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Abstract. For a given nonzero entire function g : C → C, we study the linear space F (g) of all
entire functions f such that

f(z + w)g(z − w) = ϕ1(z)ψ1(w) + · · ·+ ϕn(z)ψn(w),

where ϕ1, ψ1, . . . , ϕn, ψn : C → C. In the case of g ≡ 1, the expansion characterizes quasipolyno-
mials, that is, linear combinations of products of polynomials by exponential functions. (This is a
theorem due to Levi-Civita.) As an application, all solutions of a functional equation in the theory
of trilinear functional equations are obtained.
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1. Introduction

Let f be an entire function that is not identically zero, and assume that

f(z +w) =

n∑

i=1

ϕi(z)ψi(w) (1)

with some functions ϕi, ψi : C → C and with minimum possible n = R(f). (The number n is called
the rank of f ). Levi-Civita [1] proved that

f(z) =

k∑

i=1

Pi(z) exp(αiz) (2)

with pairwise distinct complex numbers αi and polynomials Pi such that

k∑

i=1

(1 + degPi) = n.

One most remarkable property of this function family is that it is the set of all solutions of nth-order
linear homogeneous differential equations with constant coefficients.

By analogy, if we have in mind the theory of bilinear homogeneous differential equations with
constant coefficients, then we arrive at the following construction.

Definitions. Let g be an entire function that is not identically zero. A hyperquasipolynomial
with respect to g is an arbitrary entire function f such that

f(z + w)g(z − w) = ϕ1(z)ψ1(w) + · · ·+ ϕn(z)ψn(w) (3)

with some functions ϕi, ψi : C → C.

Remark 1.1. The positive integer n, as well as the functions ϕi and ψi , in general depends
on f and can be chosen in various ways. The set of all hyperquasipolynomials with respect to g
is a complex linear space, which will be denoted by F (g). As was already mentioned, the space
F (1) consists of quasipolynomials of the form (2) and the function identically equal to zero by the
Levi-Civita theorem. Here and in the following, the symbol 1 stands for the function identically
equal to 1.
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Remark 1.2. Set

D2kf(z) =
∂2k

∂w2k
f(z + w)f(z − w)

∣∣∣∣
w=0

.

Then each function f(z) satisfying the functional equation (3) with f(z) = g(z) is a solution of
the following 2nth-order nonlinear homogeneous differential equation:

cnD2nf(z) + · · · + c1D2f(z) + c0f
2(z) = 0,

where cn, . . . , c0 are complex constants.

Our aim is to study the structure of the spaces F (g). As an application, we find all solutions
of the functional equation

f1(z1 + w)f2(z2 + w)f3(z1 + z2 −w) = ϕ1(z1, z2)ψ1(w) + ϕ2(z1, z2)ψ2(w) + ϕ3(z1, z2)ψ3(w), (4)

which was introduced in [2] and plays an important role in the theory of trilinear equations (see [3]
and [4]).

2. Some Properties of the Spaces F(g)

Take an expansion of the form (3) with minimum possible n for a given hyperquasipolynomial
f with respect to g. Then each of the n-tuples {ϕ1, . . . , ϕn} and {ψ1, . . . , ψn} of functions is

linearly independent. Hence there exist two n-tuples {z(1), . . . , z(n)} and {w(1), . . . , w(n)} of complex

numbers such that det(ϕi(z
(j))) �= 0 and det(ψi(w

(j))) �= 0. By substituting w(1), . . . , w(n) for w

and z(1), . . . , z(n) for z into the expansion (3), we obtain two systems of n linear equations with n
unknowns, from which we find that

ϕi(z) =

n∑

j=1

a
(j)
i f(z + w(j))g(z − w(j)), (5)

ψi(w) =

n∑

j=1

b
(j)
i f(z(j) + w)g(z(j) − w) (6)

with some complex numbers a
(j)
i and b

(j)
i (1 � i, j � n).

Remark 2.1. In view of the preceding, we can assume that the functions ϕi and ψi in the
expansion (3) are entire functions.

Let f1 and f2 be two hyperquasipolynomials with respect to g1 and g2 with the expansions

f1(z + w)g1(z − w) =

n1∑

i=1

ϕ1,i(z)ψ1,i(w), (7)

f2(z + w)g2(z − w) =

n2∑

j=1

ϕ2,j(z)ψ2,j(w). (8)

If g1 = g2 = g, then for arbitrary complex numbers c1 and c2 one has

(c1f1(z + w) + c2f2(z + w))g(z − w) =

n1∑

i=1

(c1ϕ1,i(z))ψ1,i(w) +

n2∑

j=1

(c2ϕ2,j(z))ψ2,j(w). (9)

It readily follows that F (g) is a complex linear space with respect to the pointwise addition of
functions and multiplication by complex numbers.

By multiplying the left- and right-hand sides of the expansion (7) by the respective sides of (8),
we obtain the new expansion

(f1(z + w)f2(z + w))(g1(z − w)g2(z − w)) =

n1∑

i=1

n2∑

j=1

(ϕ1,i(z)ϕ2,j(z)) (ψ1,i(w)ψ2,j(w)) . (10)
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Remark 2.2. It follows from the representation (10) that if f1 and f2 are elements of F (g1)
and F (g2), respectively, then the product f1f2 belongs to F (g1g2).

Remark 2.3. The set F (1) consisting of the quasipolynomials of the form (2) and the zero
function is a ring with respect to the pointwise addition and multiplication of functions. Hence it
follows from Remark 2.2 that for each entire function g that is not zero identically the space F (g)
is an F (1)-module.

Remark 2.4. Let f and g be nonzero entire functions. By using the change of variables
w → −w, one can readily verify that if f ∈ F (g), then g ∈ F (f).

Proposition 1. Let f ∈ F (g). Then each of the functions determined by the transformations

f(z) → f(−z), f(z + z0), exp(α+ βz)f(z),
df

dz
= f ′

with any complex numbers z0 , α, and β lies in F (g) as well.

Proof. According to the expansion (3), Proposition 1 is a straightforward consequence of the
relations

f(−(z + w))g(z − w) = f((−w) + (−z))g((−w) − (−z)),
f(z + w + z0)g(z − w) = f((z + 1

2z0) + (w + 1
2z0))g((z +

1
2z0)− (w + 1

2z0)),

f ′(z +w)g(z − w) =
1

2

∂

∂z
(f(z + w)g(z −w)) +

1

2

∂

∂w
(f(z +w)g(z − w)).

Remark 2.5. Let f ∈ F (g). Then for any complex numbers γ and δ �= 0 the function f̃ given

by the formula f̃(z) = exp(γz2)f(δz) lies in F (g̃) with g̃(z) = exp(γz2)g(δz).

Theorem 1. One has F (g) = F (1) for any quasipolynomial g .

Proof. Since the expansions

expα(z ± w) = expαz · exp(±αw), (z ± w)n =

n∑

k=0

Ck
nz

n−k(±w)k

hold for the generators of the ring F (1), it follows that F (1) ⊂ F (g). Let us prove the opposite
inclusion. Let

g(z) = P (z) expαz,

where P (z) is a polynomial. Then it follows from an expansion of the form (3) that

f(z + w)P (z − w) =
n∑

i=0

(exp(−αz)ϕi(z))(exp(αw)ψi(z)).

By applying Proposition 1 and by differentiating degP times (with regard to Remark 2.4), we obtain
an expansion of the form (1). Thus, f is a quasipolynomial. By carrying out this procedure for
each term in the representation of g as a sum of products of exponential functions by polynomials,
we obtain the inclusion F (g) ⊂ F (1). The proof of Theorem 1 is complete.

The following theorem presents a very important statement proved in [5].

Theorem 2. Let f be a hyperquasipolynomial with respect to g . Then f and g lie in F (f) and
F (g) simultaneously.

The proof is based on the following fairly obvious observations.
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Let f ∈ F (g) have the expansion (3). Then it follows from (5), (6), and Proposition 1 that
ϕi ∈ F (ϕi) and ψi ∈ F (ψi) for all i = 1, . . . , n. Further,

f(z +w)f(z − w)g2(w) = f(z + 1
2w + 1

2w)g(z +
1
2w − 1

2w)f(z − 1
2w − 1

2w)g(z − 1
2w + 1

2w)

=

( n∑

i=0

ϕi(z +
1
2w)ψi(

1
2w)

)( n∑

j=0

ϕj(z − 1
2w)ψj(−1

2w)

)

=
n∑

i,j=0

ϕi(z +
1
2w)ϕj(z − 1

2w)ψi(
1
2w)ψj(−1

2w).

Let f ∈ F (g), and assume that

Mf,g(R) = sup
|z|�R

|f(z)|+ sup
|w|�R

|g(w)|

for some real R � 1. If f(0) �= 0 and g(0) �= 0, then the expansions (3), (5), and (6) imply the
inequality

Mf,g(R) � C0M
4
f,g(

1
2(R +R0))

with some positive constants C0 and R0 depending on f and g alone. By passing from f(z) and
g(w) to f(z + z0) and g(w + w0) with f(z0) �= 0 and g(w0) �= 0 if necessary, we arrive at another
statement in [5] by iterating this inequality.

Theorem 3. Let f ∈ F (g). Then

Mf,g(R) � exp(C(f, g)R2)

with some absolute constant C = C(f, g) for any R � 1.

Corollary 1. Every hyperquasipolynomial is an entire function of order � 2.

Corollary 2. If a hyperquasipolynomial f has no zeros, then

f(z) = exp(α+ βz + γz2)

for some complex numbers α, β , and γ .

Corollary 3. If a hyperquasipolynomial f vanishes only at points z1, . . . , zk with multiplicities
l1, . . . , lk , respectively, then

f(z) =

( k∏

i=1

(z − zi)
li

)
exp(α+ βz + γz2)

for some complex numbers α, β , and γ .

Corollary 4. For every entire function g of order > 2, the space F (g) contains only the zero
function.

3. Rank of a Pair of Hyperquasipolynomials

Let f and g be arbitrary entire functions other than identical zero. Assume that the expansion
(3) holds for some positive integer n. The minimum positive integer n for which there exists an
expansion of this form will be called the rank of the pair (f, g) and denoted by R(f, g). If there
does not exist a positive integer n with this property, then we set R(f, g) = ∞ (the infinite rank).

Remark 3.1. It readily follows from the definition that if R(f, g) = n in the expansion (3),
then each of the n-tuples {ϕ1, . . . , ϕn} and {ψ1, . . . , ψn} consists of linearly independent functions.
Further, the first factors in any other representation of this form can be linearly expressed via
ϕ1, . . . , ϕn , and the second factors, via ψ1, . . . , ψn .

Proposition 2. Let (f1, g1) and (f2, g2) be finite rank pairs of hyperquasipolynomials.
(i) If g1 = g2 = g , then

R(C1f1 + C2f2, g) � R(f1, g) +R(f2, g)

for any complex numbers C1 and C2 .



197

(ii) R(f1f2, g1g2) � R(f1, g1)R(f2, g2).
(iii) If f1 = f2 = f and g1 = g2 = g , then

R(f, f) � R6(f, g), R(g, g) � R6(f, g), R(df/dz, g) � 2R(f, g).

The claims in Proposition 2 can readily be derived from the corresponding expansions in the
preceding section.

One can readily verify that for any complex numbers α1, α2, β1, β2, γ, δ �= 0, z1 , and z2 the pairs
(f1, g1) and (f2, g2) of entire functions related by the formulas

f2(z) = exp(α1 + β1z + γz2)f1(δz + z1), g2(z) = exp(α2 + β2z + γz2)g1(δz + z2)

have the same rank. Hence we say that such pairs are equivalent and write (f1, g1) ∼ (f2, g2).
Obviously, R(f,1) = n for quasipolynomials of the form (2). The following proposition is a

consequence of what was proved above.

Proposition 3. Any rank n pair (f, g) of hyperquasipolynomials in which g has no zeros is
equivalent to a pair (h,1), where h is a quasipolynomial of the form (2).

Let a pair (f, g) of hyperquasipolynomials have rank 1. Then

f(z + w)g(z − w) = ϕ1(z)ψ1(w).

If ϕ1(z0) = 0, then f(z0 + w)g(z0 − w) = 0 for all w. But then f or g is zero identically, which
contradicts the relation R(f, g) = 1. By the same argument, ψ1 does not vanish anywhere. Hence
both f and g do not vanish anywhere. In view of Proposition 3, we arrive at the following assertion.

Proposition 4. All pairs of hyperquasipolynomials with R(f, g) = 1 are given by the formulas

f(z) = exp(α+ βz + γz2), g(z) = exp(η + δz + γz2).

4. Determinant Functional Equations for Finite Rank Pairs
of Hyperquasipolynomials

Let R(f, g) = n, and let the expansion (3) hold. By successively setting w = w0, w1,
. . . , wn , we construct a function F : C → C

n+1 by the formula

F (z) =

⎛

⎜⎝
f(z + w0)g(z − w0)

...
f(z +wn)g(z − wn)

⎞

⎟⎠

= α1(z)

⎛

⎜⎝
β1(w0)

...
β1(wn)

⎞

⎟⎠+ · · ·+ αj(z)

⎛

⎜⎝
βj(w0)

...
βj(wn)

⎞

⎟⎠+ · · ·+ αn(z)

⎛

⎜⎝
βn(w0)

...
βn(wn)

⎞

⎟⎠ .

For z = z0, z1, . . . , zn , it follows that the vectors F (z0), F (z1), . . . , F (zn) lie in an n-dimensional
subspace of Cn+1 . Hence the determinant

Df,g

(
z0, z1, . . . , zn
w0, w1, . . . , wn

)
= det

⎛

⎝
. . . . . . . . .
. . . f(zi + wj)g(zi − wj) . . .
. . . . . . . . .

⎞

⎠ (11)

(where i is the row number and j is the column number) is zero. If

Df,g

(
z1, . . . , zn
w1, . . . , wn

)
�= 0 (12)
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for some complex numbers z1, . . . , zn and w1, . . . , wn , then the relation

Df,g

(
z, z1, . . . , zn
w,w1, . . . , wn

)
= f(z + w)g(z − w)Df,g

(
z1, . . . , zn
w1, . . . , wn

)

− f(z + w1)g(z − w1)Df,g

(
z1, z2, . . . , zn
w,w2, . . . , wn

)
+ . . .

+ (−1)nf(z + wn)g(z − wn)Df,g

(
z1, z2, . . . , zn

w,w1, . . . , wn−1

)
= 0 (13)

implies the expansion (3) with minimum possible n by virtue of (1).

Remark 4.1. It follows from the preceding that a pair (f, g) of hyperquasipolynomials has
finite rank n if and only if the function of 2n+2 complex variables on the left-hand side in (11) is
zero identically and the function of 2n variables on the left-hand side in (12) is not zero identically.

One can readily verify that if g is an odd function, then

Df,g

(
z1, z2, z3
z, z2, z3

)
= f(z2 + z3)g(z2 − z3)Wf,g(z, z1, z2, z3) (14)

for any complex numbers z , z1 , z2 , and z3 , where

Wf,g(z, z1, z2, z3) = f(z + z1)g(z − z1)f(z2 + z3)g(z2 − z3)

+ f(z + z2)g(z − z2)f(z3 + z1)g(z3 − z1)

+ f(z + z3)g(z − z3)f(z1 + z2)g(z1 − z2).

Further,

Df,g

(
z1, z2, z3, z4
z0, z2, z3, z4

)
= Wf,g(z0, z2, z3, z4)Wf,g(z1, z2, z3, z4) (15)

for any complex numbers z0 , z1 , z2 , z3 , and z4 .

5. Rank 2 Pairs of Hyperquasipolynomials

Let Γ be an arbitrary lattice on the complex plane. The product

z ·
∏′

w∈Γ

(
1− z

w

)
exp

(
z

w
+

1

2

(
z

w

)2)

defines the Weierstrass sigma function σ = σΓ(z) of z associated with Γ. In the degenerate cases,
one has

σΓ(z) = z for Γ = {0};

σΓ(z) = z
∏′

n∈Z

(
1− z

nw0

)
exp

(
z

nw0
+

1

2

(
z

nw0

)2)
=
w0

π
sin

πz

w0
exp

(
π2

6

(
z

w0

)2)

for Γ = {nw0 | n ∈ Z} with an arbitrary complex number w0 �= 0. The prime on both products
indicates that the factors with w = 0 or n = 0 are omitted.

The sigma function is an odd entire function of second order (for Γ �= {0}) with simple zeros at
the lattice points. Weierstrass [6] showed that for any lattice Γ and any complex numbers α and γ
the function f given by the formula

f(z) = σΓ(z) exp(α+ γz2) (16)

satisfies the functional equation
Wf,f (z, z1, z2, z3) = 0. (17)

In the same paper, he conjectured that this equation has no other nonzero solutions. This was later
proved by Hurwitz (see [7] and also [8, Chap. 20, Example 38]).

The functional equation
Wf,g(z, z1, z2, z3) = 0 (18)
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with an odd function g can be viewed as a generalization of Eq. (17).

Remark 5.1. For f = g, there is no need to require that f be odd, because this property
follows from the identity

Wf,f (z, z1, w + z1, w + z1) = f(z + w + z1)f(z − w − z1)f(w + 2z1)(f(w) + f(−w)) = 0.

Remark 5.2. It follows from (14) that all rank 2 pairs (f, g) of hyperquasipolynomials with
an odd function g form the solution set of the generalized Weierstrass functional equation (18).

Theorem 4. There does not exist a rank 3 pair of hyperquasipolynomials in which at least one
of the functions is odd.

Proof. Let R(f, g) = 3. In view of Remark 2.4, we can assume that g is odd. It follows from
identity (15) that

Wf,g(z, z2, z3, z4) = 0

for z0 = z1 = z . But then R(f, g) = 2 according to Remark 5.2, which contradicts our assumption.
The proof of Theorem 4 is complete.

Remark 5.3. If R(f, g) = 2 and at least one of the functions in the pair has no zeros, then it
follows from Proposition 3 that this pair is equivalent to one of the four pairs

(sin,1), (1, sin), (Id,1), (1, Id),

where Id : C → C is the identity mapping.

Now assume that f and g vanish at least at one point. By the preceding, we can assume without
loss in generality that f(0) = g(0) = 0. Then

0 = Df,g

(
z1, z2, z3
z1, z2, z3

)

= f(z1 + z2)g(z1 − z2)f(z2 + z3)g(z2 − z3)f(z3 + z1)g(z3 − z1)

+ f(z1 + z3)g(z1 − z3)f(z2 + z1)g(z2 − z1)f(z3 + z2)g(z3 − z2)

= f(z1 + z2)f(z1 + z3)f(z2 + z3)

× (g(z1 − z2)g(z2 − z3)g(z3 − z1) + g(z1 − z3)g(z2 − z1)g(z3 − z2)).

It follows (we set z1 − z3 = z and z3 − z2 = w) that the function ψ(z) = −g(z)/g(−z) satisfies the
functional equation

ψ(z + w) = ψ(z)ψ(w).

Hence
ψ(z) = e2λz , h(z) = g(z)e−λz = −g(−z)eλz = −h(−z), g(z) = eλzh(z)

for some complex number λ, where h(z) is an odd entire function. By the same argument,

f(z) = eηzr(z)

with some complex number η and odd entire function r. Since (f, g) ∼ (r, h), we can assume in
what follows that f and g are odd entire functions. By (14),

Wf,g(−z1, z1, z2, z3) = f(−z1 + z2)g(−z1 − z2)f(z3 + z1)g(z3 − z1)

+ f(−z1 + z3)g(−z1 − z3)f(z1 + z2)g(z1 − z2) = 0.

By setting ψ(z) = f(z)/g(z), we reduce this relation to the form

ψ(z1 − z2)ψ(z3 + z1) = ψ(z3 − z1)ψ(z1 + z2).

For z2 = 0, we obtain
ψ(z3 + z1) = ψ(z3 − z1).

Since z3 + z1 andz3 − z1 can be arbitrary complex numbers, it follows that ψ is a constant, and
hence f(z) = cg(z) with some complex number c. By the Hurwitz theorem on the solutions of
the Weierstrass functional equation (17), we arrive at the following result due to Rochberg and
Rubel [9].
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Theorem 5. Let (f, g) be a rank 2 pair of hyperquasipolynomials with functions f and g
vanishing at least at one point. Then (f, g) ∼ (σΓ, σΓ) for some lattice Γ.

In other words, all pairs (f, g) of functions in Theorem 5 are determined by the formulas

f(z) = exp(α+ βz + γz2)σΓ(z + u), g(z) = exp(δ + ηz + γz2)σΓ(z + v),

where α, β , γ , δ , η, u, and v are arbitrary complex numbers.

6. Generalization of the Expansion (3)

Tuples of entire functions f1, . . . , fk−1 , and g (k � 2) for which one has the expansion

f1(z1 + w) · · · fk−1(zk−1 + w)g(z1 + · · ·+ zk−1 − w) =
n∑

i=1

ϕi(z1, . . . , zk−1)ψi(w) (19)

play an important role in the theory of k-linear homogeneous differential equations with constant
coefficients (see [3] and [4]). For k = 2, one arrives at the expansion (3).

Remark 6.1. If one sets zj = 0 for all j �= i in (19), then one obtains an expansion of the form
(3) for the pair (fi, g). Consequently, each function fi in the expansion (19) is a hyperquasipoly-
nomial with respect to g.

By analogy with the case of k = 2, the minimum positive integer n for which the expan-
sion (19) holds will be called the rank of the function tuple in question and will be denoted by
R(f1, . . . , fk−1, g).

For given complex numbers u0, u1, . . . , uk−1 , the changes of variables

z1 → z1 − 1

k
(u1 + · · ·+ uk−1) + u1 +

1

k
u0 = z1 + u′1,

· · · · · · · · · · · · · · ·
zk−1 → zk−1 − 1

k
(u1 + · · · + uk−1) + uk−1 +

1

k
u0 = zk−1 + u′k−1,

w → w +
1

k
(u1 + · · ·+ uk−1)− 1

k
u0 = w + u′0

reduce the expansion (19) to the form

f1(z1 + w + u1) · · · fk−1(zk−1 +w + uk−1)g(z1 + · · ·+ zk−1 − w + u0)

=

n∑

i=1

ϕi(z1 + u′1, . . . , zk−1 + u′k−1)ψi(w + u′0).

Remark 6.2. It follows from the preceding that the rank of a tuple of entire functions is
preserved under translations with respect to the argument.

Remark 6.3. Let τ be an arbitrary permutation on the set {1, . . . , k− 1} of positive integers,
and let αi, βi, ui (i = 0, 1, . . . , k− 1) and γ, δ �= 0 be complex numbers. Then the functions defined
by the formulas

f̃i(z) = exp(αi + βiz + γz2)fτ(i)(δz + ui), g̃(z) = exp(α0 + β0 + γz2)g(δz + u0)

satisfy the relation

R(f̃1, . . . , f̃k−1, g̃) = R(f1, . . . , fk−1, g).

Remark 6.4. We say that the tuples (f1, . . . , fk−1, g) and (f̃1, . . . , f̃k−1, g̃) in Remark 6.3 are
equivalent.

Proposition 5. Let R(f1, . . . , fk−1, g) = 1, and assume that the entire function g has no zeros.
Then the function tuple (f1, . . . , fk−1, g) is equivalent to the tuple (h1, . . . , hn−1,1), where the hi
are quasipolynomials with R(hi) � n.
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Proof. Since g is an entire function of order � 2 without zeros, it follows that

g(z) = exp(α+ βz + γz2)

for some complex numbers α, β , and γ .
By Remark 6.3, the tuple (f1, . . . , fk−1, g) is equivalent to the tuple (h1, . . . , hn−1,1) of entire

functions such that

h1(z1 + w) · · · hk−1(zk−1 + w) =

n∑

i=1

θi(z1, . . . , zk−1)χi(w).

By setting zj = 0 for all i �= j , we obtain an expansion of the form (1) for hi . The proof of
Proposition 5 is complete.

Remark 6.5. For any quasipolynomials f1, . . . , fk−1 , the rank of the tuple (f1, . . . , fk−1,1) is
finite, and one has an expansion of the form (19) with g = 1.

Proposition 6. Let R(f1, . . . , fk−1, g) = n and g(0) = 0. Then R(fi, fj) � n − 1 for any
1 � i < j � k − 1.

Proof. For w = 0, the right-hand side of (19) does not vanish identically, and hence

(ψ1(0), . . . , ψn(0)) �= (0, . . . , 0).

Without loss of generality, we can assume that ψn(0) = 1. Note that

ϕj(z1, . . . , zk−1)ψj(w) + ϕn(z1, . . . , zk−1)ψn(w)

= ϕj(z1, . . . , zk−1)(ψj(w) − ψj(0)ψn(w))

+ (ϕn(z1, . . . , zk−1) + ψj(0)ϕj(z1, . . . , zk−1))ψn(w).

By the consecutive changes of variables

ϕn(z1, . . . , zk−1) → ϕn(z1, . . . , zk−1) + ψj(0)ϕj(z1, . . . , zk−1),

ψj(w) → ψj(w)− ψj(0)ψn(w)

for j = 1, . . . , n− 1, we obtain the expansion (19) with ψ1(0) = · · · = ψn−1(0) = 0 and ψn(0) = 1.
By setting w = 0 and z1 + · · · + zk−1 = 0 in (19), we arrive at the equation

ϕn(z1, . . . , zk−1) = 0.

Hence the expansion (19) for these z1, . . . , zk−1 acquires the form

f1(z1 + w) · · · fk−1(zk−1 + w) =

n−1∑

i=1

ϕi(z1, . . . , zk−1)
ψi(w)

g(−w) .

By setting zl = 0 for all l �= i, j , zi = z , and zj = −z , we obtain an expansion of the form (3) for
fi and fj . The proof of Proposition 6 is complete.

Theorem 6. The set of all triples of entire functions that are not zero identically and satisfy
and expansion of the form (4) consists of all triples (f1, f2, g) equivalent to one of the triples

(Q,1,1), (1,1,Q), (Id, Id,1), (sin, sin,1), (1, Id, Id), (1, sin, sin), (σΓ, σΓ, σΓ),

where Q is an arbitrary quasipolynomial of rank � 3, Id(z) = z , and Γ is an arbitrary lattice in C.

Proof. (i) Assume that at least one of the functions f1 and f2 , as well as g, does not vanish
anywhere. Since we can interchange f1 and f2 , we can assume that f2 and g have no zeros. By
setting z1 = 0 in (4), we find from Proposition 5 that the triple (f1, f2, g) is equivalent to a triple
(Q,1,1) with an entire function Q for which an expansion of the form (1) with n � 3 holds. Hence
Q is a quasipolynomial of rank � 3, and the proof of the Theorem for this case is complete.

(ii) Assume that f1 and f2 have no zeros. By Proposition 5, the triple (f1, f2, g) is equivalent to
a triple of the form (1,1,Q) with a three-term expansion (1) for Q. Hence Q is a quasipolynomial
of rank � 3, which completes the proof of the Theorem for this case.
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(iii) Assume that f1 and f2 have zeros and g has no zeros. By Proposition 5, the triple (f1, f2, g)
is equivalent to a triple of the form (h1, h2,1) with quasipolynomials h1 and h2 of rank � 3 such
that

h1(z1 + w)h2(z2 + w) =

3∑

i=1

ϕi(z1, z2)ψi(w). (20)

Using transformations of the form

h(z) → exp(α+ βz)h(Δz + u)

with Δ �= 0, we can assume that h1 coincides with one of the functions given by the formulas

r1(z) = z, r2(z) = z2 +A, r3(z) = C sin z exp(λz) +D

with complex numbers A, C �= 0, D, and λ. Assume that h1 = r1 . By setting z1 = z and z2 = z ,
we obtain R(h1, h2) = 2 by Theorem 4, and Theorem 5 with Γ = {0} implies that

(h1, h2) ∼ (Id, Id).

Hence we find that the triple (f1, f2, g) is equivalent to the triple (Id, Id,1). Now let h1 = r2 . By
differentiating both parts of the expansion (20) with respect to z1 , we obtain a new expansion of
the same type with h1(z) replaced by z . By the same argument as above, we have

(Id, h2) ∼ (Id, Id).

One can readily verify that R(h1, Id) = 4. This contradicts the inequality R(h1, Id, Id) = R(f1, f2, g)
� 3. Hence the case of h2 = r2 is impossible. Finally, assume that h = r3 . We again differentiate
both parts of (20) with respect to z1 . As a result, we obtain an expansion of the form (20) with
h1(z) replaced by

C(cos z + λ sin z) exp(λz) = C1 sin(z + θ1) exp(λz).

By applying Theorems 4 and 5, we find that R(h1, h2) = 2 and (h1, h2) ∼ (h1, sin). Let us again
apply Theorem 5. As a result, we see that the triple (f1, f2, g) is equivalent to the triple (sin, sin,1),
which completes the proof of Theorem 6 for this case.

(iv) Let only one of the functions f1 , f2 , and g have zeros. Then the triple (f1, f2, g) is equivalent
to the triple (1, h2, r). By Proposition 6, R(1, h2) = 2, and hence the pair (1, h2) is equivalent
to either (1, Id) or (1, sin) by Theorem 5. It remains to use Theorem 4 and then, once more,
Theorem 5. The proof of case (iv) is complete.

(v) Assume that each of the functions f1 , f2 , and g has zeros. By Proposition 6 and Theorem 5,
the triple (f1, f2, g) is equivalent to (σΓ, σΓ, h) for some lattice Γ. By applying Theorem 4 and,
once more, Theorem 5, we finally establish that the triple (f1, f2, g) is equivalent to (σΓ, σΓ, σΓ).
The expansion (20) follows from the classical identity

σΓ(x+ y + z)σΓ(x− y)σΓ(y − z)σΓ(z − x) =
1

2
σ3Γ(x)σ

3
Γ(y)σ

3
Γ(z) det

⎛

⎝
1 ℘Γ(x) ℘′

Γ(x)
1 ℘Γ(y) ℘′

Γ(y)
1 ℘Γ(z) ℘′

Γ(z)

⎞

⎠ ,

where ℘Γ(z) = −d2σΓ(z)/dz2 is the Weierstrass elliptic function.

Conclusion

Let
F =

⋃

g

F (g)

be the set of all hyperquasipolynomials. It follows from Remark 2.2 that F is a multiplicative
semigroup with respect to pointwise multiplication. Let us show that F , in contrast to the set of
quasipolynomials, is not a linear space.

The functions z and exp(z2) are hyperquasipolynomials with respect to themselves. Consider
the sum

f(z) = z + exp(z2). (21)
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Assume that there exists an entire function g such that R(f, g) <∞.
By Proposition 1, the functions determined by the formulas

z =
1

2
(f(z)− f(−z)), exp(z2) =

1

2
(f(z)− f(−z)) (22)

are hyperquasipolynomials with respect to g as well. By Theorem 1, g is a quasipolynomial. Then
the functions (22) are quasipolynomials as well by the same theorem. But this is impossible. Hence
the sum (21) of two hyperquasipolynomials is not a hyperquasipolynomial.

Theorem 1 completely determines the spaces F (g) with quasipolynomials g and F (σΓ) with
a degenerate lattice Γ. It is of interest to ask what the structure of the space F (σΓ) is for nonde-
generate lattices Γ. The answer is probably as follows.

The space F (σΓ) for a nondegenerate lattice Γ consists of linear combinations with quasipoly-
nomial coefficients of translates of the function σΓ and its derivatives with respect to the argument;
in other words, any element of F (σΓ) has the form

n∑

i=1

mi∑

j=1

Qi,j(z)σ
(i)
Γ (z + zij),

where the Qi,j are quasipolynomials and the zij are arbitrary complex numbers.
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