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Abstract. By the Moutard transformation method we construct two-dimensional Schrödinger
operators with real smooth potentials decaying at infinity and having a multiple positive eigenvalue.
These potentials are rational functions of spatial variables and their sines and cosines.

Key words: two-dimensional Schrödinger operator, Moutard transformation, positive eigenvalues.

Let H be a Schrödinger operator

H = −Δ+ U

with potential U(x) on R
N decaying at infinity. The potential U is called a von Neumann–Wigner

potential if H has a positive eigenvalue with an eigenfunction in L2(R
N ), i.e., there is a point of

its discrete spectrum which is embedded in the absolutely continuous spectrum.
The first example of such a potential was constructed by von Neumann and Wigner [1]. They

found a three-dimensional rotation-symmetric nonsingular potential U(r) depending only on the
distance r from the origin with the following asymptotic behavior (a computational mistake made
in [1] and reported later is corrected here):

U(r) = −8 sin 2r

r
+O(r−2) as r = |x| → ∞, x ∈ R

3.

The Schrödinger operators with U(x) = o(1/|x|) as x→ ∞ have no positive eigenvalues [2].
In the present note we explicitly construct multiparameter families of two-dimensional potentials

which decay as 1/|x| and have a multiple positive eigenvalue. To our knowledge, these are the first
examples of such potentials.

We use the method first applied in [3] and [4] to construct two-dimensional Schrödinger op-
erators with fast decaying potentials and multidimensional kernels. This method is based on the
Moutard transformation of two-dimensional Schrödinger operators and is described as follows. Let
ω be a formal solution of the equation

Hω = (−Δ+ U(x, y))ω = 0, Δ =
∂2

∂x2
+

∂2

∂y2
. (1)

The Moutard transformation corresponding to H and ω gives a new Schrödinger operator

˜H = −Δ+ ˜U, ˜U = U − 2Δ log ω,

such that if ϕ satisfies Hϕ = 0, then a function θ determined up to a summand const /ω by the
consistent system

(ωθ)x = −ω2(ϕ/ω)y , (ωθ)y = ω2(ϕ/ω)x, (2)

satisfies the equation
˜Hθ = 0.
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So, there are maps

U →Mω(U) = U − 2Δ log ω, ϕ→ Sω(ϕ) = {θ + C/ω, C ∈ C}.
Let us consider an operator H and a pair of solutions to Eq. (1), ω1 and ω2 . For every θ1 ∈ Sω1(ω2),
there is a function (the result of a double iteration of the Moutard transformation)

̂U =Mθ1Mω1(U)− U = −2Δ log(θ1ω1).

The result of this iteration depends on the choice of θ1 ∈ Sω1(ω2), i.e., on the integration constant
C in (2). Moreover, the functions

ψ1 =
1

θ1
and ψ2 =

ω2

ω1θ1
satisfy the equation

(−Δ+Mθ1Mω1(U))ψ = 0.

Unlike in [3] and [4], where such a double iteration was applied to the case U = 0, we apply it
to the constant potential U = −k2 , k ∈ R. Therefore, ω1 and ω2 satisfy the Helmholtz equation

−Δω = k2ω.

A large set of solutions to this equation is given by functions of the form

Re

[

∂m

∂λm
exp

(

i
k

2

(

λz +
z̄

λ

))]

, z = x+ iy, λ ∈ C, m = 0, 1, 2, . . . , (3)

and their linear combinations.
For simplicity, we consider the case k2 = 1 and demonstrate the method by an explicit example.

Theorem 1. If U = −1 and

ω1 = x2 cos y − y sin y + y2 sinx+ x cos x, ω2 = 4(y cos x+ x sin y), x, y ∈ R,

then the two-dimensional potential ̂U takes the form

̂U = P/Q2,

where

Q = ω1θ1 = −x4 − y4 − 4x2y sinx sin y + x2(−8 cos y sinx− 2 sin2 y − 1)

+ 4xy2 cos x cos y − 16xy cos x sin y + 2x cos x(−8 cos y − sinx)

+ y2(−8 cos y sinx+ 2 sin2 x− 3) + 2y sin y(cos y + 8 sinx)

+ 16 cos y sinx+ sin2 x− sin2 y + 4C + 1,

and P is a polynomial in x and y and in the sines and cosines of x and y :

P = 16(x6y sinx sin y − x5y2 cosx cos y + x2y5 sinx sin y − xy6 cos x cos y) + . . .

(the dots denote the lower order terms in x and y). The functions ψ1 and ψ2 take the forms

ψ1 = ω1/Q and ψ2 = ω2/Q

and satisfy the equation
̂Hψ = ψ, ̂H = −Δ+ ̂U.

If C is negative and |C| is sufficiently large, then Q has no zeros and, therefore, the potential
̂U and the functions ψ1 and ψ2 are smooth. Moreover,

̂U = O(r−1), ψ1 = O(r−2), ψ2 = O(r−3) as r =
√

x2 + y2 → ∞. (4)

Therefore, ψ1 and ψ2 lie in L2(R
2) and are linearly independent eigenfunctions of the operator

̂H = −Δ+ ̂U with eigenvalue E = 1.

Using various linear combinations of the solutions (3), one can easily construct multiparameter

families of similar two-dimensional potentials ̂U with asymptotics (4) and solutions ψi at the energy
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level E = k2 and even increase the decay rate of the eigenfunctions ψi at infinity. However, the
decay rate of potentials cannot be increased due to the already mentioned Kato theorem [2].

We believe that, by applying multiple iterations, one may obtain such potentials with positive
eigenvalues of higher multiplicity.
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