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Abstract. We consider the algebra Cu = Cu(R) of uniformly continuous bounded complex func-
tions on the real line R with pointwise operations and sup-norm. Let I be a closed ideal in Cu

invariant with respect to translations, and let ahI(f) denote the minimal real number (if it exists)
satisfying the following condition. If λ > ahI(f), then (f̂ − ĝ)|V = 0 for some g ∈ I , where V is
a neighborhood of the point λ. The classical Titchmarsh convolution theorem is equivalent to the
equality ahI(f1 · f2) = ahI(f1) + ahI(f2), where I = {0}. We show that, for ideals I of general
form, this equality does not generally hold, but ahI(fn) = n · ahI(f) holds for any I . We present
many nontrivial ideals for which the general form of the Titchmarsh theorem is true.
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1. The classical Titchmarsh convolution theorem for a pair of compactly supported Lebesgue
integrable functions on the real axis R says that the convex hull of the convolution support coincides
with the arithmetic sum of the convex hulls of the supports of the functions. This theorem can easily
be extended to Schwartz distributions over the space S = S(R) of rapidly decreasing functions and
has multidimensional versions. In a form specified below the convolution theorem is extended to
functions supported on equally directed half-axes. Most of the generalizations can be reduced to
the case when both functions are smooth and have compact supports (although such a reduction
may obscure the simple gist of the matter).

In [1] an analysis of the final dynamics of an oscillator interacting with a thermostat required a
“relative version” of Titchmarsh’s theorem, where in the definition of the complement to a support
local coincidence with the zero function is replaced by local membership in a certain ideal (we
give the details below). Our aim is to present mathematical results of [1] in a simpler and more
general form. In principle, we might use the term “singular supports,” following the terminology
of distribution theory related to deviations from smoothness or analyticity. However, from the
algebraic viewpoint which we adopt here, it is more appropriate to talk about “relative” versions.

Titchmarsh’s theorem is far from trivial, although its discrete cases (which deal, for example,
with finite linear combinations of shifted Dirac δ-functions) are obvious. It has numerous applica-
tions. Many various proofs and generalizations of this theorem have been found. We believe that
one of the most transparent proofs is that presented in lectures by B. Ya. Levin [2, Lecture 16],
although it uses not only classical (dated to the beginning of the past century) facts of the theory
of analytic functions but also facts which were discovered later than the Titchmarsh theorem. With
minor modifications similar methods work in the situation we are interested in, although the argu-
ment cannot be transferred word for word (because the relative version of the convolution theorem
does not hold in full generality).

2. Let M = M(R) be the complex Banach algebra of all complex (regular) Borel measures of
finite total variation on R with the total variation norm. The multiplication is convolution, which
is defined by ∫

R

g(t) (μ1 ∗ μ2)(dt) =
∫

R×R

g(s + t)μ1(ds)μ2(dt).
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In the definition of the convolution of measures, this relation must hold for all continuous functions
g vanishing at infinity. Therefore, it is also valid for all bounded continuous functions (a detailed
discussion of this and other Banach algebras, as well as other basic facts of harmonic analysis, can
be found in, e.g., [3]).

By using the standard pairing 〈g, μ〉 =
∫

R
g(t)μ(dt) and the notation (g � μ)(x) def=

∫
R
g(x +

t)μ(dt), it is possible to represent the definition of convolution in the form 〈g, μ1 ∗μ2〉 = 〈g�μ1, μ2〉.
We also use the notation (g ∗ μ)(x) def=

∫
R
g(x − t)μ(dt), which is compatible with all other

standard notations.
The Fourier transform of a measure μ is the function on the dual axis determined by the

equation

μ̂(λ) =
∫

R

eiλtμ(dt).

Below M0 = M0(R) denotes the set of measures μ ∈ M absolutely continuous with respect to
the Lebesgue measure. It is well known (and easy to check) that M0 is a closed ideal in M .

Each measure μ ∈ M0 has a density h ∈ L1(R) (L1(R) is the Lebesgue space of equivalence
classes of integrable functions). Usually densities are identified with measures. This allows us to
talk about convolutions, Fourier transforms, and other operations for L1-functions (some time
ago only such measures were considered, which required constantly repeating the words “almost
everywhere”). We also use “densities” (and talk about the corresponding functions, usually smooth)
keeping in mind, however, that, formally, these are measures. As usual, the term “function” will be
used in a wider sense as well.

Any functional μ→ μ̂(λ0) determines a continuous unit-preserving homomorphism from M to
the field C of complex numbers. The kernel of such a functional is a maximal ideal, but, as is well
known, such ideals do not exhaust even the Shilov boundary of the maximal ideal space. On the
other hand, for M̂0 , there are no other homomorphisms to C except point ones. Moreover, M̂ and
M̂0 are locally isomorphic to each other (as algebras of functions on the dual axis).

3. Let Cu = Cu(R) be the algebra of all uniformly continuous bounded complex functions on the
real axis. This is a C∗-algebra with respect to the pointwise operations and the sup-norm. So any
closed ideal in Cu is symmetric. By the Gelfand–Naimark theorem Cu is isometrically isomorphic
to the algebra of all continuous functions on some compact set. This set is a compact (=bicompact)
extension∗ of the real axis. We denote it by αR (to emphasize that it is close to the Stone–Čech
extension βR but is subordinate to it).

We put (Txf)(t) = f(x + t). The choice of the algebra Cu instead of the algebra Cb of all
bounded continuous functions is explained by the fact that, for Cu , the representation x → Tx is
strongly continuous, i.e., for any fixed f , the function x→ Txf is continuous.

The space Cu , together with the vector structure and the norm, naturally submerges into the
space dual to M0 . Therefore, we can define the Fourier transform ĝ as a functional on M̂0 by

〈ĝ, μ̂〉 = 2π〈g, μ〉.

The topology on M̂0 is induced by M0 .
In distribution theory a similar definition is used. Since S ⊂ M0 , these definitions are com-

patible. Hence with (or without) the help of distribution theory we can discuss local properties of
Fourier transforms of functions from Cu .

4. For any σ > 0, by Bσ we denote the Bernstein space, which includes all entire functions
of exponential type � σ bounded on the real axis. This is a Banach space with respect to the

∗In the middle of the past century such extensions were systematically used by Yu. M. Smirnov to study the
Efremovich proximity spaces by methods of general topology.



28

sup-norm (on R). By the Bernstein inequality∗ ,

|f(x+ h) − f(x)| � 2 sin(σh/2) · sup
R

|f |, 0 < σh < π,

for all f ∈ Bσ .
Let B =

⋃
σ>0 Bσ . Then, obviously, B ⊂ Cu . Moreover, by (another) Bernstein theorem B is

dense in Cu . To prove this theorem, it is convenient to consider the convolutions fρ = f ∗vρ , where
{vρ} is the Vallée-Poussin kernel and ρ > 0. The function v̂ρ is supported on the closed interval
|λ| � 2ρ, equals 1 if |λ| � ρ, and is linear on the other two intervals.

Uniform continuity easily implies the uniform convergence fρ → f as ρ → ∞. Furthermore,
f̂ρ = f̂ if |λ| < ρ. Finally, if I is a translation-invariant ideal in the algebra Cu (with respect to
multiplication) and f ∈ I , then fρ ∈ I for any ρ > 0.

These facts, as mentioned, make it possible to simplify some proofs, but in many cases it is
better to do without them.

5. Suppose that f is a continuous function in the closed upper half-plane y = Im z � 0 of
the complex plane C. We assume also that f is analytic for y > 0. If f is bounded on the real
axis R and has exponential type σ > 0 in the upper half-plane∗∗ , then, according to the classical
Phragmen–Lindelöf theorem, we have

|f(z)| � eσy sup
R

|f |. (1)

The following asymptotic relation (see [2, Lecture 16]) supplements and, in a certain sense,
sharpens this inequality:

log |f(z)| = σy + o(y). (2)
It is valid on almost all half-lines 0 < arg z < π and on each half-line from which a set of finite
logarithmic length is removed. Recall that, by definition, a measurable set E is of finite logarithmic
length on the half-line r > 0 if

∫
E(1 + r)−1dr <∞.

Note that equation (2) remains valid if the function f is of relatively weak growth on the real
axis, in particular, of at most power growth.

6. Suppose that f ∈ Cu and the support supp(f̂) of the Fourier transform of the function f
lies on a half-line λ � λ0 < ∞. The least such λ0 is denoted by ah(f) and called the harmonic
abscissa of f . If there are no finite λ0 with this property, we say that ah(f) = +∞. The following
lemma (we omit its proof) can be obtained by standard analytic means (including (2)).

Lemma 1. Suppose that f ∈ Cu and σ > 0. Then the condition ah(f) � σ holds if and only if
the Poisson extension of the function x→ f(x)eiσx to the half-plane Im z > 0 is a bounded analytic
function. Furthermore, if 0 < ah(f) <∞, then

ah(f) = lim*

y→∞ y−1 log |f(iy)|, (3)

where the asterisk means that the limit (which coincides with the upper limit) exists if from the
y-axis an appropriate set of finite logarithmic length is removed.

Suppose that f ∈ Cu and ah(f) < ∞. We put (Tzf)(t) = f(z + t). It is clear that Tzf ∈ Cu .
The next lemma follows from the previous one (we again omit the proof).

Lemma 2. Let f ∈ Cu be a function with ah(f) <∞. Then z → Tzf is a continuous function
in the closed upper half-plane Im z � 0 with values in Cu which is analytic for Im z > 0.

Relation (3) immediately implies the relation

ah(f1 · f2) = ah(f1) + ah(f2) (ah(f1), ah(f2) <∞), (4)

∗This inequality means that the norm of the translation operator in Bσ coincides with the spectral radius. Some
conditions implying such a coincidence for operators which are far from normal were considered in [4].

∗∗The condition σ > 0 can always be achieved by a real translation of the function f . Hence this condition does
not restrict generality, but it simplifies considerably some formulations and arguments.
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which is equivalent to the classical Titchmarsh theorem.
7. Let f ∈ Cu , and let I be a closed translation-invariant ideal in Cu . Then f ∗ μ ∈ I for any

measure μ ∈M . We shall use this fact below.
Consider points λ0 ∈ R (here R is the dual copy of the real line) such that in some neighborhood

of the point λ0 the distribution f̂ coincides with ĝ , where g ∈ I . It is easy to see that (like in the
trivial case) the set of all such points λ0 is open. It is natural to use the notation suppI(f̂) for the
complement to this open set (in the dual axis). We refer to this complement as the relative harmonic
support of f . The (absolute) harmonic support of f is supp(f̂). Note that from the viewpoint of
classical harmonic analysis the harmonic support of f is the Björling spectrum of f , while from the
viewpoint of Gelfand–Shilov theory it coincides with hull(K), where K = Ann(f) ( = annihilator
of the functional f in the algebra of integrable functions under convolution).

In what follows, unless otherwise specified, we consider only functions f ∈ Cu for which
ah(f) < ∞ and only translation-invariant ideals. On the other hand, mentioning these proper-
ties does not carry any additional meaning.

The relative harmonic abscissa ahI(f) is the least upper bound of suppI(f̂). It is clear that
ahI(f) � ah(f) for all ideals I .

We shall try to understand to what extent (4) applies to relative harmonic abscissas. We mention
at once that this relation is generally violated, and counterexamples are very simple.

8. The topology on the extension αR comes together with homomorphisms ϕ : Cu → C. To any
closed ideal I ⊂ Cu there corresponds a unique closed set Q ⊂ αR such that I = {f : ϕ(f) = 0 for
all ϕ ∈ Q}. Moreover, the quotient algebra is (naturally) isometrically isomorphic to the algebra
C(Q) with the sup-norm. The norm of the image of an element f ∈ Cu in the image of Cu → Cu/I
is denoted by ‖f‖Cu/I . From the algebraic viewpoint, Q = hull(I) is the algebraic hull of the ideal I .

The operators T ∗
x conjugate to the automorphisms Tx naturally generate homeomorphisms of

the compact set αR, so that (T ∗
xϕ)(f) = ϕ(Txf). The translation invariance of the ideal I = I(Q)

is equivalent to the fact that ϕ and T ∗
xϕ lie or do not lie in Q simultaneously.

It is easy to check that the above action of R on αR is free.
For any homomorphism ϕ from Cu to C, let Qϕ denote the closure of the orbit {T ∗

xϕ}. If ϕ
corresponds to a point of R, then Qϕ = αR. Otherwise Qϕ ∩ R = ∅.

The following lemma is one of our main results.
Lemma 3. Let I ⊂ Cu be an invariant closed ideal, and let f ∈ Cu be a function with harmonic

spectrum bounded on the right. Then

ahI(f) = lim
y→∞ y−1 log ‖Tiyf‖Cu/I . (5)

Proof. Let α denote the left-hand side in (5), and let β denote the right-hand side. Without
loss of generality we can assume that both these numbers are positive. Note that then ah(f) > 0
as well.

In the case I = {0} Lemma 3, in fact, follows from Lemma 1.

First, let us show that β � α.
Let ε > 0. By an argument similar to that used in Section 4, there exists a function g ∈ B ∩ I

depending only on f and ε and such that ah(f−g) < α+ε. We have Tiyg ∈ I . Indeed, for example,
an “upward” translation of functions g bounded in the upper half-plane is given by convolution
with a Poisson kernel, and convolutions do not take functions away from the ideal, because it is
invariant with respect to (real) translations. Therefore,

‖Tiyf‖Cu/I = ‖Tiy(f − g)‖Cu/I � ‖Tiy(f − g)‖ � const ·e(α+ε)y .

Hence, β � α.
Now, assuming that β + ε < α for some ε > 0, we shall obtain a contradiction.
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We take a function h ∈ S such that

ĥ(λ) =

{
1 if |λ− α| � ε/2,
0 if |λ− α| � ε.

Obviously,
f ∗ h /∈ I. (6)

Let ψ be a continuous linear functional on Cu such that ψ|I = 0 and ‖ψ‖ = 1. For any y � 0,
we put g(z) = ψ(Tzf). This function is continuous for Im z � 0, bounded and uniformly continuous
on any horizontal axis in the closed upper half-plane, and analytic for Im z > 0 (see Lemma 2).

Since ψ|I = 0, we have |g(iy)| � const ·eβy for any y � 0. Hence ah(g) � β . This implies
g ∗ h = 0. Therefore,

0 = (g ∗ h)(0) =
∫

R

ψ(T−xf)h(x) dx = ψ

(∫
R

(T−xf)h(x) dx
)

= ψ(f ∗ h).

Since the functional ψ (satisfying the above conditions) is arbitrary, the Hahn–Banach theorem
implies f ∗ h ∈ I . This contradicts condition (6), which proves the lemma.

As an obvious corollary we obtain the inequality

ahI(f1 · f2) � ahI(f1) + ahI(f2). (7)

Below we give a simple example, which shows that inequality (7) may be strict. Take the
unique analytic branch of the function

√
z in the upper half-plane such that

√
1 = 1. We put

f1(z) = exp(−√
z). Let f2 denote a similar function in the upper half-plane which tends to zero on

the negative half-axis. Let C0 be the ideal of functions f such that |f(x)| → 0 as |x| → ∞ on the
real axis. Obviously, f1f2 ∈ C0 , while none of the factors lies in C0 .

For products of coinciding multipliers, the equality remains true (and immediately follows from
Lemma 3).

Theorem 1. ahI(fn) = n · ahI(f).
Remark. The general case of Theorem 1 can be reduced to the case n = 2 by standard means.

Indeed, if the required relation holds for n = 2, then, by induction, it holds for all n = 2k . For
other n, by choosing m from the condition 2n = m+ n and using (7) (which can easily be proved
directly), we obtain Theorem 1 in the general case.

It is interesting that in the classical situation there are arguments (discovered by Mikusinski)
which make it possible to pass from squares to products of arbitrary pairs (see, e.g., [5, Sec. 4.3]).
The above example shows that in our case such a “jump” is impossible.

9. In the proof of Lemma 3 we used all continuous functionals ψ whose kernel contains the ideal
I , although we could take only multiplicative ones, because any closed ideal in Cu is an intersection
of maximal ones. Below we present a lemma, which is similar to Lemma 3, where such a restriction
is of fundamental importance. Moreover, formally speaking, we shall need only one multiplicative
functional.

Recall that, for any ϕ ∈ αR, Qϕ denotes the closure of the orbit of the “point” ϕ. Below
it is reasonable to assume at once that ϕ /∈ R. Like in Lemma 3, we assume that ah(f) < ∞.
The symbols α and β have the same meaning as in Lemma 3, and the symbol lim* has the same
meaning as in Lemma 1.

Lemma 4. If f ∈ I = I(Qϕ), then

ahI(f) = lim*

y→∞ y−1 log |ϕ(Tiyf)|. (8)

Proof. Let γ denote the right-hand side of (8). It is obvious that γ � β . Since, by Lemma 3,
α = β , it is sufficient to check that β � γ .

Note that, for the subalgebra of functions f ∈ Cu with ah(f) <∞, the map f → Tzf is an en-
domorphism for any fixed z from the upper half-plane. Therefore, f → ϕ(Tzf) is a homomorphism
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to C (we assume that the conditions of Lemma 4 include the assumption ah(f) < ∞). Finally, it
is clear that

‖f‖Cu/I = sup
x∈R

|(T ∗
xϕ)(f)|. (9)

Suppose that ‖f‖ = 1 (this changes nothing). Let g(z) = ϕ(Tzf) for Im z � 0. The function g
has exponential type in the upper half-plane, and on the real axis |g(x)| � 1. Hence, by inequality
(1) (i.e., by the Phragmen–Lindelöf theorem), |g(z)| � exp γy.

This inequality combined with (9) implies the inequality β � γ , which proves the lemma.
Theorem 2. If I = I(Qϕ), then

ahI(f1 · f2) = ahI(f1) + ahI(f2). (10)

Note that, formally speaking, Theorem 2 includes the Titchmarsh theorem.
Let Q1 and Q2 be invariant closed subsets in αR, and let Q = Q1 ∪Q2 . The following theorem

is a general form of the above example.
Theorem 3. If Q1 \ Q2 
= ∅ 
= Q2 \ Q1 , then, for the ideal I = I(Q), relation (10) does not

generally hold.
Proof. Below k = 1 or 2. Let ϕk ∈ Q \Qk . There exist functions fk such that fk ∈ I(Qk) and

ϕk(fk) = 1. Considerations in Section 4 imply the existence of functions gk ∈ B ∩ I(Qk) such that
‖fk − gk‖ < ε < 1/2. Both functions g1 and g2 have compact harmonic spectra and do not lie in I .
Hence their harmonic abscissas are finite real numbers. On the other hand, g1 · g2 ∈ I . This proves
the theorem.

10. It remains to make several remarks. Probably, Theorems 2 and 3 admit a synthesis which
leads to a criterium, i.e., to a description of all ideals for which the Titchmarsh theorem holds in
full generality. It is natural to expect that acomplishing this objective requires much more careful
study of the “orbit space.”

Obviously, such a criterium, as well as Theorem 1, is of interest in the multidimensional case
too. In solving multidimensional problems, it seems to be promising to extend Lions’s original
approach [6]–[8] (a more contemporary description see, e.g., in [9, Sec. 16.3]) to the situation under
consideration. The application of the above asymptotic relation (2) may be useful; it may simplify
some arguments even in the classical situation. Of course, multidimensional versions of Theorem 1
are interesting as well. Moreover, it is known in what topological Abelian groups the classical
Titchmarsh theorem holds (see, in particular, [10] and [11]). For example, R

n with the discrete
topology will do. A similar question makes sense in the case considered in this paper.

We are grateful to A. B. Alexandrov for severe but just criticism of the initial version, thanks
to which we had to make the text much more clear.
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