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Abstract. We prove an analog of Gromov–Lawson type relative index theorems for K -homology
classes.
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Introduction. Let M and M ′ be two manifolds coinciding outside some subsets Q ⊂ M
and Q′ ⊂ M ′ (i.e., M \ Q and M ′ \ Q′ are identified with each other), and let D and D′ be
elliptic operators on M and M ′ , respectively, coinciding on M \ Q � M ′ \ Q′ . The difference
indD − indD′ of their indices is called the relative index of D and D′ . A relative index theorem
is often understood in the literature as a statement of the following type: the relative index is
independent of the structure of M and M ′ , as well as of D and D′ , on the set where they coincide,
i.e., on M \Q; in other words, to compute the relative index of D and D′ , it suffices to know the
structure of D and D′ on Q and Q′ , respectively. Theorems of this kind are trivial for smooth
closed manifolds (owing to the existence of a local index formula [1]), but in more general cases
one has informative statements such as the relative index theorem for Dirac operators on complete
noncompact Riemannian manifolds proved in the famous paper [2] by Gromov and Lawson. For
further examples, we refer the reader to the paper [3], where the relative index theorem was proved
in a rather general abstract framework that not only included many of the earlier known special
cases but also permitted one to obtain a number of index formulas for elliptic differential operators
and Fourier integral operators on manifolds with singularities (see [4]). Note, however, that the
index is not the only homotopy invariant of elliptic operators, and hence it is of interest to obtain
locality theorems for broader sets of invariants. There are various directions in which to generalize
the relative index theorem. For example, Bunke [5] considered Dirac operators acting on sections
of bundles of projective Hilbert B -modules over a complete noncompact Riemannian manifold,
where B is a C∗-algebra, and obtained a relative index theorem for such operators, the index
being an element of the K -group of B . Here we solve a different problem. Namely, if the elliptic
operators in question are local with respect to some C∗-algebra A, then it is natural to ask how the
corresponding classes in the K -homology of A vary under a “local” variation of the operators. Here
the algebra A is not assumed to be commutative, and accordingly, localization is based on ideals
in A. It turns out (this is the main result of the paper) that this variation obeys the same laws as
the relative index in the “classical” theorems does. That is why we still refer to our theorem as a
“relative index theorem,” even though it deals with K -homology classes rather than the index. All
results are stated directly in terms of Fredholm modules; for the standard construction that assigns
a Fredholm module to an elliptic operator, we refer the reader to the literature (e.g., see [6]).

1. K-homology. Recall the definition of K -homology groups of a C∗-algebra A (e.g., see
[6, Chap. 8]). A Fredholm module over A is a triple x = (ρ,H,F ), where H is a Hilbert space,
ρ : A → B(H) is a representation of A on H , and F ∈ B(H) is an operator such that

[F, ρ(ϕ)] ∼ 0 for any ϕ ∈ A (locality), F ≈ F ∗, F 2 ≈ 1, (1)

where ∼ stands for equality modulo compact operators and ≈ for equality modulo locally com-
pact operators, i.e., operators C such that the operators ρ(ϕ)C and Cρ(ϕ) are compact for every
ϕ ∈ A. Two Fredholm modules (ρ,H,F0) and (ρ,H,F1) corresponding to one and the same repre-
sentation ρ are said to be homotopic if they can be embedded in a family (ρ,H,Ft), t ∈ [0, 1], of
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Fredholm modules such that the function t �→ Ft is operator norm continuous. A Fredholm module
is said to be degenerate if all relations in (1) are satisfied exactly rather than modulo (locally)
compact operators. We say that two Fredholm modules x and x′ are equivalent if there exists a
degenerate module x′′ such that the modules x⊕ x′′ and x′ ⊕ x′′ are unitarily equivalent to homo-
topic Fredholm modules. The set of equivalence classes of Fredholm modules is denoted by K1(A);
the direct sum of modules induces a structure of an abelian group on K1(A), which is called the
(odd) K -homology group of A. The definition of the even K -homology group K0(A) is similar, but
one considers graded Fredholm modules, i.e., ones equipped with the following additional structure:
the space H is Z2-graded, H = H+ ⊕H− , the representation ρ is even (i.e., preserves the grading,
ρ(A)H± ⊂ H±), and the operator F is odd (i.e., FH+ ⊂ H− and FH− ⊂ H+).

The results stated below hold for K0(A) as well as K1(A), and it is tacitly assumed throughout
that all Fredholm modules involved are graded in the first case. For brevity, we often write ϕ rather
than ρ(ϕ) for ϕ ∈ A; which representation is meant is always clear from the context.

2. Fredholm modules agreeing on an ideal. Let x = (ρ,H,F ) and x̃ = (ρ̃, ˜H, ˜F ) be
Fredholm modules over A, and let J ⊂ A be an ideal. The orthogonal projections∗ P : H → H0 ,

where H0 = JH ⊂ H , and ˜P : ˜H → ˜H0 , where ˜H0 = J ˜H , commute with the action of A.

Definition. Given an operator T : H0 → ˜H0 intertwining the representations ρ and ρ̃, preserv-

ing the grading in the graded case, and satisfying TPFPT ∗ ≈ ˜P ˜F ˜P , we say that x and x̃ agree
on the ideal J .

3. Cutting and pasting. Let J1, J2 ⊂ A be ideals such that J1 + J2 = A. Let x and x̃ be
Fredholm modules over A agreeing on the ideal J = J1∩J2 , and assume that the representations ρ

and ρ̃ are nondegenerate (i.e., AH = H and A ˜H = ˜H ). Then one can define a Fredholm module
x � x̃ obtained, informally speaking, by “pasting together over J the part of x corresponding
to J1 with the part of x̃ corresponding to J2 .” To this end, we represent F (and, in a similar

way, ˜F ) by a 3 × 3 matrix associated with the decomposition of H into the direct orthogonal
sum of the A-invariant subspaces H0 = JH , H1 = J1H �H0 (the orthogonal complement), and
H2 = J2H�H0, H = H1⊕H0⊕H2 (in this particular order!).∗∗ We denote the orthogonal projection
onto Hj by Pj , j = 0, 1, 2. Note that∗∗∗ ϕP1FP2 = ϕ1P1FP2 = P1ϕ1FP2 ∼ P1Fϕ1P2 = 0 for any
ϕ ∈ A; i.e., P1FP2 ≈ 0, and likewise P2FP1 ≈ 0, so that the desired representation can be written
out as

F ≈
⎛

⎝

a b 0
b∗ c d
0 d∗ e

⎞

⎠ , ˜F ≈

⎛

⎜

⎝

ã ˜b 0
˜b∗ c̃ ˜d

0 ˜d∗ ẽ

⎞

⎟

⎠
,

a = a∗, c = c∗, e = e∗,
ã = ã∗, c̃ = c̃∗, ẽ = ẽ∗, (2)

where all entries are local. The condition that x and x̃ agree on J acquires the form TcT ∗ ≈ c̃. To

simplify the notation, we identify H0 with ˜H0 via T ; then we no longer write out T explicitly, and
the agreement condition on J becomes c ≈ c̃. Set

H � ˜H = H1 ⊕H0 ⊕ ˜H2, ρ � ρ̃ = ρ|H1⊕H0 ⊕ ρ̃|
˜H2
, F � ˜F =

⎛

⎝

a b 0

b∗ c ˜d

0 ˜d∗ ẽ

⎞

⎠ . (3)

Proposition. The Fredholm module x � x̃ = (ρ � ρ̃,H � ˜H,F � ˜F ) over A is well defined by
formulas (3).

∗The subspace JH , as well as the subspaces J1H and J2H considered below, is closed. This is a special case of
the general assertion that the subspace BH of a Hilbert space H equipped with a representation of a C∗ -algebra B
is closed (see [6, pp. 25–26, Sec. 1.9.17]).

∗∗In specific examples, some of the subspaces H0 , H1 , and H2 may prove to be trivial (zero). Our argument
remains valid in this case, but the result is not of much interest.

∗∗∗From now on, for an arbitrary ϕ ∈ A, by ϕ1 ∈ J1 and ϕ2 ∈ J2 we denote arbitrary elements such that
ϕ = ϕ1 + ϕ2 .
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Proof. In terms of the matrix in (2), the condition F 2 ≈ 1 becomes∗

a2 + bb∗ ≈ 1, ab+ bc ≈ 0, cd+ de ≈ 0, d∗d+ e2 ≈ 1, bd ≈ 0, (4)

ϕb∗b ∼ ϕ1(1− c2), ϕdd∗ ∼ ϕ2(1− c2) for any ϕ ∈ A, (5)

and the last condition in (4) is satisfied automatically (ϕbd = (ϕ1b)d ∼ (bϕ1)d = b(ϕ1d) = 0), while

condition (5) follows from the fact that b∗b+ dd∗ + c2 ≈ 1. Similar relations hold for ˜F . To prove

the proposition, it suffices to verify that (F � ˜F )2 ∼ 1. (The other conditions in (1) obviously hold
for x � x̃.) The verification, after squaring the matrix, is reduced to routine calculations using the

relation c ≈ c̃ and also relations (4)–(5) for F and ˜F . For example, for the entry in the second line

and second row, we obtain ϕ((F � ˜F )2)22 = ϕ(b∗b+ c2+ ˜d˜d∗) ∼ ϕ1(1− c2)+ϕc2 +ϕ2(1− c2) = ϕ1,
ϕ ∈ A.

The Fredholm module x̃ � x is defined in a similar way.

4. Relative index theorem. Now we are in a position to state our main result.

Theorem. Under the assumptions of Sec. 3, one has

[x � x̃]− [x] = [x̃]− [x̃ � x] (6)

in the K -homology of A, where [x] ∈ K∗(A) is the element defined by the Fredholm module x.

Identity (6) means that the difference of K -homology classes resulting from the nonagreement
of Fredholm modules over the ideal J2 is independent of the structure of these modules over the
ideal J1 (where they agree).

Remark. As far as the author is aware, the result is new not only for a noncommutative
algebra but even for a commutative algebra A in that relation (6) is established for elements of
the K -homology group rather than for the indices of the operators in question. (Note, however,
that this was essentially done “behind the scenes” in [5] for the case in which A is a function
algebra on a complete noncompact Riemannian manifold and the Fredholm modules correspond
to some Dirac type operators.) The classical relative index theorems can be obtained from our
result if one assumes that A is a unital function algebra: it suffices to use the homomorphism
ind: K0(A) −→ K0(C) � Z corresponding to the natural embedding of C in A. Thus, the theorem
stated above can be viewed as a natural generalization of relative index theorems in the framework
of noncommutative geometry. Note also that a similar theorem holds in Kasparov’s KK -theory.
This theorem will be published elsewhere.

Outline of the proof. It suffices to deform the Fredholm module x ⊕ x̃ to a module that
is unitarily equivalent to the module (x � x̃) ⊕ (x̃ � x). The homotopy is given by the family of

Fredholm modules (ρ⊕ ρ̃,H ⊕ ˜H,Ft), t ∈ [0, π/2], where the operator Ft is specified in the direct

sum decomposition H ⊕ ˜H = H1 ⊕H0 ⊕H2 ⊕ ˜H1 ⊕H0 ⊕ ˜H2 by the 6× 6 block matrix

Ft =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

a b 0 0 0 0

b∗ c d cos t 0 0 −˜d sin t
0 d∗ cos t e 0 d∗ sin t 0

0 0 0 ã ˜b 0

0 0 d sin t ˜b∗ c ˜d cos t

0 −˜d∗ sin t 0 0 ˜d∗ cos t ẽ

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (7)

∗Here 1 stands for the identity operators on relevant subspaces.
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The first and second conditions in (1) are obvious for Ft , and the third condition (F 2
t = 1) can

be verified by routine computations. Next, F0 = F ⊕ ˜F and

Fπ/2 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

a b 0 0 0 0

b∗ c 0 0 0 −˜d
0 0 e 0 d∗ 0

0 0 0 ã ˜b 0

0 0 d ˜b∗ c 0

0 −˜d∗ 0 0 0 ẽ

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= U∗

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

a b 0 0 0 0

b∗ c ˜d 0 0 0

0 ˜d∗ ẽ 0 0 0

0 0 0 ã ˜b 0

0 0 0 ˜b∗ c d
0 0 0 0 d∗ e

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

U, (8)

where the unitary operator

U : H ⊕ ˜H ≡ H1 ⊕H0 ⊕H2 ⊕ ˜H1 ⊕H0 ⊕ ˜H2

−→ H1 ⊕H0 ⊕ ˜H2 ⊕ ˜H1 ⊕H0 ⊕H2 ≡ (H � ˜H)⊕ ( ˜H �H)

interchanges the third and sixth components and then multiplies the third component by −1. Thus,

Fπ/2 = U∗((F � ˜F )⊕ ( ˜F � F ))U , as desired.

5. Example. Let Γ ⊂ O(n,R) be a discrete subgroup of polynomial growth, and let A =
C+
0 (R

n) � Γ be the C∗-crossed product of the unitization C+
0 (Rn) of the algebra C0(R

n) by the
group Γ (whose action on C+

0 (R
n) is induced by its standard action on R

n). Next, let g ∈ O(n,R)
be a given element commuting with elements of Γ. Consider a nonlocal Callias type operator∗ in
R
n defined as the crossed product D = �∂#a(r)Tg , where �∂ is the Dirac operator, a(r) is a smooth

function of r =
√

x21 + · · ·+ x2n equal to a nonzero constant in a neighborhood of infinity, and
Tg is a bundle isomorphism over g : Rn → R

n commuting with the action of Γ. The unbounded
operator D is Fredholm in L2 , almost commutes with the action of A, and hence defines an
element [D] ∈ K∗(A). Take two copies of the space R

n with the operator D and carry out the
following cutting and pasting operation: cut each of the copies of Rn along the sphere Sn−1 , paste
the two balls together along the boundary to obtain the sphere Sn , and paste the remaining two
noncompact parts together to form the cylinder Sn−1×R. The algebra A acts in a natural way on
the sphere as well as on the cylinder, and the two copies of D produce an operator D, the double
of D, on the sphere Sn and an operator D0 on the cylinder. An application of the theorem shows
that τ∗[D] + [D] = [D] + [D0] in K∗(A), where τ∗ : K∗(A) → K∗(A) is the involution induced by
the mapping τ : x �→ x/r2 of the one-point compactification of Rn into itself.
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