to −π

(at x = x1); i.e., condition (32) is satisfied. On the second interval, the argument of w + c1/3x is
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monotone decreasing from π (at x = x1+0) to γ/3 (at x → +∞), and hence there exists a unique
point, which we denote by x2 , at which arg(w + c1/3x) = π − 2γ/3. The derivative ξ′ changes the
sign from plus to minus at x2 ; i.e., x2 is a point of local maximum of ξ . Thus, the estimate (33),
which is equivalent to the condition ξ(x) � 0 as x ∈ [0,+∞) by virtue of (30), holds if and only if

ξ(x2) � 0. To compute the value ξ(x2), consider the triangle with vertices 0, w, and w+ c1/3x2 on
the complex plane. The respective angles of this triangle are α+ 2γ/3, γ/3− α, and π − γ . (Here
we write α = π + ϕ ∈ (0, γ/3), where ϕ = argw.) By the sine theorem,

|w+ c1/3x2| = R
sin(γ/3− α)

sin γ

=⇒ Re(w + c1/3x2)
3/2 = |w+ c1/3x2|3/2 cos

(
3π

2
− γ

)
= −R3/2 sin

3/2(γ/3− α)

sin1/2 γ
,

ξ(x2) =
2

3
R3/2

(
cos

3ϕ

2
+

sin3/2(γ/3− α)

sin1/2 γ

)
=

2

3
R3/2

(
sin3/2(γ/3− α)

sin1/2 γ
− sin

3α

2

)
.

Thus, inequality ξ(x2) � 0 is equivalent to the condition

sin3/2(γ/3 − α) sin−1/2 γ − sin(3α/2) � 0. (35)

Denote the left-hand side of this inequality, which is a function of the variable α ∈ [0, γ/3] with a
parameter γ ∈ [2π/3, π), by η(α). It is easily seen that η(α) is monotone decreasing, η(0) > 0, and
η(γ/3) < 0. Hence inequality (35) holds on the interval α ∈ [α0, γ/3] for some α0 ∈ (0, γ/3). Thus,
we have proved the estimate (33), and hence also (34), for all rays arg w = ϕ ∈ [−π+α0, π−2γ/3].
The Phragmen-Lindelöf principle permits us to extend this estimate to the entire complex plane
provided that the opening angle α0 + 2γ/3 of the remaining sector is strictly less than 2π/3. The
number α0 = α0(γ) is a root of the transcendental equation η(α) = 0. We do not seek it in any
form. Instead, we note that, since the function η is monotone, it follows that

α0 + 2γ/3 < 2π/3 ⇐⇒ α0 < 2(π − γ)/3 ⇐⇒ η(2(π − γ)/3) < 0

⇐⇒ sin3/2(γ − 2π/3) sin−1/2 γ − sin γ < 0

⇐⇒ sin3/2(γ − 2π/3) < sin3/2 γ ⇐⇒ γ < 5π/6 .

Step 4. Thus, for γ < 5π/6 the entire function F (w) admits the asymptotic estimate (34) in
the entire complex plane and hence is constant. Let us prove that this constant is zero. To this end,
it suffices to verify that F (w) → 0 as w → ∞ along at least one ray in the complex plane. Let us

return to the beginning of step 2, take the ray w = Re−iπ/2 , and note that it lies in the sector S1 ,
so that the estimate (29) is satisfied. It remains to strengthen the estimate (33). To this end, we
split the integration path x ∈ [0, x0] into two parts by a point x3(R) = R−θ , where θ ∈ (0, 1/2) is
arbitrary. Since

|F1(w)|
|Ai(w)| � M

∫ x0(R)

0
|f(x)|eξ(x) dx,

where the function ξ(x) is defined in (31) and is monotone decreasing from ξ(0) = 0 to −∞ on
[0,+∞), we have(∫ x3

0
+

∫ x0

x3

)
|f(x)|eξ(x) dx � ‖f‖(√x3 +

√
x0 e

ξ(x3)) � ‖f‖(R−θ/2 + CR1/2eξ(x3)).

It remains to note that

ξ(x3(R)) ∼ −Re(c1/3x3w
1/2) = −|c|1/3R−θ+1/2 cos(γ/3 − π/4)

as R → ∞, and hence R1/2eξ(x3(R)) = o(1). Consequently, F (w) ≡ 0.
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Step 5. We have proved that F0(w) =
∫∞
0 Ai(w + c1/3x) dμ ≡ 0. (Here and in what follows, we

write dμ = f(x) dx for brevity.) Recall that Ai′′(t) = tAi(t), whence, by induction,

Ai(n)(t) = Pn(t)Ai(t) +Qn(t)Ai
′(t),

where Pn and Qn are polynomials. Further,

P0(t) = 1, P1(t) = 0, P2(t) = t, P3(t) = 1, P4(t) = t2, P5(t) = 4t,

Q0(t) = 0, Q1(t) = 1, Q2(t) = 0, Q3(t) = t, Q4(t) = 2, Q5(t) = t2,

Pn(t) = P ′
n−1(t) + tQn−1(t), Qn(t) = Pn−1(t) +Q′

n−1(t).

Set degPn(t) = pn and degQn(t) = qn. Then{
pn = qn−1 + 1,

qn = pn−1
=⇒

{
pn = pn−2 + 1,

qn = qn−2 + 1

for all n � 5, whence we readily find that

p2n = n, p2n+1 = n− 1,

q2n = n− 2, q2n+1 = n
(36)

for all n � 2. By differentiating with respect to w, we obtain

F
(j)
0 (w) =

∫ ∞

0
(Pj(w + c1/3x)Ai(w + c1/3x) +Qj(w + c1/3x)Ai′(w + c1/3x)) dμ ≡ 0,

j ∈ N ∪ {0}. (37)

In particular,

F0(w) =

∫ ∞

0
Ai(w + c1/3x) dμ ≡ 0, F ′

0(w) =

∫ ∞

0
Ai′(w + c1/3x) dμ ≡ 0,

F ′′
0 (w) =

∫ ∞

0
(w + c1/3x)Ai(w + c1/3x) dμ ≡ 0 =⇒

∫ ∞

0
xAi(w + c1/3x) dμ ≡ 0,

F ′′′
0 (w) =

∫ ∞

0
(Ai(w + c1/3x) + (w + c1/3x)Ai′(w + c1/3x)) dμ ≡ 0

=⇒
∫ ∞

0
xAi′(w + c1/3x) dμ ≡ 0.

Let us prove by induction that∫ ∞

0
xnAi(w + c1/3x) dμ ≡

∫ ∞

0
xnAi′(w + c1/3x) dμ ≡ 0, n = 0, 1, 2, . . . . (38)

The base of induction is the case of n = 0 and n = 1. We have already proved these relations in
this case. Now if Eqs. (38) have been proved for all n < N , where N � 2, then, by writing out (37)
for j = 2N and by taking into account (36), we obtain

∫ ∞

0

((
(w + c1/3x)N +

N−1∑
k=0

aj,k(w + c1/3x)k
)
Ai(w + c1/3x)

+

(N−2∑
k=0

bj,k(w + c1/3x)k
)
Ai′(w + c1/3x)

)
dμ ≡ 0,

whence it follows by the induction assumption that∫ ∞

0
xN Ai(w + c1/3x) dμ ≡ 0.
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Now we write out Eq. (37) for j = 2N + 1 and again take into account (36) to obtain

∫ ∞

0

((N−1∑
k=0

aj,k(w + c1/3x)k
)
Ai(w + c1/3x)

+

(
(w + c1/3x)N +

N−1∑
k=0

bj,k(w + c1/3x)k
)
Ai′(w + c1/3x)

)
dμ ≡ 0,

whence, by the induction assumption and the step already carried out, we obtain∫ ∞

0
xN Ai′(w + c1/3x) dμ ≡ 0.

The proof of Eqs. (38) is complete.
Now we use a standard trick to derive the relation f(x) ≡ 0 from (38). Consider the Fourier

transform

h(λ) =

∫ ∞

0
e−iλxAi(c1/3x)f(x) dx.

By (5), this function is an entire function of λ. Note that

h(n)(0) = (−i)n
∫ ∞

0
xnAi(c1/3x)f(x) dx = 0, n = 0, 1, . . . ,

and hence h(λ) ≡ 0. Since the Fourier transform is injective, it follows that the function Ai(c1/3x)f(x)
is identically zero as well, and so f(x) ≡ 0. This completes the proof of Theorem 1.

3. Completeness Theorem for the Operator L

Theorem 2. Let the operator L be given by the differential expression (3) on the domain

D(L) = {y ∈ L2(R+) : y, y
′ ∈ ACloc, l(y) ∈ L2(R+), y(0) = 0},

where ACloc is the space of locally absolutely continuous functions, and let conditions (4) be satisfied.
If

arg(c0 + i) =: γ < 2πα/(2 + α),

then the system of root functions of L is complete in L2(R+). Further, this system is a basis for
Abel’s summation method of order β for any β ∈ ((2 + α)/(2α), π/γ).

Proof. First, let us explain what the notion of basis means for summation by Abel’s method.
For simplicity, we assume that all eigenvalues are simple (see [2, Sec. 5] for the general case).
Consider the series

S(t, f) =

∞∑
k=0

exp{(−e−iγ/2λk)
βt}(f, zk)yk,

where {yk} is the eigenfunction system of L corresponding to the eigenvalues λk and {zk} is the
biorthogonal system. The second claim of the theorem means that, for each function f ∈ L2(R+),
the series S(t, f) converges for every t > 0 in the norm of L2(R+), and there exists a strong limit
S(t, f) → f as t → +0. Needless to say, if the system {yk} is a basis for Abel’s summation method,
then it is complete, because it follows from the definition that any function f can be approximated
by finite linear combinations of this system with arbitrary accuracy.

Without loss of generality, we assume that the constants M0 and M1 in conditions (4) are
positive. Let D0(L) be the subspace of D(L) formed by the compactly supported functions. By
reproducing Lidskii’s argument in [3], we find that the case of Weyl limit point holds under the
assumptions of the theorem; i.e., only one solution of the equation l(y) = 0 belongs to L2(R+).
In this case, the operator L has a bounded inverse. Further, D0(L) is an essential domain of L in
this case; i.e., the closure of the restriction of L to D0(L) coincides with L. For each f ∈ D0(L),
the number (Lf, f) lies in the sector bounded in the upper half-plane by the rays arg λ = γ and



78

R+. This follows from (4) after integration by parts. It follows from the invertibility of L that the
operator T = e−iγ/2L is m-sectorial with opening angle γ . Then the operator H = ReT is given
on the domain D(H) = D(L) by the differential expression

l(y) = −y′′ + r̃(x)y,

and conditions (4) imply the estimate r̃(x) � Mr(x) � Maxα . It was shown in Lidskii’s paper that
if this inequality is satisfied, then the eigenvalues sn of the operator H satisfy the estimate

sn � M n2α/(2+α), n = 1, 2, 3, . . . ,

i.e., the orders of the operators H and L are not less than 2α/(2 + α). Now the assertion of the
theorem follows from the Lidskii–Matsaev theorem; see [2, Theorem 5.1].

Remark. In the case of an even potential, the completeness of the system of eigenfunctions of
the Schrödinger operator on the half-line with the Dirichlet and Neumann conditions, respectively,
implies the completeness of the system of eigenfunctions of this operator on the entire line. Indeed,
odd and even extensions of the eigenfunctions of the Dirichlet and Neumann operators on the
half-line give the eigenfunctions of the operator on the entire line.
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[28] P. Siegl and D. Krejc̆ĭŕık, “On the metric operator for the imaginary cubic oscillator,” Phys.
Rev., 86:12 (2012), 121702.

[29] A. Eremenko, A. Gabrielov, and B. Shapiro, “High energy eigenfunctions of one-dimensional
Schrödinger operators with polynomial potentials,” Comput. Methods Funct. Theory, 8:2
(2008), 513–529.

[30] D. S. Grebenkov, B. Helffer, R. Henry, The complex Airy operator with a semi-permeable
barries, https://arxiv.org/abs/1603.06992v1.

[31] M. V. Fedoryuk, Asymptotic Analysis, Linear Ordinary Differential Equations, Springer–
Verlag, Berlin, 1993.

[32] M. Abramowitz and I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs
and Mathematical Tables, National Breau of Standards. Appl. Math. Series, vol. 52, Washing-
ton, 1972.

[33] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, New York, 1980.
[34] M. A. Naimark, Linear Differential Operators, Parts I, II, Ungar, New York, 1967, 1968.
[35] B. Ya. Levin, Distribution of Zeros of Entire Functions, Amer. Math. Soc., Providence, RI,

1980.

Lomonosov Moscow State University. Moscow, Russia

e-mail: artem savchuk@mail.ru

Lomonosov Moscow State University. Moscow, Russia

e-mail: shkalikov@mi.ras.ru

Translated by V. E. Nazaikinskii


