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Abstract. The problem of describing, up to similarity, pairs of quadratically related operators on
a finite-dimensional complex linear space is studied.
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1. Introduction. Consider a finite-dimensional linear space V over the field C of complex
numbers and a set (A1, . . . ,An) of linear operators on V . Recall that the set (Ak)

n
k=1 is said to

be indecomposable if V cannot be decomposed into the direct sum of nontrivial subspaces V1 and

V2 invariant with respect to all operators in this set. Sets (Ak)
n
k=1 of operators on V and ( ˜Ak)

n
k=1

of operators on ˜V are similar if there exists an invertible linear operator C : V → ˜V such that
˜Ak = C AkC

−1 for k = 1, . . . , n.
In the case of one operator, the problem of classifying indecomposable operators up to similarity

reduces to constructing a Jordan basis in the space V ; in this case, the Jordan cells exhaust all
indecomposable operators. The problem of classifying indecomposable sets of linear operators up
to similarity turns out to be very difficult already in the case n = 2 (see, e.g., [1] and [2]). It is
therefore natural to try to impose a condition on sets of operators under which this problem may be
solvable. The simplest such condition is commutativity, but, as shown in [3] and [4], the problem of
describing, up to similarity, pairs of commuting operators still remains difficult (even though there
exists a basis in which the matrices of commuting operators are simultaneously triangular). Even
under the additional constraint A 2 = B3 = A B2 = 0, the problem of describing, up to similarity,
pairs of commuting operators A and B resists solving (that is, is wild [5]).

This note studies the problem of describing, up to similarity, the indecomposable pairs of
operators (A ,B) satisfying a quadratic relation of the general form

P2(A ,B) = αA 2 + βA B + γBA + δB2 + εA + ζB + χI = 0 (i)

(here α, β, γ, δ, ε, ζ, χ ∈ C). We prove that, by means of nondegenerate affine changes of the genera-
tors, this quadratic relation can be reduced to one of nine forms (see Proposition 2); for each of the
relations thus obtained, we either describe all indecomposable pairs up to similarity or show that
the problem of classifying pairs of operators satisfying the relation under consideration is wild (see
Theorem 2), i.e., contains the problem of describing, up to similarity, all pairs of operators subject
to no constraints (for more details on wild problems, see [1] and [2]).

Remark 1. In this paper we consider pairs of operators only on finite-dimensional linear spaces.
In the literature various categories of sets of operators on infinite-dimensional spaces satisfying
various relations have also been studied.

Remark 2. The authors have studied the problem of describing, up to unitary equivalence,
the pairs of self-adjoint operators (A ,B) on a Hilbert space satisfying the quadratic relation

P2(A ,B) = αA 2 + β{A ,B}+ iγ[A ,B] + δB2 + εA + ζB + χI = 0

with real coefficients α, β , γ , δ , ε, ζ , and χ in the cases of finite-dimensional, bounded, and
unbounded operators [6]–[8].
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2. Examples. 1. The problem of classifying pairs of operators (A 2 = 0,B) is wild. Indeed,
the classification of pairs of operators

A =

(

0 I
0 0

)

, B =

(

A 0
0 B

)

on the space V � V is equivalent to the classification of pairs (A,B) of operators on V .
2. The problem of classifying pairs of operators (A 2 = I ,B) is wild. Indeed, the classification

of pairs of operators

A =

(

I 0
0 −I

)

, B =

(

A I
0 B

)

on the space V � V is equivalent to the classification of pairs (A,B) of operators on V .
3. The problem of classifying pairs of operators (A ,B = A 2) is not wild. The structure of such

a pair is determined by the normal form of the matrix of the operator A .
4. The problem of classifying pairs of q-commuting operators A and B (i.e., pairs of operators

related by A B = qBA , where q ∈ C) is wild. Given any pair of operators A and B on V , we
construct the operators

A =

⎛

⎜

⎜

⎝

0 0 I 0
0 0 0 A
0 0 0 I
0 0 0 0

⎞

⎟

⎟

⎠

, B =

⎛

⎜

⎜

⎝

0 qI 0 0
0 0 0 B
0 0 0 A
0 0 0 0

⎞

⎟

⎟

⎠

.

on the direct sum V = V �V �V �V . Similarly, given a pair ˜A, ˜B : ˜V → ˜V , we construct operators
˜A and ˜B on the direct sum of four copies of the space ˜V .

Proposition 1 (see [3] and [9]). A pair (A ,B) of operators on V is indecomposable if and

only if so is the pair (A,B) of operators on V . A pair (A ,B) is similar to a pair ( ˜A , ˜B) if and

only if the pair (A,B) is similar to ( ˜A, ˜B).

Remark 3. In the construction described above both operators A and B are nilpotent and
A 3 = B3 = 0.

Let us show that the classification problem is also wild if A is invertible and B2 = 0. Consider
nilpotent operators A1 and A2 on spaces V1 and V2 , respectively. We set V = V1 � V2 ,

A =

(

I +A1 0
0 −I +A2

)

, and B =

(

0 B
0 0

)

. (ii)

Since the spectra of the operators I +A1 and −I +A2 are disjoint, it follows that any idempotent
operator P commuting with A has the form

P =

(

P1 0
0 P2

)

,

where P1 and P2 are idempotent operators on the spaces V1 and V2 , respectively. In this case,
the reduction problem for operators A and B of the form (ii) reduces to the reduction of a triple
of operators A1 , A2 , and B on two spaces V1 and V2 such that A1 : V1 → V1 , A2 : V2 → V2 ,
B : V2 → V1 , A1B = BA2 , and A1 and A2 are nilpotent. The wildness of this problem was proved
in [10] and [11].

5. Consider the classification problem for pairs of operators satisfying the relation q-CCR, that
is, such that A B − qBA = I , where q ∈ C.

First, consider the cases q = 0 and q = 1.
For q = 0, we have A B = I ; therefore, the operators under consideration are nonsingular and

B = A −1 . The corresponding classification problem is not wild: the structure of any such pair is
determined by the normal form of the matrix of A .
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For q = 1, we have [A ,B] = I . Since the trace of the commutator of any two matrices vanishes,
there exist no such pairs on a finite-dimensional space (recall that we consider only operators on
finite-dimensional spaces in this note).

Now, suppose that q2 �= q. In this case, the problem of classifying pairs of operators satisfying
the condition A B − qBA = I is wild (see, e.g., [12]). Indeed, consider the pairs satisfying the
additional condition C = A B = (1−q)−1I +N , where N is a nilpotent operator. Then we have
the relation A N = qN A , where A is an invertible operator and N is a nilpotent operator; the
wildness of this problem was proved above in Remark 3.

The subsequent examples 6–9 deal with relations of the form [A ,B] = P (A ), where P ( · ) is
a nonconstant polynomial.

6. The problem of classifying pairs of operators (A ,B) satisfying the relation [A ,B] = A
is wild. Indeed, let B1 and B2 be nilpotent operators on spaces V1 and V2 , respectively. We set
V = V1 � V2 ,

A =

(

0 A
0 0

)

, and B =

(

B1 0
0 I +B2

)

.

The relation [A ,B] = A is equivalent to B1A = AB2 . The rest of the proof is similar to that in
Remark 3.

7. The problem of classifying pairs of operators (A ,B) satisfying the relation [A ,B] = A 2 is
wild. Indeed, imposing the additional condition A 2 = 0, we obtain the problem of classifying pairs
of commuting operators satisfying the relation A 2 = 0, which is wild [5].

8. The problem of classifying pairs of operators (A ,B) satisfying the relation [A ,B] = A 2+I
is wild. The proof is similar to that given in Example 6. We take nilpotent operators B1 and B2

on V1 and V2 and set V = V1 � V2 ,

A =

(

iI A
0 iI

)

, and B =

(−iI +B1 0
0 iI +B2

)

.

Then [A ,B] = A 2 is equivalent to B1A = AB2 , and the wildness of the problem is proved by an
argument similar to that used in Remark 3.

9. The problem of classifying pairs of operators (A ,B) satisfying the condition q[A ,B] =
A 2 + B with q �= 0 is wild. Indeed, let B′ = −qA , and let A ′ = A 2 + B . Then the problem of
classifying pairs of operators (A ,B) satisfying the above relation is equivalent to the problem of
classifying pairs of operators (A ′,B′) for which q[A ,B] = A 2 + B implies [A ′,B′] = A ′ .

The arguments used in Examples 6–8 remain valid in a more general situation.

Theorem 1. The problem of classifying pairs of operators A and B on a finite-dimensional
linear space V which satisfy the relation [A ,B] = P (A ), where P ( · ) is a nonconstant polynomial,
is wild.

Proof. First, suppose that the polynomial P ( · ) has a multiple root, which we denote by λ.
Then this polynomial can be represented in the form P (x) = (x − λ)2Q(x), where Q(x) is some
other polynomial, and the operators A and B must satisfy the relation [A ,B] = (A −λI)2Q(A ).

Let us introduce the operator A ′ = A − λI . Then [A ′,B] = A ′2Q(A ′ + λI). Assuming that

A ′2 = 0, we obtain [A ′,B] = 0, and the wildness of the problem follows from that of the problem
for pairs of commuting operators A and B satisfying A 2 = B3 = 0 [5].

Now, suppose that λ is a simple root of the polynomial P ( · ). Consider a direct sum decom-
position V = V1 � V2 and block matrices A and B of the form

A =

(

λI A
0 λI

)

and B =

(

B1 + μ1I 0
0 B2 + μ2I

)

,

where B1 and B2 are nilpotent operators on the spaces V1 and V2 , respectively. Since λ is a root
of P ( · ), we have

P (A ) =

(

0 P ′(λ)A
0 0

)

,
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and the condition [A ,B] = P (A ) reduces to AB2 −B1A+ (μ2 − μ1)A = P ′(λ)A. Choose μ1 and
μ2 so that μ2 − μ1 = P ′(λ); since λ is a simple root, it follows that P ′(λ) �= 0 and μ2 �= μ1 . Thus,
any idempotent operator J commuting with B has the following block form in the decomposition
under consideration:

J =

(

J1 0
0 J2

)

,

where J1 and J2 are idempotent operators on V1 and V2 , respectively. The reduction problem for
operators A and B of this form reduces by an argument similar to that used in Remark 3 to the
wild problem of describing triples of operators A, B1 , and B2 on two spaces V1 and V2 such that
B1 : V1 → V1 , B2 : V2 → V2 , A : V2 → V1 , AB2 = B1A, and B1 and B2 are nilpotent.

3. Main theorem.

Proposition 2. A nondegenerate affine change of variables reduces relation (i) to one of the
nine relations

(1) A 2 = 0, (2) A 2 = I , (3) A 2 = B,

(4) A B = qBA , (5) A B − qBA = I , (6) [A ,B] = A ,

(7) [A ,B] = A 2, (8) [A ,B] = A 2 + I , (9) q[A ,B] = A 2 + B,

where q ∈ C.

Proof. We can rewrite relation (i) in the form

αA 2 + β′{A ,B}+ δB2 + εA + ζB + χI = γ′[A ,B],

where β′ = (β+γ)/2 and γ′ = (γ−β)/2 (as usual, {A ,B} = A B+BA and [A ,B] = A B−BA ).
The rest of the proof is based on an argument similar to the reduction of equations of quadratic

curves to canonical form by using affine changes of variables and on the consideration of all possible
constraints on the coefficients.

Remark 4. Although relations (1)–(9) cannot be transformed into each other by affine changes,
the quadratic change B′ = −qA , A ′ = A 2 + B constructed in studying relation (9) establishes
an isomorphism between the algebras generated by relations (6) and (9).

The reduction problem for a quadratically related pair of operators is usually wild. To be more
precise, the following theorem is valid.

Theorem 2. The problem of describing, up to similarity, indecomposable pairs (A ,B) of linear
operators on a finite-dimensional complex space satisfying one of relations (1)–(9) is wild except in
the following cases :

the operators are related by (3); in this case, the classification of pairs satisfying the relation
A 2 = B reduces to that of the Jordan forms of matrices of arbitrary operators A ;

the operators are related by (5) with q = 0; the classification of pairs satisfying the relation
A B = I reduces to that of the Jordan forms of matrices of invertible operators B ;

the operators are related by (5) with q = 1; there exist no pairs satisfying the relation [A ,B] =
I (see Example 5).

Corollary. Explicit conditions on the coefficients in relation (i) which make it possible to de-
termine whether the corresponding problem is wild are as follows. The problem of describing, up
to similarity, indecomposable pairs of linear operators on a finite-dimensional complex space which
satisfy relation (i) is wild except in the following cases :

• (β + γ)2 = 4αδ , γ = β , and αζ − βε �= 0; in this case, relation (i) reduces to (3);
• (β + γ)2 �= 4αδ , βγ = αδ , and ε2δ − εζ(β + γ) + ζ2α+ 4χ((β + γ)2 − 4αδ) �= 0; in this case,

relation (i) reduces to (5) with q = 0;
• α = δ = ε = ζ = 0, γ = −β , and χ �= 0; in this case, relation (i) reduces to (5) with q = 1.

Remark 5. The problem of classifying, up to similarity, pairs of operators related by two
quadratic relations was considered by various authors. For example, in [13], the pairs of operators
satisfying the relations A B = BA = 0 were described up to similarity.
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