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1. Introduction

Let a be a Lie algebra. The universal enveloping algebra U(a) bears the Poincaré–Birkhoff–
Witt filtration, and the associated graded algebra is the polynomial ring S•(a). There exists a
similar filtration on each representation π of a with a given cyclic vector v. Namely, F0 = {v} and
Fi+1 = Fi + aFi . The associated graded space πab can naturally be equipped with the structure
of a representation over the algebra S•(a). This construction, i.e., the passage from π to πab , will
be referred to as abelianization. It is usually a rather difficult task to reveal the structure of the
space πab . The case of a = sln was analyzed in [6].

Let a be the Virasoro algebra, and let π be an irreducible representation from the (2, 2p + 1)-
minimal model, where p is a positive integer. Then the representation πab has a simple explicit
description (see [4]). Fix a base Li , i ∈ Z, of the Virasoro algebra. After the abelianization, the
Lab

i commute; let a(z) =
∑
Lab

i z
−i . The current a(z) on πab satisfies the relation a(z)p = 0. More

precisely, the operators Lab
i act on πab as zero for i � 0, and πab � C[Lab

−1, L
ab
−2, . . . ]/J ; here J is

the ideal generated by the elements (Lab
−1)

s , s < p, and
∑

α1+···+αp=r L
ab
α1
· · ·Lab

αp
, r ∈ Z, where the

number s depends on the choice of an irreducible representation from the minimal model. (There
are p of these.)

In representation theory, the space πab shows up unexpectedly when studying integrable
ŝl2-modules. Take the standard base {e, h, f} in sl2 and the base e(z), h(z), f(z) in ŝl2 , where
e(z) =

∑
eiz

−i . Let R be an irreducible integrable representation of level k � 0 of the algebra
ŝl2 . On R, the current e(z) satisfies the relation e(z)k+1 = 0. Let Rsub be the C[ei]-submodule
of R generated by the highest vector. It turns out that Rsub � C[e−1, e−2, . . . ]/J , where J is the
very same ideal used above in the construction of the quotient of C[Lab−1, L

ab−2, . . . ] (Lab
−i should be

replaced by ei); the number s depends on the choice of an integrable module of level k.
The representations of the Virasoro algebra from minimal models are in many respects similar

to integrable modules over Kac–Moody algebras. In particular, they have resolutions of Bernstein–
Gelfand–Gelfand (BGG) type consisting of Verma modules. Given a resolution, one can write out
a formula for the character of an irreducible representation (see [7]). For example, the formula for
the character of the vacuum representation π from a minimal model reads

χ(π) =
∑

i�0

(−1)i
q2i+(p+2)i(i−1)/2(1− q2i+1)

(1− q)(1 − q2) . . . .

∗Supported in part by RFBR–CNRS grant no. 09-02-93-106 and Support of Scientific Schools grant no. 34-
72.2008.2.
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In the abelianized case, one can also write out a formula for the character. The formula for the
quotient space

πab = C[e−2, e−3, . . . ]/J, J =
{ ∑

α1+···+αp=r

eα1 · · · eαp

}

, r ∈ Z,

is as follows. Let us equip πab with two gradings by setting deg1 e−i = i and deg2 e−i = 1; then

πab =
⊕

πab[α, β], χ(πab) =
∑

qαtβ dimπab[α, β],

χ(πab) =
∑

i�0

(−1)i
t2iq2i+(k+3)i(i−1)/2

(1− qi+1t) · · · (1− q2it)
1

(1− q) · · · (1− qi)

× 1
(1− q2(i+1)t)(1− q2(i+1)+1t) . . .

. (1.1)

We see that χ(πab) is a t-deformation of the character χ(π). By substituting t = 1 into χ(πab),
we obtain χ(π).

There are various ways to prove formula (1.1). The best-known proof is based on Schur’s
ideas and can be found in Andrews’ book [1]. There is another, geometric argument. The formula
for χ(πab) can be interpreted as a Lefschetz formula computing the alternating sum of characters
of an action of a torus on the cohomology spaces of some linear bundle. Let Gr be the affine
Grassmannian corresponding to the algebra ŝl2 , let m be the fixed point lying in the maximal
torus and corresponding to the identity element of the Weyl group, let Sh be the orbit of m under
the action of the current group in the group of nilpotent matrices (the Lie algebra of the latter
group is generated by ei), and let Sh be the closure of Sh in Gr. Then πab is the dual space of
the space of sections of the bundle ξk restricted to Sh, where ξ is the standard line bundle on Gr.
The restriction of ξk to Sh has trivial higher cohomology. The Lefschetz formula for the character
of πab is a sum over fixed points, and the contributions coincide with the individual terms in (1.1)
([2], [3]).

In the present paper, we suggest an interpretation of the character of the representation πab as
the Euler characteristic of some complex, which is none other than the abelianized BGG resolution.

Consider the special case in which p = 2 and s = 0; i.e.,

πab = C[e−2, e−3, . . . ]/{Sj}, Sj =
∑

α+β=j

eαeβ .

Thus, πab is the quotient of the polynomial ring in infinitely many variables by the ideal generated
by a set of quadratic polynomials. Should the system {Sj} be regular, one could obtain a resolution
of the representation πab by the standard construction known in commutative algebra as the Koszul
complex. The set {Sj} is very far from being a regular sequence. Nevertheless, the construction
of the Koszul complex can be modified as follows. Let us supplement the algebra C[e−2, e−3, . . . ]
by fermions ψ−4, ψ−5, . . . . Define a differential Q on the algebra C[ψ−4, ψ−5, . . . ; e−2, e−3, . . . ] by
setting Q(ψα) = Sα . The zero homology of this complex is isomorphic to πab , but we also have
higher homology. Take the quotient of C[ψ−4, ψ−5, . . . ; e−2, e−3, . . . ] by the quadratic relations

ψ(z)ψ′(z), ψ(z)ψ′′′(z), e(z)ψ′(z)− 2e′(z)ψ(z).

Here ψ(z) =
∑
ψiz

−i , and the symbol ′ stands for the derivative with respect to z . The passage to
the quotient does not affect the zero homology, while the higher homology disappears. Our main
result is that this construction coincides with the abelianization of the BGG resolution. For p = 2,
formula (1.1) can be obtained as the Euler characteristic of the quotient Koszul complex.

The minimal models of type (2, 2p + 1) are in many respects simpler that the general (p, q)-
models. All representations from minimal theories of the Virasoro algebra admit two-sided Felder
resolutions [5]. The terms of these resolutions are Fock spaces, and the differentials are constructed
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with the use of screenings. This construction is simplified dramatically for the (2, 2p + 1)-model,
and we present it in Section 2. Such complexes are representations of some lattice vertex operator
algebra Vp . We single out a subalgebra Wp ⊂ Vp generated by the Virasoro algebra and an an-
ticommuting current. BGG type resolutions are representations of this subalgebra. Abelianization
takes the representations of Wp to the quotient Koszul complexes.

In Section 3, we study the abelianization of the vertex operator algebra Wp , i.e., some supercom-
mutative vertex algebra, and its representations. We show that the quotient Koszul complexes have
nontrivial homology only in the zeroth graded component. We do not deal with all representations
from the (2, 2p + 1)-model, mainly restricting ourselves to the case of the vacuum representation.
The general case can be considered in a similar way.

I am grateful to M. A. Bernstein and E. B. Feigin for discussion and help.

2. Felder Complexes of the (2, 2p + 1)-minimal models of the Virasoro algebra

Recall that the Felder complexes of the (2, 2p+ 1)-minimal models are representations of some
lattice vertex operator algebra Vp . It is easiest to construct Vp as a subalgebra of the Clifford
algebra Cp . The generators of Cp are the currents ψ1(z), . . . , ψ2p+1(z) and ψ∗

1(z), . . . , ψ
∗
2p+1(z)

satisfying the standard relations

[ψα(z), ψβ(w)]+ = 0, [ψ∗
α(z), ψ∗

β(w)]+ = 0, [ψα(z), ψ∗
β(w)]+ = δα,β(z/w),

where [ · , · ]+ stands for the anticommutator. The algebra Vp is the subalgebra of Cp generated by
the currents θp(z) = ψ1(z) · · ·ψ2p+1(z) and θ∗p(z) = ψ∗

1(z) · · ·ψ∗
2p+1(z). It is easily seen that

θp(z)θp(w)
(z − w)2p+1

=
θp(w)θp(z)
(w − z)2p+1

,

the operators θ∗p(z) satisfy a similar relation, and moreover,

1
2p+ 1

θp(z)θ∗p(w) = (z − w)−2p−1I + (z − w)−2ph(z) + (z − w)−2p+1T̄ (z) + . . . , (2.1)

where I is the identity operator, h(z) is the current corresponding to the Heisenberg algebra, and
T̄ (z) is the current corresponding to the Virasoro algebra. The algebra Vp is naturally graded by
deg θp(z) = 1 and deg θ∗p(z) = −1. The category of its representations is semisimple; there are
2p+ 1 irreducible representations R0, . . . ,R2p . The representation Rj is characterized by the fact
that it contains a vacuum vector vj such that θp[s]vj = 0, s � j , where θp(z) =

∑
s∈Z

θp[s]z−s ; the
representation R0 is called the vacuum representation of Vp . The irreducible representations Rj

inherit the grading. Set S = θ∗p[0]. Clearly, S2 = 0 and hence each Rj is a complex with differential
of degree −1 equal to S . The algebra Vp has two important subalgebras, the Heisenberg and
Virasoro algebras, which occur in the operator product (2.1); h(z) = 1

2p+1

∑2p+1
i=1 :ψi(z)ψ∗

i (z): and

T̄ (z) = 1
2p+1

∑2p+1
i=1 :ψ′

i(z)ψ
∗
i (z):. The Virasoro algebra can be deformed as follows: T (z) = T̄ (z) +

βh′(z), where β is a complex number, so that the current T (z) commutes with S . The central charge
of this Virasoro algebra is 1−3(2p−1)/(2p+1). Felder’s theorem states that each complex Rj has
nonzero homology in only one degree; moreover, the homology space is an irreducible representation
of the Virasoro algebra from the (2, 2p+ 1)-model. The spaces Rj equipped with the differential S
are called the Felder complexes.

Consider the subalgebra Wp ⊂ Vp generated by the Virasoro algebra T (z) and the opera-
tor θp(z). Note that, in the terminology of conformal field theory, θp(z) is a primary field of
type φ3,1 . The algebra Wp is an extension of the Virasoro algebra by the field φ3,1 . The vacuum
representation of Wp is the subspace of R0 generated from the highest vector by the operators
in Wp. We denote this vacuum representation by Vacp . Felder’s results readily imply the structure
of Vacp treated as a module over the Virasoro algebra. Let Mλ be the Verma module with highest
weight λ over the Virasoro algebra. (The central charge is fixed and equal to 1−3(2p−1)/(2p+1).)
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If λ = λi = pi(i + 1) + i(i − 1)/2, then the module Mλi
has a singular vector at the level 2i + 1.

Let M̄i be the quotient of Mλi
by the submodule generated by this singular vector. Its character is

qpi(i+1)+i(i−1)/2 (1− q2i+1)
∏

i>0(1− qi)
. (2.2)

Proposition 2.1. The representation Vacp treated as a module over the Virasoro algebra is
isomorphic to

⊕
i>0 M̄i .

The algebra Wp is a differential vertex operator algebra. The differential is the supercommutator
with S . The supercommutation operation differentiates the operator product. Note that the super-
commutator of S with θp(z) is a descendant of the current T (z). This descendant corresponds to
the singular vector in the vacuum representation from the (2, 2p+1)-model of the Virasoro algebra.
It follows that Wp is a differential subalgebra of Vp.

Note that Vacp is a differential module over Wp . The differential S commutes with the action
of the Virasoro algebra, and we arrive at the complex

R0 : 0← M̄0 ← M̄1 ← M̄2 ← . . . .

Proposition 2.2. The complex R0 has nontrivial homology only in the zeroth term. The ho-
mology space is isomorphic to the vacuum representation from the (2, 2p + 1)-model.

Remark 2.3. The complex R0 is a version of the BGG resolution for the Virasoro algebra. Re-
call that integrable representations of Kac–Moody algebras have resolutions consisting of parabolic
Verma modules. The complex R0 is an analog of such a resolution.

Now let us equip the algebra Wp with a filtration similar to the Poincaré–Birkhoff–Witt filtra-
tion on universal enveloping algebras of Lie algebras. Set F0(Wp) � C, F1(Wp) = C⊕{T (z), θp(z)},
and Fi(Wp) = F1(Wp)·Fi−1(Wp). (Here the dot stands for the operator product.) We denote the as-
sociated graded algebra by W ab

p ; this is a vertex operator algebra in the sense that W ab
p is equipped

with the structure of an operator product.

3. Supercommutative Differential Vertex Operator Algebras

The simplest example of a supercommutative differential vertex operator algebra is a semi-
infinite Koszul complex K . This complex (the corresponding vertex algebra) has two generators
ψ(z) and a(z) such that [ψ(z)ψ(w)]+ = 0, [a(z), a(w)] = 0, and [ψ(z), a(w)] = 0, and the derivation
Q is given by the formulas Qψ(z) = a(z) and Qa(z) = 0. Note that K has a contracting homotopy,
which is given by the “inverse differential,” i.e., a derivation B such that Ba(z) = ψ(z), Bψ(z) = 0,
and [Q,B]+ = 1. Define a representation V (K) of the algebra K as the representation induced
from the trivial representation of the subalgebra {ai, ψi, i � −1}, a(z) =

∑
aiz

−i , ψ(z) =
∑
ψiz

−i .
The representation V (K) will be referred to as the vacuum representation. The operators Q and B
act on V (K), the homology of Q is isomorphic to C, and the homology of B is one-dimensional as
well.

One can pass to the quotient of K by a differential ideal without changing the homology.
Namely, set

K(1) = K/{ψ(z)ψ′(z), a(z)ψ′(z)− a′(z)ψ(z)}.
Note that Q(ψ(z)ψ′(z)) = a(z)ψ′(z) − a′(z)ψ(z). The ideal in K generated by the elements
ψ(z)ψ′(z) and a(z)ψ′(z) − a′(z)ψ(z) is invariant with respect to the derivation B , and hence the
homology of the algebra K(1) is isomorphic to C.

Theorem 3.1. The algebras K(1) and W ab
1 are isomorphic.

For p = 1, the central charge of the Virasoro algebra is 0. The homology of the representa-
tion Vac1 , i.e., of the vacuum representation of W1 , is isomorphic to C. Note that in this case the
operators θ1(z) and θ∗1(z) generate an (N = 2)-superalgebra. The supercommutator of the operators
θ1(z) and θ∗1(z) is a linear combination of operators from the Heisenberg algebra and the Virasoro
algebra, which lie in the (N = 2)-superalgebra as well. The supercommutator of θ1(z) with S is
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exactly the current T (z) corresponding to the Virasoro algebra. The current θ1(z) is a product of
three fermions; consequently, θ1(z)θ′1(z) = 0 and hence [S, θ1(z)θ′1(z)] = T (z)θ′1(z)−θ1(z)T ′(z) = 0.
This formula relating the operators T (z) and θ1(z) follows from the fact that θ1(z) is a primary
field of type φ3,1 . The passage to the associated graded algebra takes the relations satisfied by
θ1(z) and T (z) to relations in the algebra K(1) between the operators ψ(z) and a(z). Now for the
algebra K(1) we defined an analog of the vacuum representation V (K(1)), which is the quotient
of the representation V (K) by the subspace ψ(z)ψ′(z)V (K) + Q(ψ(z)ψ′(z))V (K). To prove the
theorem, it suffices to show that the characters of the representations Vac1 and V (K(1)) coincide.
To this end, we construct a monomial base in the space V (K(1)). The algebra K(1) is graded with
degψ(z) = 1 and deg a(z) = 0, and so the representation V (K(1)) =

⊕
j�0 V [j] is graded as well.

Lemma 3.2. The following set of vectors generates the space V [j]:

ψαj−1ψαj−2 · · ·ψα1ψ−2 · as2
−2−j+1a

s3
−3−j+1 · · · asl

−l−j+1v,

where l > 2, sj � 0, α1 � −5, and αi − αi−1 � −3, and

ψβj
ψβj−1

· · ·ψβ1 · as2
−2−ja

s3
−3−j · · · asl

−l−jv,

where l > 2, sj � 0, β1 � −3, and βi − βi−1 � −3.
To prove this, one should use the relations in the algebra K(1) : every monomial can be expressed

via those indicated in the lemma. The vacuum representation Vac1 is graded as well, and the
character of the component Vac1[j] is q(3j2+j)/2(1− q2j+1)/

∏
i>0(1− qi) (see (2.2) for p = 1). The

character of the space V [j] cannot be less than the character of the space Vac1[j]. (More precisely,
each coefficient in the character

∑
cmq

m of V [j] is greater than or equal to the respective coefficient
in the character of Vac1[j].) On the other hand, by computing the character of the combinatorial
data in the lemma, one obtains precisely the character of the space Vac1[j].

Now let us proceed to the case of p > 1. The algebra K(p) is defined as follows:

K(p) = K/Jp,

where the ideal Jp is generated by the elements ψ(z)ψ(r)(z), r < 2p, and a(z)ψ′(z) − pa′(z)ψ(z).
(Here ψ(r)(z) stands for the rth derivative.) We equip K(p) with a differential Q by setting
Qa(z) = 0 and Qψ(z) = a(z)p .

Lemma 3.3. The differential Q is well defined; in other words, the ideal Jp is invariant under
the action of Q.

This lemma can be verified by a straightforward computation. For example, take the relation
ψ(z)ψ′(z) = 0 and apply the differential Q to it:

Q(ψ(z)ψ′(z)) = a(z)pψ′(z)− ψ(z)(ap(z))′ = ap−1(z)(a(z)ψ′(z)− pψ(z)a′(z)).

This means that Q(ψ(z)ψ′(z)) ∈ Jp .

Theorem 3.4. K(p) and W ab
p are isomorphic as differential graded supercommutative vertex

operator algebras.
First, let us show that the vacuum representation of K(p) is a complex having nontrivial homol-

ogy only in the zeroth grading. The vacuum representation of K(p) is determined by the annihilation
conditions for the vacuum vector; V (K(p)) is generated by a vector v such that aiv = 0 for i > −2
and ψiv = 0 for i > −2p. Similar annihilation conditions hold for the vacuum representation of Wp .

We need the following abelianization of the vacuum representation from the (2, 2p+ 1)-model.
The vertex algebra of the Virasoro algebra for c = 1− 3(2p− 1)/(2p+ 1) contains the field T (p)(z)
corresponding to the singular vector at the level 2(p + 1). We use the following filtration on the
vertex algebra: F1 = {C + T (z) + T (p)(z)}. This induces a filtration on the vacuum representation.
Now let us describe the associated graded algebra.

Let A = C[b−2, b−3, . . . ] be the polynomial ring in infinitely many variables, and let b(z) =
∑

i�2 b−iz
i , so that b(z)p = z2pbp−2 + · · · = ∑

α�2p z
αb

[p]
−α . We equip A with a filtration by setting
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F0 � C, F1 = F0 + {bi, b[p]
j }, and Fs = F1 · Fs−1 ; let Agr

p be the associated graded algebra. The
generators of Agr

p are the currents b̄(z) =
∑

i�2 b̄−iz
i and c(z) =

∑
j�2p c−jz

j corresponding to the
elements b(z) and b(z)p of the algebra A.

Lemma 3.5. The determining relations in the algebra Agr
p have the form

b̄(z)p = 0, pb̄′(z)c(z) = b̄(z)c′(z).

First, note that these relations hold in Agr
p . Now let us study the case of p = 2. The relations

in Agr
2 are quadratic, and hence we can indicate a monomial base. This resembles the situation we

have dealt with in the proof of Theorem 3.1, where the operators ψ(z) and a(z) in the algebra K(1)

satisfy quadratic relations of similar form. Let us grade Agr
2 by setting deg c(z) = 0, deg b̄(z) = 1,

and Agr
2 =

⊕
j�0A

gr
2 [j]. The component Agr

2 [j] is generated by the following monomials:

b̄−2b̄α1 b̄α2 · · · b̄αj−1 · cs0
−2p−j+1c

s1
−2p−1−j+1 · · · csl

−2p−l−j+1,

where l � 0, sj � 0, α1 � −4, and αi − αi−1 � −2, and

b̄β1 b̄β2 · · · b̄βj
· cs0

−2p−jc
s1
−2p−1−j · · · csl

−2p−l−j,

where l � 0, sj � 0, β1 � −3, and βi − βi−1 � −2. The character of the space Agr
2 cannot be

less that (1 − q2)−1(1 − q3)−1 . . . . (This is the character of the space A.) On the other hand, the
character of the above-indicated combinatorial data exactly coincides with the character of the
space A. Indeed, if we compute the character of the space Agr

2 [j] assuming that all monomials are
linearly independent, then we obtain

qj(j+1)(1− qj)(1− qj+1)(1− q2j+1)
∏

i�1(1− qi)
.

Our claim readily follows from the easy-to-verify identity
∑

j�0

qj(j+1)(1− qj)(1− qj+1)(1− q2j+1) = 1− q.

It is difficult to indicate a monomial base for general p. The proof uses the infinite Gordon
identity (i.e., the Gordon identity in which the number of particles is set to infinity; see [1]). Let us
introduce a filtration on Agr

2 by setting F0 = C, F1 = F0 +{b̄(z), c(z), b̄(z)c(z)}, and Fi = F1 ·Fi−1 .
The associated graded algebra is generated by the current components b1(z), b2(z), and c(z),
which correspond to the currents b̄(z), b̄(z)c(z), and c(z), respectively. The currents b1(z) and
b2(z) satisfy the monomial quadratic relations

b1(z)2 = 0, b1(z)b2(z) = 0, b′1(z)b2(z) = 0, b2(z)2 = 0,

(b′2(z))
2 = 0, b1(z)c(z) = 0, b′1(z)c(z) = 0,

(3.1)

and moreover, 3b′2(z)c(z)−2b2(z)c(z) = 0. These are determining relations in the associated graded
algebra. To show this, we introduce a filtration on the algebra with generators b1(z), b2(z), and c(z)
by taking {C, b1(z), b2(z), b1(z)c(z), c(z)} for F1 . The generators corresponding to these currents
in the associated graded algebra will be denoted by b1(z), b2(z), b3(z), and c(z). These generators
satisfy quadratic relations similar to (3.1). This “refinement” procedure can be carried out infinitely
many times, and in the end we obtain the algebra with generators bi(z), i = 1, 2, . . . , satisfying the
quadratic relations

bi(z)b
(n)
j (z) = 0, i � j, n < 2i. (3.2)

The currents bj(z) have the decompositions bj(z) =
∑

l�−2j bj [l]z
−l .

The (infinite) Gordon formula states that the algebra with generators bj[m] satisfying the
quadratic relations (3.2) has the character χ =

∏
j>1(1 − qj)−1 . More precisely, χ is the Hilbert

series of this algebra, provided that the latter is equipped with the grading deg bj[m] = −m. As a
consequence, we find that all associated graded algebras are algebras with quadratic relations. Now
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the lemma follows from the fact that the algebra Agr
p admits a similar filtration. This filtration

procedure can be applied infinitely many times, and the final associated graded algebra is the same
algebra with generators bj [m] and relations (3.2). Let us show how to do this in the case of p = 3.
We construct a filtration on Agr

3 by setting F1 = {C, b̄(z), b̄(z)2, c(z)}. The corresponding generators
in the associated graded algebra will be denoted by b1(z), b2(z), and c(z). These generators satisfy
the quadratic relations (3.1).

Proposition 3.6. The complex V (K(p)) has nonzero homology only in the zeroth grading, and
the character of the homology space coincides with the character of the vacuum representation from
the (2, 2p + 1)-model.

The algebra K(p) is generated by ψ(z) and a(z). We introduce a filtration on it by setting
F1 = {C, ψ(z), a(z), a(z)p} and Fi = Fi−1 · F1 . The associated graded algebra has the generators
ψ(z) and a(z) corresponding to the old generators and the new generator c(z) corresponding to
a(z)p . The differential Q acts on Kgr

(p) as follows: Qψ(z) = c(z) and Qc(z) = Qa(z) = 0. The
determining relations in the algebra Kgr

(p) have the form

a(z)p = 0, pa′(z)c(z) = a(z)c′(z), pa′(z)ψ(z) = a(z)ψ′(z),

ψ(z)ψ(r)(z) = 0, c(z)ψ(r)(z)− ψ(z)c(r)(z) = 0, r < 2p.
(3.3)

Note that Q(ψ(z)ψ(r)(z)) = c(z)ψ(r)(z)−ψ(z)c(r)(z). The proof of this fact is a somewhat compli-
cated version of the proof of Lemma 3.5, and we omit it.

We define an “inverse” differential B on the algebra Kgr
(p) by the formulas Bψ(z) = 0, Ba(z) = 0,

and Bc(z) = ψ(z). It follows from the form of relations in Kgr
(p) that B is well defined. Furthermore,

the subalgebra generated by ψ(z) and c(z) is contractible; i.e., the homology of Q restricted to
this subalgebra is isomorphic to C. The homology of the entire complex is nontrivial only in the
zeroth grading and is generated by the current a(z).

All these considerations apply to the vertex algebra Kgr
(p) itself as well as to its representations,

say, to V (Kgr
(p)). We see that the homology of V (Kgr

(p)) is a representation of the algebra with
generator a(z) =

∑
aiz

−i , a(z)p = 0, and it contains a highest (vacuum) vector v such that
aiv = 0, i � −1. Thus, the homology of the space V (Kgr

(p)) coincides with the abelianization of the
vacuum representation from the (2, 2p + 1)-model (see the introduction).

Now let us prove Theorem 3.4. It remains to verify that the characters of the spaces V (K(p))
and Vacp coincide. For p = 1, we have verified this claim by explicitly indicating a monomial base
in V (K(1)). In the general case, this is done exactly in the same way; the base consists of the vectors

ψαj−1ψαj−2 · · ·ψα1ψ−2p · as2
−2−j+1a

s3
−3−j+1 · · · asl

−l−j+1v,

where l > 2, sj � 0, α1 � −4p − 1, and αi − αi−1 � −2p− 1, and

ψβj
ψβj−1

· · ·ψβ1 · as2
−2−ja

s3
−3−j · · · asl

−l−jv,

where l > 2, sj � 0, β1 < −2p, and βi − βi−1 � −2p− 1.
The algebra K(p) can be deformed; namely, it has a “difference” version. Fix a number t �= 0. For

p = 1, set K(1)(t) = K/J (recall that K is generated by a(z) and ψ(z)), where J is the ideal gener-
ated by the currents ψ(z)ψ(zt) and Q(ψ(z)ψ(zt)) = a(z)ψ(zt)−ψ(z)a(zt). The homology of K(1)(t)
is one-dimensional, which can be proved with the use of the same contracting homotopy B . If p � 1,
then K(p)(t) = K/Jp , where the ideal Jp is generated by ψ(z)ψ(zt), ψ(z)ψ(zt2), . . . , ψ(z)ψ(ztp),
and also a(z)ψ(zt)−ψ(z)a(ztp); K(p)(t) is a differential algebra , where the differential Q is given
by the formulas Qψ(z) = a(z)a(tz) · · · a(ztp) and Qa(z) = 0.

Proposition 3.7. The differential Q on K(p)(t) is well defined and has nontrivial homology
only in the zeroth grading. The homology algebra is generated by a current a(z) satisfying the
relation a(z)a(tz) · · · a(ztp)= 0.
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Remark 3.8. The complex Vacp (a subcomplex of the Felder complex) is a cyclic representation
of the vertex algebra Wp. More precisely, Vacp is an induced representation; i.e., it can be described
as the quotient Wp/I , where I is the right ideal generated by the elements Li , i � −1, and θp[i],
i � −2p+1. (Here Wp is treated as an associative algebra, i.e., the algebra generated by components
of currents of the vertex operator algebra.) The annihilation condition for the highest vector can
be weakened. For example, set Yp = Wp/J , where J is the right ideal generated by the elements
Li , i � 0, θp[i], i � −p + 1, and L0 − h, where h = −(p − 1)(p − 3)/(8p). The number h is the
highest weight of the “middle” representation T in the Kac table of highest weights of irreducible
representations from the (2, 2p+1)-model; h is the least highest weight in this table. The differential
Q acts on Yp. The complex Yp is a resolution of the representation T . One can show that Yp is the
standard BGG resolution of T . It follows that the complex

0← T ← Yp[0]← Yp[1]← . . .

is acyclic, and each component Yp[i], i > 0, is a direct sum of two Verma modules, while Yp[0] is
isomorphic to a Verma module.

Conclusion. The phenomenon that holds for the representations of the Virasoro algebra from
the (2, 2p + 1)-minimal model occurs for many other vertex operator algebras. The first example
where this is easy to verify is given by some classes of representations of the algebra ŝl2 . A more
complicated case is given by representations of W -algebras, say, models of type (3, p) of the alge-
bra W3 . Abelianization of BGG type resolutions leads to quotients of the Koszul complex by fairly
simple relations. From the viewpoint of commutative algebra, this means that for some algebras
that are pretty far from the complete intersection there still exists an analog of the Koszul complex.
The presence of such a complex leads to rather unexpected formulas for the Hilbert series. It would
be highly desirable to reveal the cause of this. Furthermore, it would be of interest to interpret
the complex constructed in this paper geometrically as some fact about the Grassmannian of the
algebra ŝl2 .
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