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Abstract. Two inverse problems for the Sturm–Liouville operator Ly = −y′′ + q(x)y on the
interval [0, π] are studied. For θ � 0, there is a mapping F : W θ

2 → lθB , F (σ) = {sk}∞1 , related to
the first of these problems, where W θ

2 = W θ
2 [0, π] is the Sobolev space, σ =

∫
q is a primitive of

the potential q , and lθB is a specially constructed finite-dimensional extension of the weighted space
lθ2 , where we place the regularized spectral data s = {sk}∞1 in the problem of reconstruction from
two spectra. The main result is uniform lower and upper bounds for ‖σ − σ1‖θ via the lθB -norm
‖s − s1‖θ of the difference of regularized spectral data. A similar result is obtained for the second
inverse problem, that is, the problem of reconstructing the potential from the spectral function
of the operator L generated by the Dirichlet boundary conditions. The result is new even for the
classical case q ∈ L2 , which corresponds to θ = 1.
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In the present paper we study two classical inverse problems for the Sturm–Liouville operator

Ly = −y′′ + q(x)y, x ∈ [0, π], (0.1)

on a finite interval. The first is the problem of reconstructing the potential from the two spectra of
the operator (0.1) with Dirichlet and Dirichlet–Neumann boundary conditions, respectively. (We
refer to it as Borg’s problem.) The second is the problem of reconstructing the potential from the
spectral function of the operator (0.1) with Dirichlet boundary conditions. (This operator will be
called the Dirichlet operator.) The solution of these problems has long been known for the case of
real potentials q ∈ L2 ; in particular, a complete characterization of spectral data for potentials q
of this class has been obtained. Our aim is to solve these problems for potentials q in the scale of
Sobolev spaces Wα

2 for any given α � −1, including the case of α ∈ [−1, 0), where the potential
is a singular function (a distribution). Here an important role is played by special Hilbert spaces
that we construct to solve these problems. These spaces are needed to define and study mappings
which we associate with these problems, as well as to completely describe (characterize) spectral
data for potentials with primitive σ =

∫
q(t) dt ranging over the set of real functions in Wα+1

2 .
Once the inverse problems are solved, there arises an important question about a priori esti-

mates, namely, the question of how small the change in a primitive of the potential q is in the
norm of Wα+1

2 when the spectral data undergo a change small in the norm of the corresponding
Hilbert space, in which these data are placed. Earlier, a priori estimates have been obtained in
the classical case (for α = 0). But these are estimates of local type, in which the constants, as
well as the radius of the neighborhood where the estimates hold, depend on the potential q. The
main goal of the present paper is to obtain uniform two-sided a priori estimates not only for the
classical case α = 0 but also for all α > −1. The case α = −1 is exceptional. Our method fails for
α = −1. Simultaneously, we find out for what spectral data the constants in the a priori estimate
may “deteriorate” (i.e., become large or small). We show that this can only be due to the following
causes:
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(i) The norm of the regularized spectral data is large; i.e., there are large deviations of the
spectral data from zero values (which correspond to the zero potential q).

(ii) The gap (distance) between neighboring eigenvalues is small, or one of the normalizing
constants approaches zero (the number h occurring in the definitions of the sets Ωθ

B(h, r) and
Ωθ

D(h, r) of regularized spectral data, which are given in Sections 2 and 3, is small).
We once more point out that these estimates are new even for the classical case of potentials

q ∈ L2 , but the method used to prove the estimates heavily relies on preliminary results obtained
when studying the inverse problems for potentials q in the entire scale of Sobolev spaces Wα

2 .
The history of analysis of inverse problems for the Sturm–Liouville operator goes back to Am-

barzumian’s paper [3]. However, the result in that paper proved to be atypical of the theory.
A pioneering role was played by Borg’s fundamental paper [4], whose main result is a unique-
ness theorem for the reconstruction of the potential from two spectra. Another interpretation of
Borg’s results was suggested by Levinson [27]. Tikhonov [49] showed that the potential is uniquely
determined by the Weyl–Titchmarsh function. Marchenko ([32], [33]) was the first to use the trans-
formation operator in the study of inverse problems and prove the uniqueness of the solution of
the inverse problem with given spectral function for Sturm–Liouville operators on a finite interval,
as well as on the entire line. Gelfand and Levitan [13] found necessary and sufficient conditions for
the reconstruction of the potential from the spectral function and presented explicit equations for
the solution of the reconstruction problem. Levitan [28] and Gasymov with Levitan [12] obtained
similar results for Borg’s problem of reconstructing the potential from two spectra. A complete
solution of Borg’s problem for potentials in L2 was obtained by Marchenko [34]. Krein ([25], [26])
suggested other formulas for solving inverse problems. In a series of papers, Trubowitz and his
coauthors suggested a method for solving some inverse problems on a finite interval using the lan-
guage of analytic mappings. A detailed exposition can be found in the book [40] by Pöschel and
Trubowitz. Among the recent papers developing this method we mention Korotyaev and Chelkak’s
paper [24]. The inverse scattering problem studied by Faddeev ([9], [10]), Deift and E. Trubowitz
[6], and Marchenko [34] (see [34] for more comprehensive information) played an important role in
the solution of nonlinear equations. There are quite a few papers dealing with direct and inverse
problems for Sturm–Liouville operators in impedance form. Note that there is a relationship be-
tween such operators and the usual Sturm–Liouville operators with singular potentials. The paper
[1] by Albeverio, Hryniv, and Mykytyuk is one of the most recent papers on the topic; it contains
numerous references.

In [43] the present authors suggested a regularization method for determining the Sturm–
Liouville operator with distribution potentials q ∈ W−1

2 . Hryniv and Mykytyuk ([18], [21]) proved
the existence of a transformation operator for equations with such potentials and gave solutions of
the classical inverse problems for potentials q ∈ W−1

2 (see, e.g., [19], [20], and [22]). Marchenko and
Ostrovskii ([36], [34]) described the spectral data of Borg’s problem for potentials q in the Sobolev
spaces Wα

2 with integer smoothness indices α = 0, 1, 2, . . . . Similar results for inverse problems
with given spectral functions were obtained by Freiling and Yurko [11]. The present authors [45]
introduced the scale of spaces lα+1

B for studying the spectral data of Borg’s problem and analyzed
the problem in terms of these spaces for all smoothness indices α � −1. Hryniv and Mykytyuk [23]
used different terms and a different method to study Borg’s problem and also the inverse problem
with given spectral function for smoothness indices α ∈ [−1, 0].

Various a priori estimates of local character for inverse problems were obtained by numerous
authors. Without going into much detail, we mention that results in this direction were obtained
by Marchenko and Maslov [35], Ryabushko ([41], [42]), Hochstadt [17], Hald [15], Yurko [50] (see
also [11]), Mizutani [39], Alekseev [2], Mclaughlin [30], Hitrik [16], Marletta and Weikard [38], and
Malamud [31].

Speaking of inverse problems on a finite interval, one should mention the problem of recon-
structing the potential from the two spectra of the periodic and antiperiodic problems. Naturally,
it is related to the study of the Hill operator on the entire line. There are many interesting papers
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concerned with this problem, and it has been studied most comprehensively. We emphasize impor-
tant results due to Marchenko and Ostrovskii ([36], [37]). The inverse problem for the periodic case
is the only one for which uniform a priori estimates of the difference of potentials via the difference
of spectral data have been obtained (see [37]). Among the recent publications on the periodic prob-
lem we mention the paper [7] by Djakov and Mityagin, where, along with new important results,
detailed information and a bibliography are given for the case of classical potentials, and also their
paper [8], where singular potentials are considered. For more details concerning the inverse prob-
lems considered there, as well as other inverse problems, we refer the reader to the monographs
[34] by Marchenko, [29] by Levitan, and [11] by Freiling and Yurko, as well as to Gesztesy’s survey
paper [14].

The present paper is a continuation of the authors’ series of papers [45]–[47], which deal with the
solution of inverse problems with potentials in Sobolev spaces. In these papers, the spaces where the
regularized spectral data of the two problems under consideration should be placed were constructed
and properties of the mappings taking a primitive σ =

∫
q(t) dt of the potential to the regularized

spectral data were studied. The key assertion is Theorem 1.3 (stated below in a convenient form)
that these mappings are weakly nonlinear. (This theorem was proved for various problems in [46]
and [47].) As we have mentioned already, the solution of Borg’s problem for potentials q ∈ Wα

2 in
the entire scale α � −1 was given by the authors in [45]. Injectivity was proved by a modification
of Borg’s method, and ideas due to Trubowitz and his coauthors were developed to describe the
range and the reconstruction procedure. In the present paper we supplement the studies in [45]
of Borg’s problem; in particular, we prove local stability for all smoothness indices α � −1. We
also show that the solution in Sobolev spaces of the inverse problem with given spectral function
of the Dirichlet operator can be carried out for all α � −1 by the same scheme as the solution
of Borg’s problem. However, when implementing this scheme, the proofs of some similar claims
require new approaches. Our main goal is uniform a priori estimates, which we obtain for α > −1.
To prove these, we develop a new method based on weak nonlinearity theorems for mappings which
we construct.

The first section is auxiliary. We recall the main definitions and constructions of spaces and
present the results of [45]–[47] needed in what follows in a convenient form. Section 2 is the main
part of the paper. Here we supplement the results in [45] concerning Borg’s problem and prove
local and uniform a priori estimates for this problem. In Section 3 all results for Borg’s problem
are extended to the inverse problem with given spectral function of the Dirichlet operator.

1. Definitions of Spaces and Nonlinear Mappings Related to Inverse Problems.
Theorems on Properties of Such Mappings

First, recall that the definition of the Sturm–Liouville operator with classical potential q ∈
L1[0, π] can be extended to distribution potentials in the Sobolev space W−1

2 [0, π]. Assume that a
complex-valued potential q belongs to the Sobolev space Wα

2 [0, π] for some α � −1. Let σ(x) =∫
q(x) dx, where the primitive is understood in the sense of distributions. Following [43] (see also

[44], where alternative definitions are given), we define the Dirichlet operator by the formula

LDy = Ly = −(y[1])′ − σ(x)y[1] − σ2(x)y, y[1](x) := y′(x) − σ(x)y(x), (1.1)

with domain
D(LD) = {y, y[1] ∈ W 1

1 [0, π] | Ly ∈ L2[0, π], y(0) = y(π) = 0}.
The Dirichlet–Neumann operator is defined in the same way, by LDNy = Ly, on the domain

D(LDN ) = {y, y[1] ∈ W 1
1 [0, π] | Ly ∈ L2[0, π], y(0) = y[1](π) = 0}.

For smooth functions σ, the right-hand sides in (0.1) and (1.1) coincide, and we obtain the
classical Sturm–Liouville operator with Dirichlet boundary conditions in the first case and the
operator with boundary condition y(0) = 0 and the Robin boundary condition y′(π) − hy(π) = 0,
where h = σ(π), in the second case. The operator is independent of the choice of the constant in
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the definition of the primitive σ of the potential q in the first case but depends on it in the second
case. If this constant is chosen so that σ(π) = 0, then we obtain the classical Dirichlet–Neumann
operator.

Now, let us define spectral data for the problems considered in the paper. Let s(x, λ) be the
unique solution of the equation Ly − λy = 0 with conditions s(0, λ) = 0 and s[1](0, λ) =

√
λ. (The

existence and uniqueness of such a solution is known [43].) Obviously, the zeros {λk}∞1 and {µk}∞1
of the entire functions s(π, λ)/

√
λ and s[1](π, λ)/

√
λ are the eigenvalues of the operators LD and

LDN , respectively. For a real-valued potential q, all zeros of these functions are simple and real,
and we assume that they are numbered in strictly ascending order. For complex-valued q, one can
number them so that the sequences {|λk|}∞1 and {|µk|}∞1 are nondecreasing.

In Borg’s problem, the potential should be reconstructed from the two spectra {λk} and {µk}
of the operators LD and LDN . Specifying these two spectra is equivalent to specifying the numbers

s2k−1 =
√

µk − (k − 1/2), s2k =
√

λk − k, k = 1, 2, . . . .

i.e., the sequence {sk}∞1 = {sk(B)}∞1 . We say that such a sequence defines the regularized spectral
data of Borg’s problem. Here and in what follows, we assume that the branch of the square root is
chosen in such a way that the argument of

√
λ ranges in (−π/2, π/2].

It is known [28, Chap. 3] that the spectral function of the Dirichlet operator can be uniquely
reconstructed from the eigenvalues of this operator and the so-called normalizing constants deter-
mined by the formulas

αk =
∫ π

0
s2(x, λk) dx.

We retain this definition of normalizing constants for complex-valued potentials as well. The se-
quences {λk}∞1 ∪{αk}∞1 form the spectral data of the operator LD . Specifying these data is equiv-
alent to specifying the numbers

s2k =
√

λk − k, s2k−1 = αk − π/2, k = 1, 2, . . . , (1.2)

We say that the sequence {sk}∞1 = {sk(D)}∞1 defines the regularized spectral data of the opera-
tor LD .

Thus, we come to two problems: to reconstruct a primitive of the potential q either from
the regularized spectral data of the operator LD or from the spectral data of Borg’s problem.
Clearly, the reconstruction of q is impossible in the singular case, and one should deal with its
primitive σ =

∫
q(x) dx. For q ∈ Wα

2 , α � −1, we have σ ∈ W θ
2 , where θ = α + 1 � 0. The

case of a classical potential q ∈ L2 corresponds to the exponent θ = 1. We also note that the
passage to the reconstruction of the primitive changes the statement of the problem. For example,
when reconstructing the differentiable function σ from the spectral data of Borg’s problem, one
reconstructs not only the potential q = σ′ but also the constant h = σ(π) in the Robin boundary
condition, while from the spectral data of the operator LD the function σ can only be reconstructed
up to a constant.

To use the language of the theory of mappings in what follows, we should understand in what
spaces the above-defined spectral data lie as the primitive σ ranges over W θ

2 , θ � 0. It turns
out that, in both problems, for these spaces one can take finite-dimensional extensions of ordinary
weighted l2-spaces. The particular construction of extensions is determined by analyzing the asymp-
totic formulas for the eigenvalues λn and µn and the normalizing constants αn . This is explained
in detail in [46] and [47]. The construction of extensions can also be understood from Theorem 1.2
below, after integrating by parts the formulas defining the operators TB and TD .

Let us construct the space for the regularized spectral data of Borg’s problem. Let lθ2 be the
weighted l2-space of sequences x = {x1, x2, . . . } of complex numbers such that

‖x‖2
θ :=

∞∑

1

|xk|2k2θ < ∞.
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Consider the special sequences

e2s−1 = {k−(2s−1)}∞k=1, e2s = {(−1)k k−(2s−1)}∞k=1, s = 1, 2, . . . .

Let m = [θ/2 + 3/4], where [a] is the integer part of a number a. We set

lθB = lθ2 ⊕ span{ek}2m
k=1.

Here we have taken into account the fact that the sequences ek do not belong to the space lθ2 for
k � 2m and belong to it for k > 2m. Thus, lθB consists of the elements x+

∑m
k=1 ckek , where x ∈ lθ2

and the {ck}m
1 are arbitrary complex numbers. The inner product of elements of lθB is determined

by the formula
(

x +
m∑

k=1

ckek,y +
m∑

k=1

dkek

)

= (x,y)θ +
m∑

k=1

ckdk.

We associate the space thus constructed with the regularized spectral data of the operator
LB . Although this space is defined as a finite-dimensional extension of the weighted space lθ2 , it is
convenient to write its elements in the form of usual sequences. For example, if 3/2 � θ < 5/2,
then lθB consists of sequences x = {xk}∞1 with coordinates

xk = yk + α1k
−1 + α2(−1)kk−1, where {yk}∞1 ∈ lθ2 and α1, α2 ∈ C.

It readily follows from this representation that lηD is compactly embedded in lθD for η > θ. (Here
we have taken into account the compactness of the embedding lη2 ↪→ lθ2 , η > θ.)

To construct the space lθD of regularized spectral data for the Dirichlet operator, one should
use the sequences

ê2s−1 = {0, 2−(2s−1), 0, 4−(2s−1), 0, 6−(2s−1), . . . }, ê2s = {2−(2s), 0, 4−(2s), 0, 6−(2s), . . . }

instead of ek . We define lθD by the formula lθD = lθ2 ⊕ span{êk}m
k=1, where the number m is uniquely

determined by the condition m − 1/2 � θ < m + 1/2. Note that in [47] the space containing the
regularized spectral data of Lθ

D was constructed in a space of two-sided sequences. Here we have
implemented an equivalent construction in a space of one-sided sequences, so that the two spaces
look similar.

We define the nonlinear operators

FB(σ) = {sk(B)}∞1 , FD(σ) = {sk(D)}∞1 . (1.3)

It follows from results of [44] and [18] that the sequences formed by the regularized spectral data
on the right-hand sides in (1.3) lie in l2 for every primitive σ =

∫
q(x) dx ∈ L2(0, π). Hence both

operators in (1.3) are well-defined as operators from L2 to l2 . Moreover, according to [45] and [47],
the ranges of the restrictions of these operators to the Sobolev spaces W θ

2 , θ > 0, lie in lθB and lθD ,
respectively. It is for this purpose that we have extended the spaces lθ2 . The corresponding result
does not hold if we do not add special sequences to lθ2 .

In the following, we use results of [45]–[47], which we give in the form needed for our purposes.
Theorem 1.1. For each θ � 0, the nonlinear operators FB and FD are well defined as operators

from W θ
2 into lθB and lθD , respectively. These operators are Fréchet differentiable at each point

(function) σ , provided that this function is real-valued and all eigenvalues λk(σ) and µk(σ) are
nonzero. (For the mapping FD , it suffices that the λk(σ) alone be nonzero.) In particular, these
operators are Fréchet differentiable at the point σ = 0, and their Fréchet derivatives at this point
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are the linear operators TB and TD given by the formulas

(TBσ)k = − 1
π

∫ π

0
σ(t) sin(kt) dt, k = 1, 2, . . . ,

⎧
⎪⎪⎨

⎪⎪⎩

(TDσ)2k−1 = −
∫ π

0
(π − t)σ(t) cos(2kt) dt, k = 1, 2, . . . ,

(TDσ)2k = − 1
π

∫ π

0
σ(t) sin(2kt) dt, k = 1, 2, . . . .

Proof. The claim follows from [46, Proposition 1 and Theorem 6.1] for the operator FB and
from [47, Proposition 1 and Theorem 4.2] for the operator FD .

Theorem 1.2. The spaces lθB and lθD form a scale of spaces compactly embedded in one another
and closed with respect to interpolation ; i.e., [l0, lθ]τ = lθτ for all θ � 0 and τ ∈ [0, 1]. (Here we
omit the subscripts B or D for brevity.) For each θ � 0, the operator TB isomorphically maps the
space W θ

2 onto lθB . The operator TD isomorphically maps the space W θ
2 	 {1} onto lθD .

Proof. The first claim of the theorem was proved for the space lθB in [46, Proposition 4]. The
proof carries over verbatim to the space lθD . The second claim was proved in [46, Lemma 1] for the
operator TB and in [47, Proposition 3] for the operator TD .

The following theorem is the most important point in the proof of the main results of the
present paper. In particular, it says that the mappings FB and FD are weakly nonlinear; i.e., they
are compact perturbations of linear mappings. The exact dependence τ = τ(θ), which characterizes
the “quality” of compactness, is important as well.

Theorem 1.3. For each θ � 0, the operator FB maps W θ
2 into lθB and admits a representation

of the form
FB(σ) = TBσ + ΦB(σ).

Here TB is the linear operator defined in Theorem 1.1 and ΦB maps W θ
2 into lτB , where

τ =

{
2θ if 0 � θ � 1,

θ + 1 if 1 � θ < ∞.

Moreover, the mapping ΦB : W θ
2 → lτB is bounded in every ball ; i.e., ‖Φ(σ)B‖τ ≤ C(R) whenever

‖σ‖θ � R, where the constant C depends only on the radius R of the ball. A similar assertion holds
for the operator FD . Namely, FD(σ) = TDσ + ΦD(σ), and the mapping ΦD : W θ

2 	 {1} → lτD has
the same property as ΦB .

Proof. This theorem was proved in [46] for the operator FB and in [47] for the operator FD .
For θ > 0, the compactness of the nonlinear terms in the representations of the operators FB and
FD follows from the compactness of the embeddings lη ↪→ lθ for η > θ. (We omit the subscript
B or D for brevity.) The case of θ = 0 is exceptional; for θ = 0, this theorem does not imply the
compactness of the nonlinear terms.

2. Borg’s Problem. Characterization of Spectral Data for the Primitives σ of
Real-Valued Potentials q ∈ W α

2 . Uniform A Priori Estimates

We use the following notation in this section and in Section 3. We denote the set of real-valued
functions in W θ

2 by W θ
2,R , the closed ball of radius R centered at the origin in W θ

2,R by Bθ
R
(R),

the set of all functions in W θ
2,R for which µ1(σ) � 1/4 by Γθ

B , and the intersection of Γθ
B with

Bθ
R
(R) by Bθ

Γ(R). Here µ1(σ) is the first eigenvalue of LDN . The number 1/4 has been taken for
definiteness and simplicity; it can be replaced by any number η > 0, but then one should write
s1 � √

η − 1/2 in (2.2) and (2.3).
The spectra {λk} and {µk} of the operators LD and LDN are known to satisfy the interlacing

condition
µ1 < λ1 < µ2 < λ2 < · · · < µn < λn < µn+1 < . . . , (2.1)
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provided that the potential is real-valued. This fact has long been known for classical potentials
(see, e.g., [33]), while for singular distribution potentials, it was proved in [20] and [45]. Note that,
for positive λk and µk , inequalities (2.1) are equivalent to the same inequalities for the square roots
of these numbers. Hence conditions (2.1), together with the condition µ1 � 1/4 (i.e., the condition
σ ∈ Γ0

B ), are equivalent to the inequalities

s1 � 0, sk − sk+1 < 1/2, k = 1, 2, . . . , (2.2)

where the {sk} = {sk(B)} are the regularized spectral data of Borg’s problem. The sequence {sk}∞1
belongs to l2 , and hence for each real-valued function σ ∈ L2 , there exists a number h = h(σ) > 0
such that

s1 � 0, sk − sk+1 � 1/2 − h, k = 1, 2, . . . . (2.3)

Fix arbitrary numbers r > 0 and h ∈ (0, 1/2). Let Ωθ
B(r, h) be the set of real sequences {sk}∞1

satisfying inequalities (2.3) and lying in the closed ball of radius r in lθB , i.e., such that ‖{sk}‖θ � r.
By Ωθ

B we denote the set of all real sequences {sk}∞1 ∈ lθB satisfying inequalities (2.2).
Recall that we have associated Borg’s problem with the operator FB : W θ

2 → lθB , FB(σ) =
{sk}∞1 , where {sk}∞1 is the regularized spectral data of Borg’s problem. It follows from the preceding
considerations and Theorem 1.3 that FB maps Γθ

B into Ωθ
B .

Further in this section, we omit the subscript B wherever convenient, because we only work
with Borg’s problem. In particular, the operators FB , TB , and ΦB (Theorem 1.3) will be denoted
by F , T , and Φ, respectively. We everywhere write Γθ , Ωθ , and Ωθ(r, h) instead of Γθ

B , Ωθ
B , and

Ωθ
B(r, h). However, we retain the symbol lθB for the spaces of regularized spectral data.

Theorem 2.1. The mapping F : Γθ → Ωθ is bijective for each θ � 0.
Proof. The injectivity of F : Γθ → Ωθ was proved in [45, Lemma 6]. The proof of the surjectivity

of this mapping is contained in the proof of Lemma 5 in the same paper, but this proof needs a
supplement for θ � 1/2. For θ < 1/2, one has lθB = lθ2 , while for θ � 1/2, lθB additionally contains
the 2m-dimensional subspace L 2m of special sequences, where m = [θ/2 + 3/4]. By analyzing the
proof of Lemma 5 in [45], we conclude that to complete this proof one should be able to reconstruct
the function σ (or prove its existence) in the case where only the coordinates in the subspace
L 2m are varied, while all coordinates in lθ2 remain unchanged. The authors cannot see a simple
straightforward solution of this problem, not using laborious theorems. Here we prove surjectivity
with the use of Theorem 1.3, having in mind that, for the case θ ∈ [0, 1/2), this property has
already been proved.

We know that the mapping F : Γθ → Ωθ is surjective for θ � 1/4. Let us prove that it is
surjective for every θ ∈ (1/4, 1/2]. Take an arbitrary element y ∈ Ωθ ⊂ lθB , θ ∈ (1/4, 1/2]. Since
the mapping in question is a bijection for θ = 1/4, it follows that there exists a unique function
σ ∈ Γ1/4 such that Fσ = y. (Here we have taken into account the embedding lθB ↪→ l

1/4
B .) By

Theorem 1.3 we have Tσ = −Φσ+y ∈ lθB , since y ∈ lθB and it follows from the condition σ ∈ W
1/4
2

that Φσ ∈ l
1/2
B ←↩ lθB . But the linear operator T : W θ

2 → lθB is an isomorphism by Theorem 1.2.
Consequently, σ ∈ W θ

2,R , and so, since y ∈ Ωθ , we have σ ∈ Γθ . Thus, we have proved that F

is surjective for θ ∈ (1/4, 1/2]. Now, knowing that the mapping F : Γθ → Ωθ is surjective for
θ ∈ [0, 1/2], we can use the same trick to prove its surjectivity for θ ∈ (1/2, 1]. By repeating this
trick, we show its surjectivity for θ ∈ (1, 2] with the use of Theorem 1.3. At the (k + 1)st step, we
obtain surjectivity for θ ∈ (k− 1, k]. Here the number k is arbitrary, and hence the claim holds for
all θ � 0.

Let Ω̂θ
B be the set of sequences {sk}∞1 ∈ lθB for which the numbers µk = (s2k−1 + k− 1/2)2 and

λk = (s2k−1 + k − 1/2)2 are real and satisfy conditions (2.1).
Note that if we add the function c(x− π) to the function σ determining the operators LD and

LDN , then these operators turn into LD +c and LDN +c, respectively; i.e., their spectra are shifted
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by c. We set

s2k−1(c) =
√

µk + c − (k − 1/2), s2k(c) =
√

λk + c − k. (2.4)

Since c(x − π) ∈ W θ
2 for all θ � 0, it follows that {sk(c)}∞1 ∈ lθB if and only if {sk(0)}∞1 ∈ lθB .

Consequently, {sk}∞1 ∈ Ω̂θ if and only if there exists a c � 0 such that {sk(c)}∞1 ∈ Ωθ . Our remarks
imply the following claim.

Theorem 2.2. The mapping F : W θ
2,R → Ω̂θ is a bijection. Two numerical sequences {µk}∞1

and {λk}∞1 are the spectra of LD and LDN if an only if they satisfy the interlacing conditions (2.1)
and {sk}∞1 ∈ lθB .

Marchenko and Ostrovskii ([36], [34]) characterized the spectral data of Borg’s problem for
positive integer θ = 1, 2, . . . in a different form, without using the spaces lθB . One can show that,
for these θ, their result combined with Borg’s uniqueness theorem is equivalent to Theorem 2.2.

In what follows, we essentially use the analytic properties of the mapping F . We assume that the
reader is familiar with the definitions of Fréchet and Gâteaux derivatives of a mapping F : U → H ,
where U is an open subset of E and E and H are separable Hilbert spaces. For complex Hilbert
spaces, the Fréchet derivative in the complex sense is naturally defined. A mapping F : U → H is
said to be analytic if the complex Fréchet derivative of F exists at each point x ∈ U . The Fréchet
derivative at x will be denoted by F ′(x). The notion of a real-analytic mapping is defined in a
natural way; see, e.g., [40]. A mapping F : U → H is said to be weakly analytic if the coordinate
functions (F (x), ek), where {ek}∞1 is an orthonormal basis in H , are Gâteaux differentiable in the
complex sense. The following result of [40] significantly simplifies the verification of analyticity of
a mapping.

Proposition 2.3. If F : U → H is a weakly analytic mapping locally bounded at each point
x ∈ U , then F is analytic.

In what follows, we deal with mappings of closed sets. To avoid additional explanations, we
shall say that a mapping F : D → H is analytic on D if there exists an open set U such that
U ⊃ D and F : U → H is analytic.

Theorem 2.4. If θ � 0 and σ ∈ Γθ , then there exists a complex neighborhood U ∈ W θ
2 of σ such

that the mapping F : U → lθB is differentiable in the complex sense at all points of this neighborhood.
Thus, the mapping F : Γθ → lθB is real-analytic, as well as the mapping Φ = F −T : Γθ → lτB , where
T = TB and τ are defined in Theorem 1.3. The derivative at σ ∈ Γ is given by

[F ′(σ)]f =
{

− (y′k(x)yk(x), f(x))
ρk (y2

k(x), 1)

}∞

k=1

. (2.5)

Here ρ2n−1 =
√

µn , ρ2n =
√

λn , the y2n−1(x) are the eigenfunctions of the operator LDN , the y2n

are the eigenfunctions of the operator LD , and f ∈ W θ
2 is a function on which the operator F ′(σ)

acts.
Proof. The theorem was proved in [46, Sec. 5]. The proof is based on using Theorem 1.3 and

Proposition 2.3 after calculating the derivatives of the coordinates. Here it is important that the
denominators in formula (2.5) vanish nowhere for a real-valued function σ. According to [43], the
eigenfunctions continuously depend on the primitive σ of the potential, and hence the numbers
(y2

k(x), 1) do not vanish in some complex neighborhood. (One should also take into account the
asymptotics of yk as k → ∞).) The theorem remains valid if, instead of the condition σ ∈ Γθ ,
one requires that σ be real-valued and that none of the ρk be zero. In that case, one has usual
analyticity rather than real analyticity.

Lemma 2.5. If the functions yk(x) in Theorem 2.4 are normalized by the conditions y
[1]
k (0) = 1,

then the system of functions

ϕk(x) =
2
π

y′k(x)yk(x), k = 1, 2, . . . , (2.6)
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is a Riesz basis in L2(0, π). The system biorthogonal to {ϕk(x)}∞1 has the form

ψk(x) = πρ
1/2
k yk(x)wk(x), (2.7)

where the function wk is the solution of the equation −y′′ + σ′y = λny with initial conditions

w
[1]
k (π) = 0, wk(π) =

(∫ π

0
y2

k(x) dx · y[1]
k (π)

)−1

for k = 2n and of the equation −y′′ + σ′y = µny with initial conditions

wk(π) = 0, w
[1]
k (π) = −

(∫ π

0
y2

k(x) dx · yk(π)
)−1

for k = 2n − 1.
Proof. The first claim, that the system {ϕk(x)}∞1 is a Riesz basis, was proved in [45, Lemma 6],

where the relations (ϕk(x), ψm(x)) = 0 for k �= m were proved as well. The relations (ϕk(x), ψk(x))
= 1 can be proved by straightforward computations, which we omit, because the specific form of
the functions ϕk and ψk will not be used here.

Theorem 2.6. Let θ � 0. Then each point y0 ∈ Ωθ = F (Γθ) has a complex neighborhood U(y0)
in which the inverse mapping F−1(y) is defined and has Fréchet derivative in the complex sense.
This derivative has the form

(F−1)′(y) = (F ′)−1(y) =
∞∑

k=1

skψ̃k(x), y = (s1, s2, . . . ). (2.8)

Here ψ̃k(x) = γkψk(x), where {ψk(x)}∞1 is the biorthogonal system specified in Lemma 2.5 and
γk = ρk

∫ 1
0 y2

k(x) dx.
Proof. First, suppose that θ > 0. We have

F ′(σ0) = T + Φ′(σ0), y0 = F (σ0).

The operator T : W θ
2 → lθB is an isomorphism by Theorem 1.2, and the operator Φ′(σ0) : W θ

2 → lτB
is bounded by Theorem 2.4; hence the operator Φ′(σ0) : W θ

2 → lθB is compact. Consequently, F ′(σ0)
is a Fredholm operator of index zero, and hence it is invertible if its kernel is trivial. It follows from
formulas (2.5) and the completeness of system (2.6) in the space L2 that the relation F ′(σ0)f = 0
for f ∈ L2 implies that f = 0. This is all the more true if f ∈ W θ

2 for θ > 0. Now (2.8) can
be obtained by a straightforward verification. It suffices to verify that F ′(σ0)(F−1)′(y0) = y0 .
This readily follows from (2.5) and (2.8) with regard to the mutual biorthogonality of the systems
{γ−1

k ϕk}∞1 and {γkψk}∞1 .
Now, let θ = 0. It readily follows from the asymptotic formulas obtained in [44, Theorems 2.6

and 2.7] for the eigenvalues ρ2
k and the eigenfunctions yk that γk � 1, provided that the functions

yk are normalized by the condition y
[1]
k (0) = 1. Hence it follows from Lemma 2.5 that the system

{ψ̃k}∞1 is a Riesz basis, and the boundedness of the operator (F ′)−1(y0) given by formula (2.8)
follows from the definition of Riesz basis. The existence of the inverse operator for every θ � 0
in a small complex neighborhood of the point y0 and its complex differentiability follow from the
inverse mapping theorem.

Note that Theorem 2.6 readily implies local estimates of the difference of potentials via the
difference of spectral data and vice versa. As was noted in the introduction, various forms of such
estimates were proved by various methods in many papers for the classical case θ = 1 (q ∈ L2).
However, these papers deal with the mappings q → {spectral data}, while we study the mapping∫

q(t) dt = σ → {spectral data}, and hence our systems and formulas look differently.
In what follows, we show that, for θ > 0, Theorem 1.3 can be used to obtain a substantially

stronger result while avoiding technicalities with function systems.
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Lemma 2.7. Fix θ > 0. For each R > 0, there exist positive numbers r = r(R) and h = h(R)
such that

F (Bθ
Γ(R)) ⊂ Ωθ(r, h), where Bθ

Γ(R) = Γ ∩ Bθ
R
(R).

Proof. If ‖σ‖θ � R, σ ∈ Γθ , then it follows from Theorem 1.3 that Fσ = y ∈ Ωθ(r), where
r = r(R) depends on R but is independent of σ. It remains to show that, for all elements y = Fσ,
σ ∈ Bθ

Γ(R), inequalities (2.3) hold with some h = h(R) > 0 depending on R but independent of σ.
Note that there exists a number N = N(θ, r) such that the inequalities sk+1−sk � 1/4 hold for

all y = (s1, s2, . . . ) ∈ Ωθ(r) and all k � N . (Here 1/4 can be replaced by any ε > 0.) This readily
follows from the definition of the norm in lθB for θ > 0. (See [46, Section 5] for details; the assertion
fails for θ = 0.) Now, assume that the assertion of the theorem is not true and there exist elements
yn = Fσn , σn ∈ Bθ

Γ(R), such that sn
k − sn

k+1 → 1/2 as n → ∞ for some fixed k, 1 � k < N . (Here
the sn

k are the coordinates of the elements yn .) The ball in the space W θ
2 is weakly compact, and

hence the sequence {σn} contains a weakly convergent subsequence. Without loss of generality, we
assume that the sequence itself weakly converges to a function σ ∈ W θ

2,R . Since the space W θ
2 is

compactly embedded in L2 , it follows that the sequence σn strongly converges to σ in the norm of
L2 . Let the index k for which sn

k − sn
k+1 → 1/2 be, say, even, k = 2p. Then λp(σn)−µp+1(σn) → 0.

By [43, Theorem 2], the convergence of the functions σn in L2 implies the convergence of their
eigenvalues; i.e., λp(σn) → λp(σ) and µp+1(σn) → µp+1(σ). Hence sn

k − sn
k+1 → 1/2 implies that

λp(σ) = µp+1(σ), which is impossible in view of the interlacing condition (2.1).
Lemma 2.8. Let θ > 0. The converse of Lemma 2.7 is true: for any numbers r and h, there

exists a number R > 0 such that

F−1( Ωθ(r, h)) ⊂ Bθ
Γ(R).

One has the representation F−1 = T−1 + Ψ, Ψ: Ωθ → W τ
2 , where the number τ is defined in

Theorem 1.3. The mapping Ψ: Ωθ → W τ
2 is analytic, and moreover,

‖Ψy‖τ � C‖y‖θ for all y ∈ Ωθ(r, h), (2.9)

where the constant C depends only on r and h.
Proof. If the first claim of the lemma is false, then there exist elements yn ∈ Ωθ(r, h) such that

F−1yn = σn , ‖σn‖θ → ∞. To be definite, we assume that θ ∈ (0, 1]. For θ > 1, the proof does not
change; we only need to replace θ/2 by θ−1 according to Theorem 1.3. Let us extract a subsequence
of yn weakly convergent in lθB . We assume that the sequence itself weakly converges to some element
y ∈ lθB . Weak convergence implies coordinatewise convergence. It follows from the definition of the
set Ωθ(h, r) and its closedness that y ∈ Ωθ(h, r). By Theorem 2.1, there exists a function σ ∈ Γθ

such that Fσ = y. The weak convergence yn ⇀ y in lθB implies the strong convergence yn → y
in the norm of l

θ/2
B , and it follows from the analyticity (continuity would suffice) of the mapping

F−1 : Ωθ/2 → Γθ/2 that ‖σn − σ‖θ/2 → 0. By Theorem 1.3, ‖Φσn‖θ � ‖σn‖θ/2 � C . Therefore,

‖Tσn‖θ � ‖Φσn‖θ + ‖yn‖θ � C + C = 2C.

(We have again used Theorem 1.3 and the boundedness of a weakly convergent sequence.) Since the
operator T : W θ

2 → lθB is an isomorphism, it follows that ‖σn‖θ � 2C . This contradiction completes
the proof of the first claim of the lemma.

Obviously, Ψ = −T−1ΦF−1 . Consequently, the mapping Ψ: Ωθ → W τ
2 is analytic as a com-

position of analytic mappings. We obtain the estimate ‖Ψy‖τ � C for all y ∈ Ωθ(r, h) from the
first claim of the lemma and the uniform boundedness of the mapping Φ: Ωθ → W τ

2 on every ball.
Since Ψ(0) = 0 and Ψ is analytic, we arrive at the estimate (2.9).

The following claim is very simple, but it is convenient for us to state it separately.
Lemma 2.9. Assume that X and X1 are metric spaces, X is complete, and a function Φ: X →

X1 is continuous on X . If the set U ⊂ X is precompact in X , then Φ: U → X1 is uniformly
continuous and uniformly bounded.



280

Proof. Under the assumptions of the lemma, the closure U is a compact set in X , and the
function Φ: U → X1 is continuous. Hence the claim follows from properties of continuous functions
on compact sets.

Lemma 2.10. Let θ > 0. For any R > 0, one has the estimate

‖F ′(σ)‖θ � C for all σ ∈ Bθ
Γ(R), (2.10)

where the constant C depends on R but is independent of σ .
Proof. Without loss of generality, we assume that θ ∈ (0, 1]. If θ > 1, then θ/2 should be

replaced by θ − 1 in what follows. Since F ′ = Φ′ + T , it suffices to prove estimate (2.10) with Φ
instead of F . By Theorem 2.3, the mapping Φ: W θ/2 → lθB is analytic on the closed set B

θ/2
Γ (R1)

for every R1 > 0, and hence the numerical function ‖Φ′(σ)‖θ is continuous on that set. Since the
embedding W θ

2 ↪→ W
θ/2
2 is continuous, it follows that there exists a number R1 = R1(R, θ) such

that Bθ
Γ(R) ⊂ B

θ/2
Γ (R1). Here the first set is compact in the second, and therefore Lemma 2.9

provides estimate (2.10), where F should be replaced by Φ.
Lemma 2.11. Let θ > 0. Then, for any r > 0 and h ∈ (0, 1/2), the inverse mapping satisfies

the estimate
‖(F−1)′(y)‖ � C for all y ∈ Ωθ(r, h), (2.11)

where the constant C depends on r and h but is independent of y.
Proof. To be definite, consider the case of θ ∈ (0, 1]. The argument is similar to that used in

the proof of Lemma 2.10. Fix some numbers r > 0 and h ∈ (0, 1/2). By using the continuity of the
embedding lθB ↪→ l

θ/2
B , we find a number r1 such that Ωθ(r, h) ⊂ Ωθ/2(r1, h). By Lemma 2.8, the

mapping Ψ = −F−1ΦT−1 : Ωθ/2(r1, h) → W θ
2 is analytic. Hence the numerical function ‖Ψ′(y)‖θ

is continuous for y ∈ Ωθ/2(r1, h). By using Lemma 2.9 and the compactness of the embedding
Ωθ(r, h) ⊂ Ωθ/2(r1, h), we obtain estimate (2.11) with F−1 replaced by Ψ. Since F−1 = T−1 + Ψ,
it follows that the estimate is also true for F−1 .

Now we can prove the main result of this section.
Theorem 2.12. Fix θ > 0. Assume that the sequences y and y1 of regularized spectral data

lie in Ωθ
B(r, h). Then the preimages σ = F−1

B y and σ1 = F−1
B y1 lie in Bθ

Γ(R), and one has the
estimates

C1‖y − y1‖θ � ‖σ − σ1‖θ � C2‖y − y1‖θ, (2.12)
where the number R and the constants C1 and C2 depend only on r and h. The number R and
the constants C2 and C−1

1 increase as r → ∞ or h → 0. Conversely, if σ and σ1 lie in the ball
Bθ

R
(R), then the sequences y and y1 of regularized spectral data of these functions lie in Ωθ(r, h),

and one has the estimates

C1‖σ − σ1‖θ � ‖y − y1‖θ � C2‖σ − σ1‖θ. (2.13)

Here the numbers r > 0 and h ∈ (0, 1/2) and the constants C1 and C2 depend only on R. The
numbers r, h−1, C2 , and C−1

1 increase as R → ∞.
Proof. Note that the set Ωθ(r, h) is convex. For differentiable functions on convex sets, one has

the following analog of Lagrange’s theorem (see, e.g., [5, Corollary 12.2.8]):

‖σ − σ1‖ � sup
0<t<1

‖(F−1)′(ty + (1 − t)y1)‖ · ‖y − y1‖.

Thus, Lemma 2.11 implies the upper bound in inequality (2.12). The upper bounds in (2.13) can
be obtained in a similar way from Lemma 2.10. Now the lower bounds in (2.12) and (2.13) follow
from the upper bounds and Lemmas 2.7 and 2.8.

The sets Bθ
Γ(R) in Theorem 2.12 can be replaced by the usual balls Bθ

R
(R), but then the

regularized spectral data should be defined by formula (2.4), where c is a constant such that
c � −µ1(σ) − 1/4 for all σ ∈ Bθ

R
(R). Theorem 3.1 guarantees the existence of such a constant

depending only on R. This follows from the fact that if one adds the function c(x − π) to σ, then
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the spectra of LD and LDN are shifted by c, and the difference of σ, σ1 ∈ Bθ
R
(R) coincides with

that of σ + c(x − π), σ1 + c(x − π) ∈ Bθ
Γ(R).

3. Problem of Reconstruction of the Operator LD from Its Spectral Function.
Characterization of Spectral Data and Uniform A Priori Estimates

The general scheme of proof of similar results for the problem of reconstructing the operator LD

from its spectral function remains the same, although the proofs of lemmas with similar statements
are different. In the course of exposition, we state two lemmas (Lemmas 3.1 and 3.6) whose proofs
are of technical character. Owing to space limitations, we only outline these proofs and refer the
reader to our electronic preprint [48] for details and detailed computations.

In what follows, it is convenient to work not with the space W θ
2 	 {1} but with the quotient

space W θ
2 /{1}, assuming that all functions in W θ

2 are defined up to an additive constant. The inner
product of functions f, g ∈ W θ

2 /{1} is assumed to be defined by the formula (f, g)θ = (f0, g0)θ ,
where f0, g0 ∈ W θ

2 	{1}. Let Γθ
D be the set of real functions σ ∈ W θ

2 /{1} such that λ1(σ) � 1/2, and
let Bθ

Γ(R) be the intersection of Γθ
D with the closed ball Bθ

R
(R). If σ ∈ Γθ

D , then the eigenvalues of
LD satisfy the conditions 1/2 � λ1 < λ2 < . . . . For the regularized spectral data, these inequalities
are equivalent to

s2 � 0, s2k − s2k+2 < 1, k = 1, 2, . . . . (3.1)
The nonnegativity of all normalizing constants is equivalent to the conditions

s2k−1 > −π/2, k = 1, 2, . . . . (3.2)

The sequence {sk}∞1 lies in l2 , and hence for each real function σ ∈ Γθ
D , there exists a number

h = h(σ) > 0 such that

s2 � 0, s2k − s2k+2 � 1 − h, s2k−1 � −π/2 + h, k = 1, 2, . . . . (3.3)

Fix arbitrary numbers r > 0 and h ∈ (0, 1). Let Ωθ
D(r, h) be the set or real sequences {sk}∞1

which satisfy inequalities (3.3) and lie in the closed ball of radius r in lθD ; i.e., ‖{sk}‖θ � r. By Ωθ
D

we denote the set of all real sequences {sk}∞1 ∈ lθD satisfying inequalities (3.1) and (3.2). We deal
only with the mapping FD in what follows and omit the subscript D wherever convenient. Instead
of Γθ

D , Ωθ
D , and Ωθ

D(r, h) we always write Γθ , Ωθ , and Ωθ(r, h), respectively.
To prove the counterparts of Theorems 2.1 and 2.2, we need the following important result, which

gives an explicit description of the preimage of FD under the variation of only one coordinate in
the space lθD . Similar formulas for the problem of reconstruction from one spectrum can be found
in the book [40]. However, the proof of our result is different.

Lemma 3.1. Let {λk} and {αk} be the eigenvalues and the normalizing constants of the
operator LD with real-valued function σ ∈ W θ

2 ∈ Γθ , θ � 0. Then, for any n � 1 and t ∈
(λn−1 − λn, λn+1 − λn), there exists a function σ(x, t) ∈ W θ

2 such that the corresponding operator
LD = LD(σ) has spectrum {λk + tδkn}∞1 (here δkn is the Kronecker delta) and normalizing con-
stants {αk}. Moreover, for any n � 1 and t ∈ (−αn, +∞), there exists a function σ(x, t) ∈ W θ

2

such that the operator LD constructed from this function has spectrum {λk}∞1 and normalizing
constants {αk + tδkn}∞1 .

Proof. The potential σ(x, t) can be written out in explicit form. In the first case, where the
eigenvalue λn varies and the normalizing constants and all other eigenvalues remain unchanged,
we set

σn(x, t) = σ(x) − 2
d

dx
lnG(x, t), (3.4)

G(x, t) =
(

1 + α−1
n

∫ x

0
y2(ξ, λn + t) dξ

) (

1 − α−1
n

∫ x

0
y2(ξ, λn) dξ

)

+
(

α−1
n

∫ x

0
y(ξ, λn + t)y(ξ, λn) dξ

)2

. (3.5)
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Here y(x, λ) is the solution of the equation −y′′ + σ′y = λy with initial conditions y(0, λ) = 0 and
y[1](0, λ) =

√
λ. In the second case, where only one normalizing constant αn varies, we set

σn(x, t) = σ(x) − 2
d

dx
ln G(x, t), where G(x, t) = 1 + ((αn + t)−1 − α−1

n )
∫ x

0
y2(ξ, λn) dξ. (3.6)

To obtain these formulas, we write out the Gelfand–Levitan–Marchenko equation in the form
obtained by Hryniv and Mykytyuk [19] for distribution potentials. If one seeks solutions of this
equation satisfying the assumptions of the lemma in the form of a linear combination of two
functions (cf. [29, Chap. 2, Sec. 7]), then one obtains a system of two linear equations, which can
be solved explicitly. Details can be found in [48].

Lemma 3.2. The mapping FD : Γθ → Ωθ
D is surjective for any θ � 0.

Proof. First, let us prove the lemma in the case θ < 1/2, where the space lθD coincides with lθ2 .
We use a trick of [40]. By Theorems 1.1 and 1.2, the Fréchet derivative of FD at σ = 0 coincides
with the operator TD , which is an isomorphism. Hence, for each sufficiently small ε > 0, there
exists a δ > 0 such that the image of the ball ‖σ‖θ < δ under FD covers the ball ‖s‖θ < ε. For
θ < 1/2, the space lθD coincides with lθ2 . For given s = {sk} ∈ Ωθ , consider the sequence

sn = {0, 0, . . . , 0, sn, sn+1, . . . },
where n is chosen in such a way that ‖sn‖θ < ε. There exists a unique function σn ∈ W θ

2 whose
image F (σn) coincides with sn . By applying Lemma 3.1 n − 1 times, we construct a function
σ ∈ Γθ ⊂ W θ

2,R such thatFσ = s. This means that the range of F contains Ωθ . Now the proof for
θ � 1/2 can be completed by the trick used in the proof of Theorem 2.1.

Lemma 3.3. The mapping F : Γθ → Ωθ is injective for every θ � 0.
Proof. The injectivity of this mapping for θ = 0 (and hence for all θ � 0) was proved by Hryniv

and Mykytyuk [19]. Note that injectivity also follows from Lemma 3.6 below. (To prove this, one
should reproduce the argument used to prove Lemma 6 in the authors’ paper [45].)

Let Ω̂θ be the set of sequences {sk}∞k=1 ∈ lθD for which the numbers λk = (sk + k)2 are real.
By reproducing the argument carried out before the proof of Theorem 2.2, we obtain an analog of
Theorem 2.2 from Lemmas 3.2 and 3.3.

Theorem 3.4. For any θ � 0, the mapping FD : W θ
2,R/{1} → Ω̂θ is a bijection. In particular,

the numbers {λk}∞1 and {αk}∞1 are the eigenvalues and the normalizing constants of an operator
LD generated by some function σ ∈ W θ

2,R if and only if the sequence {λk} is strictly monotone, the
numbers {αk} are positive, and {sk}∞1 ∈ lθD .

This theorem also implies that the mapping FD : Γθ → Ωθ is a bijection. An analog of Theorem
3.4 for positive integer θ = 1, 2, . . . was stated in a different language by Freiling and Yurko [11].

The analyticity of and an explicit expression for the Fréchet derivative are provided by the
following theorem.

Theorem 3.5. Let θ � 0 and σ ∈ Γθ . Then there exists a complex neighborhood U ∈ W θ
2 of

σ such that the mapping F : U → lθD is real-analytic. In this neighborhood, the mapping ΦD =
FD − TD : U → lτD , where τ is defined in Theorem 1.3, is real-analytic as well. The derivative at a
point σ ∈ U is given by the formula

F ′
D(σ)f = {(ϕk(x), f(x))}∞k=1, (3.7)

where

ϕ2k−1(x) = 2αkλk
d

dλ
(z(x, λ)z′(x, λ))

∣
∣
∣
∣
λ=λk

, ϕ2k(x) = − y′k(x)yk(x)
αk

√
λk

, k = 1, 2, . . . . (3.8)

Here f ∈ W θ
2 is a function on which the operator F ′

D(σ) : W θ
2 → lθD acts, the yn = y(x, λn)

are the eigenfunctions of LD normalized by the conditions y[1](0, λn) =
√

λn , and z(x, λ) is the
solution of the equation −y′′ + σ′(x)y = λy with initial condition z(π, λ) = 0 normalized by the
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condition
∫ π
0 z2(x, λ) dx = 1/λ. The assertion on (usual) analyticity remains valid if one replaces

the condition σ ∈ Γθ by the condition σ ∈ W θ
2,R and requires that zero be not an eigenvalue of LD .

Proof. The local differentiability of FD was proved in [47, Sec. 6]. The same paper gives explicit
formulas for the Fréchet derivative, but they are less convenient than (3.8). The passage from the
old formulas to the new ones requires some technical effort; see [48].

Lemma 3.6. The function system {ϕk}∞1 defined in (3.8) is a Riesz basis in the space
L2(0, π)/{1}. The biorthogonal system has the form

ψ2k−1(x) =
2
α2

k

y2
k(x), ψ2k(x) = −2

√
λk

αk

d

dλ
(y2(x, λ))

∣
∣
∣
∣
λ=λk

, k = 1, 2, . . . , (3.9)

and hence is a Riesz basis as well.
Proof. For k �= n, the relations (ϕk(x), ψn(x)) = δkn can be verified in the same way as in [47,

Lemma 6]. For k = n, the verification is more complicated; see [48].
The proofs of the following two theorems reproduce those of Theorems 2.6 and 2.11, respectively,

verbatim.
Theorem 3.7. Let θ � 0. Every point y0 ∈ Ωθ = FD(Γθ) has a complex neighborhood U(y0)

where the inverse mapping F−1
D (y) is defined and where this mapping has Fréchet derivative in the

complex sense. This derivative has the form

(F−1
D )′(y) = (F ′

D)−1(y) =
∞∑

k=1

skψk(x), y = (s1, s2, . . . ).

Here {ψk(x)}∞1 is the system biorthogonal to (3.8).
Theorem 3.8. The assertion of Theorem 1.12 remains valid if the mapping F = FB and the

set Ωθ(r, h) = Ωθ
B(r, h) in this theorem are replaced by FD and Ωθ

D(r, h), respectively.
The authors wish to thank Professor R. O. Hryniv for reading the manuscript of the paper and

for useful remarks.
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[40] J. Pöschel and E. Trubowitz, Inverse Spectral Theory, Academic Press, Boston, 1987.
[41] T. I. Ryabushko, “Stability of the reconstruction of a Sturm–Liouville operator from two

spectra,” Teor. Funkts., Funkts. Anal. Prilozh., 18 (1973), 176–185.
[42] T. I. Ryabushko, “Estimates of the norm of the difference of two potentials in a Sturm–Liouville

boundary value problem,” Teor. Funkts., Funkts. Anal. Prilozh., 39 (1983), 114–117.
[43] A. M. Savchuk and A. A. Shkalikov, “Sturm–Liouville operators with singular potentials,”

Mat. Zametki, 66:6 (1999), 897–912; English transl.: Math. Notes, 66:6 (1999), 741–753.
[44] A. M. Savchuk and A. A. Shkalikov, “Sturm–Liouville operators with distribution potentials,”

Trudy Moskov. Mat. Obshch., 64 (2003), 159–219; English transl.: Trans. Moscow Math. Soc.,
2003, 143–192.

[45] A. M. Savchuk and A. A. Shkalikov, “Inverse problem for Sturm–Liouville operators with
distribution potentials: Reconstruction from two spectra,” Russian J. Math. Phys., 12:4 (2005),
507–514.

[46] A. M. Savchuk and A. A. Shkalikov, “On the eigenvalues of the Sturm–Liouville operator with
potentials from Sobolev spaces,” Mat. Zametki, 80:6 (2006), 864–884; English transl.: Math.
Notes, 80:6 (2006), 814–832.

[47] A. M. Savchuk and A. A. Shkalikov, “On the properties of mappings associated with inverse
Sturm-Liouville problems,” Trudy Mat. Inst. Steklov., 260 (2008), 227–247; English transl.:
Proc. Steklov. Inst. Math., 260 (2008), 218–237.

[48] A. M. Savchuk and A. A. Shkalikov, Properties of the map associated with recovering of the
Sturm–Liouville operator by its spectral function. Uniform stability in the scale of Sobolev
spaces, http://arxiv.org/abs/1010.5344v1.

[49] A. N. Tikhonov, “On the uniqueness of the solution of the electric conductivity problem,”
Dokl. Akad. Nauk SSSR, 69 (1949), 797–800.

[50] V. A. Yurko, “On the stability of the reconstruction of the Sturm–Liouville operator,”
Differential Equations and Function Theory (Saratov University), 3 (1980), 113–124.

Moscow State University

e-mail: artem savchuk@mail.ru

Moscow State University

e-mail: ashkalikov@yahoo.com

Translated by V. E. Nazaikinskii



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


