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Abstract. We consider the problem of passing to the limit in a sequence of nonlinear elliptic
problems. The “limit” equation is known in advance, but it has a nonclassical structure; namely, it
contains the p-Laplacian with variable exponent p = p(x). Such equations typically exhibit a special
kind of nonuniqueness, known as the Lavrent’ev effect, and this is what makes passing to the limit
nontrivial. Equations involving the p(x)-Laplacian occur in many problems of mathematical physics.
Some applications are included in the present paper. In particular, we suggest an approach to the
solvability analysis of a well-known coupled system in non-Newtonian hydrodynamics (“stationary
thermo-rheological viscous flows”) without resorting to any smallness conditions.
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1. Introduction

1. Consider the Dirichlet problem

div(|∇u|p(x)−2∇u) = div g, u|∂Ω = 0, g ∈ (L∞(Ω))d, (1.1)

in a bounded Lipschitz domain Ω ⊂ R
d , where the exponent p(x) is measurable and satisfies the

condition 1 < α � p(x) � β < ∞.
To the variable exponent p = p(x), we assign an Orlicz space. By Lp( · ) = Lp( · )(Ω, Rd) we

denote the class of all measurable vector functions f : Ω → R
d such that∫

Ω
|f(x)|p(x)dx < ∞.

This class is a reflective Banach space with respect to the norm

‖f‖Lp( · ) = inf
{

λ > 0,

∫
Ω
|λ−1f |p dx � 1

}
. (1.2)

Note that the infimum in (1.2) is attained if
∫
Ω |f |p dx > 0. It follows that

‖f‖Lp( · ) = λ ⇐⇒
∫

Ω
|λ−1f |p dx = 1. (1.3)

We seek the solution of the Dirichlet problem (1.1) in the Sobolev–Orlicz space (see [1], [2])

W = W
1,p( · )
0 (Ω) =

{
u ∈ W 1,1

0 (Ω),
∫

Ω
|∇u|p dx < ∞

}
, ‖u‖W = ‖∇u‖Lp( · )(Ω,Rd).

A function u ∈ W
1,p( · )
0 (Ω) will be called a weak solution of the problem if∫

Ω
|∇u|p−2∇u · ∇ϕ dx =

∫
Ω

g · ∇ϕ dx (1.4)

for every function ϕ ∈ C∞
0 (Ω). This is the usual definition in the sense of distributions. Now what

about the uniqueness? If u1 and u2 are two solutions, then∫
Ω
[|∇u1|p−2∇u1 − |∇u2|p−2∇u2] · ∇ϕ dx = 0.
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For constant p > 1, the expression in brackets belongs to (Lp′(Ω))d , p′ = p/(p − 1), and the
set C∞

0 (Ω) is dense in W 1,p
0 (Ω). By closure, one can take ϕ = u1 − u2 and readily obtain u1 = u2

from the strict monotonicity

(|ξ|p−2ξ − |η|p−2η) · (ξ − η) > 0, ξ 
= η.

For variable p, only one point is missing from the argument: C∞
0 is not dense in W

1,p( · )
0 , and

generally, there is no uniqueness. To single out solutions with some certain properties, one does
the following. Let H = H

1,p( · )
0 (Ω) be the closure of C∞

0 (Ω) in W = W
1,p( · )
0 (Ω). Take an inter-

mediate closed subspace V , H ⊆ V ⊆ W , and define a V -solution, i.e., a variational solution, as
a function u ∈ V such that identity (1.4) holds for every test function ϕ ∈ V . Then the strong
monotonicity argument applies, and there exists a unique V -solution. One can take the solution
itself for the test function ϕ and obtain the energy relation∫

Ω
|∇u|p dx =

∫
Ω

g · ∇u dx. (1.5)

Proposition 1.1. A weak solution is a variational solution if and only if the energy rela-
tion (1.5) holds.

Indeed, for V one can take the least closed subspace containing C∞
0 (Ω) and the solution itself.

We see that the notion of variational solution can be defined without indicating the intermediate
subspace itself.

For V = H or V = W , one speaks of H - or W -solutions, respectively.
It is of interest to consider model examples in which H has codimension 1 in W . Then there

are no variational solutions other than H - and W -solutions. It is not quite clear a priori whether
there exist weak solutions other than these variational solutions. We shall show that the answer is
“yes.”

Model example (see [3], [4]). Let d = 2, let Ω = {|x| < 1} be the unit disk, and let

p(x) =

{
α if x1x2 > 0,

β if x1x2 < 0, 1 < α < 2 < β.
(1.6)

This example is discussed in detail in Section 6.
If H = W , then the exponent p and the Dirichlet problem itself are said to be regular. Condi-

tions ensuring regularity are rather subtle; for example, the mere continuity of the exponent p is
insufficient. It is known (see [5], [6]) that the exponent p is regular if it has a logarithmic modulus
of continuity,

|p(x) − p(y)| � C

ln(1/|x − y|) , x, y ∈ Ω, |x − y| � 1
4

.

Nonuniqueness is possible in classical variational and monotone problems, but it is due to the
missing strict convexity of the functional or strict monotonicity of the operator, and the solution
set is convex and closed. In our problems, nonuniqueness is of completely different nature, for the
functionals are formally strictly convex and the operators are strictly monotone. Moreover, as will
be shown in the model example (see Section 6), the set of weak solutions is not convex in general.
The question as to whether this set is weakly closed in W remains open.

2. For applications, the solutions resulting from a certain “regularization” of the original prob-
lem (1.1) are of importance. Consider the regularization

div Aε(x,∇uε) = div g, uε|∂Ω = 0, (1.7)

Aε(x, ξ) = |ξ|pε(x)−2ξ + ε|ξ|β−2ξ, ε > 0, (1.8)

where the exponents pε are measurable and obey the condition

1 < α � pε(x) � β < ∞, pε(x) → p(x) for almost all x ∈ Ω. (1.9)
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For each ε > 0, the vector function Aε(x, ξ) satisfies the classical monotonicity, coercivity,
and growth conditions corresponding to the exponent β , and problem (1.7) has a unique solution
uε ∈ W 1,β

0 (Ω). In particular, the identity∫
Ω

Aε(x,∇uε) · ∇ϕ dx =
∫

Ω
g · ∇ϕ dx ∀ϕ ∈ C∞

0 (Ω) (1.10)

holds, where, by closure, one can take ϕ = uε to obtain the energy relation∫
Ω
(|∇uε|pε + ε|∇uε|β) dx =

∫
Ω

Aε(x,∇uε) · ∇uε dx =
∫

Ω
g · ∇uε dx. (1.11)

By the Young inequality, this relation implies that∫
Ω

g · ∇uε dx � 2α′
∫

Ω
|g|p′ε dx +

1
2

∫
Ω
|∇uε|pε dx,

∫
Ω

Aε(x,∇uε) · ∇uε dx � 2α′+1

∫
Ω
|g|p′ε dx � 2α′+1

(
|Ω| +

∫
Ω
|g|α′

dx

)
. (1.12)

We see that the sequence uε is bounded in W 1,α
0 (Ω). Without loss of generality, we assume that

the weak convergence uε ⇀ u takes place in W 1,α
0 (Ω). Then it follows from (1.11) that

lim
ε→0

∫
Ω

Aε(x,∇uε) · ∇uε dx = lim
ε→0

∫
Ω

g · ∇uε dx =
∫

Ω
g · ∇u dx, (1.13)

∫
Ω
|∇u|p dx �

∫
Ω

g · ∇u dx, (1.14)

because, according to the property of (lower) semicontinuity of convex functionals (for more detail,
see Section 3), we have

lim
ε→0

∫
Ω

Aε(x,∇uε) · ∇uε dx � lim inf
ε→0

∫
Ω
|∇uε|pε dx �

∫
Ω
|∇u|p dx.

Thus, the limit function u belongs to the space W
1,p( · )
0 (Ω).

The main question is as follows. Is the limit function—an “approximation solution”—a weak
solution of the limit Dirichlet problem (1.1)?

This problem can readily be reduced to another one, namely, to the problem of weak convergence
of flows to a flow. As is seen from (1.12), the sequence of “flows” Aε(x,∇uε) is bounded in (Lβ′

(Ω))d .
We assume without loss of generality that the weak convergence

Aε(x,∇uε) ⇀ z in (Lβ′
(Ω))d (1.15)

takes place.
Since the flows Aε(x,∇uε) depend on the gradients ∇uε nonlinearly and the gradients them-

selves converge only weakly, we see that the relation z = |∇u|p−2∇u is by no means obvious. If it
holds, we say that the flows are weakly convergent to a flow.

Proposition 1.2. If the flows are weakly convergent to a flow, then the limit function is a weak
solution of the limit Dirichlet problem (1.1).

Indeed, the passage to the limit in identity (1.10) gives∫
Ω

z · ∇ϕ dx =
∫

Ω
g · ∇ϕ dx, ϕ ∈ C∞

0 (Ω), (1.16)

and, in view of the relation z = |∇u|p−2∇u, this proves the desired assertion.
The choice of the regularization (1.8) depends on the applications (see Section 5). Sometimes,

it suffices to use the regularization (1.8) with pε = p. In this case, one does not encounter any
serious problems concerning the convergence of solutions, and the limit function is the H -solution
of problem (1.1) (see Theorem 4.4). The approximation

Aε(x, ξ) = |ξ|pε(x)−2ξ, pε are regular for ε > 0, (1.17)
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where, as before, pε satisfies condition (1.9), also proves useful. Here we encounter the same prob-
lems involving passage to the limit as in the case of the approximation (1.8).

In what follows, unless otherwise stipulated, we deal with the approximation (1.8), and z stands
for the vector in (1.15), i.e., a weak limit of flows. Note that actually z ∈ Lp′( · )(Ω, Rd) ⊂ (Lβ′

(Ω))d .
This is also a consequence of lower semicontinuity of convex functionals and will be proved in
Lemma 3.2. Therefore, by the Young inequality, we have z · ∇u ∈ L1(Ω).

2. Weak Convergence of Flows to a Flow

1. We impose the constraint

β < α∗ ≡ αd

d − α
if α < d (2.1)

on the exponents α and β in (1.9).
Theorem 2.1. Under condition (2.1), the flows are weakly convergent to a flow.
The proof of this main theorem requires a rather complicated technique, which is developed in

what follows and is of interest in itself.
As was mentioned, convex functionals possess the property of semicontinuity. No less important

role is played by another type of semicontinuity property related to monotonicity rather than to
convexity. In the simplest version, it is as follows.

Proposition 2.2 (a special case of Lemma 3.3). One has

lim inf
ε→0

∫
K

Aε(x,∇uε) · ∇uε dx �
∫

K
z · ∇u dx (2.2)

for every measurable set K ⊂ Ω. Moreover, if

lim
ε→0

∫
K

Aε(x,∇uε) · ∇uε dx =
∫

K
z · ∇u dx, (2.3)

then z(x) = |∇u(x)|p(x)−2∇u(x) for almost all x ∈ K .
The choice of the set K will be based on some considerations related to measure theory.
The sequence Aε(x,∇uε) · ∇uε is bounded in L1(Ω). Passing to a subsequence if necessary, we

assume that
Aε(x,∇uε) · ∇uεdx ⇀ dµ

in the sense of weak convergence of measures, where µ is a finite Borel measure on Ω. By definition,
this means that

lim
ε→0

∫
Ω

ϕAε(x,∇uε) · ∇uε dx =
∫

Ω
ϕ dµ ∀ϕ ∈ C0(Ω),

where C0(Ω) is the set of continuous functions on Ω̄ vanishing on the boundary.
Proposition 2.3. If the absolutely continuous component of µ relative to the Lebesgue measure

is equal to z · ∇u dx, then the flows are weakly convergent to a flow.

Proof. Let S ⊂ Ω denote a set of Lebesgue measure zero on which the singular component µs of
the measure µ is concentrated, so that µs(Ω\S) = 0. By the properties of weak convergence (see [7]),
we have

lim sup
ε→0

∫
K

Aε(x,∇uε) · ∇uε dx �
∫

K
dµ =

∫
K

z · ∇u dx

for every closed set K ⊂ Ω \ S . Therefore, by (2.2), relation (2.3) holds, and hence z|K =
|∇u|p−2∇u|K . Since S is of Lebesgue measure zero, it follows that this suffices for the rela-
tion z(x) = |∇u(x)|p(x)−2∇u(x) to hold for almost all x ∈ Ω. The proof of the proposition is
complete.

We see that the singular component of µ does not play any role in the problem of weak
convergence of flows to a flow, but it is required that the absolutely continuous component have
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the “natural” structure z · ∇u dx. This decisive factor is ensured by the following generalization of
the Tartar–Murat compensated compactness lemma(see [8], [9], and [10, Chap. 1]).

Lemma 2.4 (on compensated compactness). Suppose that
(i) uε ∈ W 1,β(Ω) and uε ⇀ u in W 1,α(Ω).
(ii) wε ∈ (Lβ′

(Ω))d , div wε = 0, and wε ⇀ w in (Lβ′
(Ω))d .

(iii) The sequence wε · ∇uε is bounded in L1(Ω).
Then, under condition (2.1),

dµε ≡ wε · ∇uε dx ⇀ dµ = w · ∇u dx + dµs, (2.4)

where µs is a singular measure (relative to the Lebesgue measure) on Ω.

Note that the classical version of this lemma assumes that α = β . In this case, the limit
measure µ is absolutely continuous. For an example with a nontrivial singular component, see the
end of Section 4.

Using Lemma 2.4, one can readily prove Theorem 2.1. We set wε = Aε(x,∇uε) − g and use
relation (2.4) with w = z − g to obtain

Aε(x,∇uε) · ∇uε dx ⇀ z · ∇u dx + dµs.

Now Proposition 2.3 ensures the desired relation z = |∇u|p−2∇u as well as the representation of
the limit measure in the form

dµ = |∇u|p dx + dµs.

There are reasons to suspect that condition (2.1) is important for Lemma 2.4 to be true. Thus,
without condition (2.1), the main question as to whether the limit function is a weak solution of
the limit equation remains open in the general setting.

Lemma 2.4 was proved in [11]. Below we present a simpler proof.
2. Proof of Lemma 2.4. It follows from conditions (i) and (ii) that

∫
Ω

ϕ dµε =
∫

Ω
wε · ∇uεϕ dx = −

∫
Ω

wεuε · ∇ϕ dx

for ϕ ∈ C∞
0 (Ω). One can readily pass to the limit on the right-hand side, because wε ⇀ w weakly

in Lβ′
(Ω) and uε → u strongly in Lβ(Ω) by condition (2.1) and the Sobolev embedding theorem.

As a result, ∫
Ω

ϕ dµ = −
∫

Ω
wu · ∇ϕ dx = −

∫
Ω

w(u − t) · ∇ϕ dx ∀t ∈ R
1. (2.5)

Recall the notion of a Lebesgue point. Let Qr(x0) = x0 + (r/2, r/2)d be the cube with edge
length r > 0 centered at a point x0 ∈ Ω. If f ∈ Lγ(Ω), γ � 1, then

lim
r→0

1
rd

∫
Qr(x0)

|f(x) − f(x0)|γ dx = lim
r→0

∫
Q1(0)

|f(x0 + ry) − f(x0)|γ dy = 0

for almost all x0 ∈ Ω; in particular,

lim
r→0

∫
Q1(0)

f(x0 + ry)ϕ(y) dy = lim
r→0

1
rd

∫
Qr(x0)

f(x)ϕr(x) dx = f(x0)
∫

Q1(0)
ϕ(y) dy

for ϕ ∈ C∞
0 (Q1(0)), where ϕr(x) = ϕ(r−1(x − x0)). It follows from (2.5) that

J ≡ 1
rd

∫
Qr(x0)

ϕr dµ = − 1
rd

∫
Qr(x0)

(u− t)(w−C) · ∇ϕr dx − 1
rd

∫
Qr(x0)

(u− t)C · ∇ϕr dx = J1 + J2

for constant C ∈ R
d .
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Let x0 be a Lebesgue point of the functions w and ∇u, and let C = w(x0), t = 1
rd

∫
Qr(x0)

u dx,
and k0 = max(|ϕ| + |∇ϕ|). Then

|J1| � k0

rd

∫
Qr(x0)

|w − C|
∣∣∣∣u − t

r

∣∣∣∣dx � k0

(
1
rd

∫
Qr(x0)

|w − C|β′
dx

)1/β′(
1
rd

∫
Qr(x0)

∣∣∣∣u − t

r

∣∣∣∣
β

dx

)1/β

� k1

(
1
rd

∫
Qr(x0)

|w − C|β′
dx

)1/β′(
1
rd

∫
Qr(x0)

|∇u|α dx

)1/α

→ 0

as r → 0. Here we have consecutively used the Hölder inequality, the Poincaré–Sobolev inequality
(where condition (2.1) is used), and the properties of Lebesgue points.

Furthermore, by Green’s formula and the properties of Lebesgue points, we have

J2 =
1
rd

∫
Qr(x0)

C · ∇uϕr dx, lim
r→0

J2 = w(x0) · ∇u(x0)
∫

Q1(0)
ϕ dy.

Thus, the relation

lim
r→0

J ≡ lim
r→0

1
rd

∫
Qr(x0)

ϕr dµ = w(x0) · ∇u(x0)
∫

Q1(0)
ϕ dy (2.6)

has been proved.
It remains to use the classical theorem on the differentiation of a measure µ with respect to

the Lebesgue measure (see [12, Chap. III]). Let us present a suitable statement of this theorem.
We define a measure µr,r0 on the unit cube Q1(0) by the relation∫

Q1(0)
ϕ dµr,x0 =

1
rd

∫
Qr(x0)

ϕr dµ ∀ϕ ∈ C∞
0 (Q1(0)), ϕr(x) = ϕ(r−1(x − x0)).

Differentiation theorem. For almost all x0 ∈ Ω (with respect to the Lebesgue measure), the
relation

µr,x0 ⇀ a(x0) dx as r → 0

holds, where a(x) dx is the absolutely continuous component of the measure µ. In other words,

lim
r→0

1
|Qr|

∫
Qr(x0)

ϕr dµ = a(x0)
∫

Q1(0)
ϕ dy.

Now formula (2.6) shows that a(x) = w(x) · ∇u(x). The proof of the lemma is complete.

3. Lower Semicontinuity Properties

In this section, we do not use Sobolev spaces and present the material at the level of Lebesgue
and Orlicz spaces.

1. Convex integrands. Let K be a bounded measurable set in R
d . Consider the class of

integrands f(x, ξ) that are convex in ξ ∈ R
d , measurable in x ∈ K , and satisfy the nonstandard

estimate

c1|ξ|α − ϕ(x) � f(x, ξ) � c2|ξ|β + ϕ(x), 1 < α � β < ∞, c1, c2 > 0, ϕ ∈ L1(K).

Let integrands fε and f belong to this class, and let the condition

lim
ε→0

fε(x, ξ) = f(x, ξ) for almost all x ∈ K and for all ξ ∈ R
d

hold. One can readily verify that the similar condition

lim
ε→0

f∗
ε (x, ξ) = f∗(x, ξ) (3.1)

then holds for the conjugate integrands, where, by definition, f∗(x, ξ) = supη∈Rd{ξ · η − f(x, η)}.
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Lemma 3.1. If vε ⇀ v in L1(K)d , then

lim inf
ε→0

∫
K̄

fε(x, vε) dx �
∫

K
f(x, v) dx. (3.2)

Moreover, if

lim
ε→0

∫
K

fε(x, vε) dx =
∫

K
f(x, v) dx < ∞, (3.3)

then the weak convergence
fε(x, vε) ⇀ f(x, v) in L1(K) (3.4)

takes place.

Proof. By the Young inequality, we have∫
K

fε(x, vε) dx �
∫

K
[z · vε − f∗

ε (x, z)] dx ∀z ∈ L∞(K)d.

By (3.1), it follows that

lim inf
ε→0

∫
K

fε(x, vε) dx � sup
z∈L∞(K)d

∫
K

[z · v − f∗(x, z)] dx =
∫

K
f(x, v) dx,

where, at the concluding stage, use has been made of the classical theorem on the conjugate
functional (see [13, Chap. IX]). Thus, inequality (3.2) has been proved. Assume that relation (3.3)
holds. Let K0 ⊂ K be an arbitrary measurable subset, and let K1 = K \ K0 . By comparing
inequalities of the form (3.2) for K0 and K1 with the equality for K , we conclude that

lim
ε→0

∫
K0

fε(x, vε) dx =
∫

K0

f(x, v) dx. (3.5)

By the arbitrariness of K0 , formula (3.5) implies the weak convergence (3.4). The proof of the
lemma is complete.

As an example of a sequence of convex integrands, one can take

fε(x, ξ) = |ξ|pε(x) + ε|ξ|β → f(x, ξ) = |ξ|p(x),

where the exponents pε satisfy condition (1.9).

Lemma 3.2. Assume that
(i) vε ∈ (L1(K))d and

∫
K(|vε|pε + ε|vε|β) dx � C < ∞.

(ii) wε ≡ |vε|pε−2vε + ε|vε|β−2vε ⇀ z in (Lβ′
(K))d .

Then z ∈ Lp′( · )(Ω, Rd).

Proof. Set fε(x, ξ) = |ξ|pε(x)/pε(x) + ε|ξ|β/β . Since wε = f ′
ξ(x, vε), it follows that the identity

fε(x, vε) + f∗
ε (x, wε) ≡ wε · vε holds, which implies that∫

K
f∗

ε (x, wε) dx � C.

Since f∗
ε (x, ξ) → f∗(x, ξ) = |ξ|p′(x)/p′(x) as ε → 0, we have

∫
Ω

|z|p′
p′

dx � C

by Lemma 3.1, as desired.

2. Monotone operators. Let Aε(x, ξ) and A(x, ξ) be vector functions satisfying the Cara-
théodory condition (i.e., continuous in ξ for almost all x ∈ Ω and measurable in x for all ξ ∈ R

d)
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such that

(Aε(x, ξ) − Aε(x, η)) · (ξ − η) � 0 (monotonicity),

Aε(x, ξ) → A(x, ξ) ∀ξ ∈ R
d for almost all x ∈ Ω, (3.6)

|A(x, ξ)| � c1(|ξ|p(x)−1 + 1). (3.7)

Thus, the growth conditions are imposed only on the limit operator A.

Lemma 3.3. Suppose that

vε ⇀ v, Aε(x, vε) ⇀ z in (L1(K))d, v ∈ Lp( · )(K, Rd), z ∈ Lp′( · )(K, Rd),

and the sequence Aε(x, vε) · vε is bounded in L1(K). Then

lim inf
ε→0

∫
K

Aε(x, vε) · vε dx �
∫

K
z · v dx, (3.8)

and if equality holds in (3.8), i.e., if limε→0

∫
K Aε(x, vε) · vε dx =

∫
K z · v dx, then z = A(x, v) and

Aε(x, vε) · vε ⇀ A(x, v) · v in L1(K). (3.9)

Proof. Assume that

lim inf
ε→0

∫
K

Aε(x, vε) · vε dx �
∫

K
z · v dx. (3.10)

By monotonicity, we have the inequality
∫

K
(Aε(x, vε) − Aε(x, ψ)) · (vε − ψ) dx � 0 ∀ψ ∈ L∞(K)d,

in which we pass to the limit considering each of the four terms separately. The limit of the term∫
K Aε(x, vε) · vε dx can be estimated from above with the use of inequality (3.10), and the limits of

the other three terms can be calculated easily. As a result, we obtain
∫

K
(z − A(x, ψ)) · (v − ψ) dx � 0 ∀ψ ∈ L∞(K)d. (3.11)

For fixed v and z , the integrand in this inequality has the structure g(x, ψ(x)), where g(x, ξ)
is a Carathéodory vector function satisfying the estimate

|g(x, ξ)| � c|ξ|p + a(x), a ∈ L1(K), (3.12)

which can readily be verified by using inequality (3.7) and the fact that v ∈ Lp( · )(K, Rd) and z ∈
Lp′( · )(K, Rd). It follows that the superposition operator G(ψ)(x) = g(x, ψ(x)) acts continuously
from Lp( · )(K, Rd) into L1(K). Indeed, let ψn → ψ in Lp( · )(K, Rd); i.e.,

∫
K |ϕ − ϕn|p dx → 0

by (1.3). As is seen from the estimate |ψn|p � 2β(|ψ−ψn|p+|ψ|p), the family |ψn|p is equiintegrable.
Therefore, inequality (3.12) implies the equiintegrability of the family G(ψn). (For the notion
of equiintegrability, see [13, Chap. VII, Sec. 1].) It can be assumed that ψn(x) → ψ(x) almost
everywhere on K . By the Lebesgue theorem, we have G(ψn) → G(ψ) in L1(K), which proves the
continuity of the superposition operator.

Since the set (L∞(K))d is dense in Lp( · )(K, Rd), it follows that inequality (3.11) holds for
every test function ψ ∈ Lp( · )(K, Rd). We now use the Minty technique and take ψ = v ± th,
h ∈ Lp( · )(K, Rd), in (3.11) to arrive at the desired relation z = A(x, v). It is also clear that strict
inequality is impossible in (3.10). The weak convergence (3.9) can be established by the same
argument as in the case of convex integrands. The proof of the lemma is complete.
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4. Some Individual Cases of Passage to the Limit

In this section, neither condition (2.1) nor the compensated compactness lemma is used, and
our argument is solely based on lower semicontinuity properties. At the same time, some special
constraints are imposed on the limit and prelimit exponents etc.

1. We start from the following simplest result.

Theorem 4.1. If the limit exponent p is regular, then the flows are weakly convergent to a
flow.

Furthermore, an exponent p is said to be regular outside a set S ⊂ Ω if every function
in W

1,p( · )
0 (Ω) vanishing in some neighborhood of S belongs to the space H

1,p( · )
0 (Ω). For a regular

exponent, we have S = ∅.

Theorem 4.2. Suppose that the limit exponent is regular outside a closed set S of Lebesgue
measure zero. Then the flows are weakly convergent to a flow, and moreover,

Aε(x,∇uε) · ∇uε ⇀ |∇u|p in L1(Ω \ Sδ), (4.1)

where Sδ is an arbitrary δ-neighborhood of S . Here the measure µs is concentrated on S .

We shall construct an example in which the sequence Aε(x,∇uε) · ∇uε is not weakly compact
in L1(Ω) and the singular component of the measure µs is nontrivial.

Theorem 4.3. If the energy relation (1.5) holds for the limit function, then this function is a
variational solution of the Dirichlet problem (1.1). Moreover, µs = 0.

Theorem 4.4. If pε � p, then the limit function is the H -solution of Dirichlet problem (1.1).

2. Proof of Theorem 4.1. Consider the limit identity (1.16).
Since the exponent p is regular and z ∈ Lp′( · )(Ω) by Lemma 3.2, it follows that every function

ϕ ∈ W
1,p( · )
0 , in particular, ϕ = u, can be taken for a test function. As a result, we obtain∫

Ω
z · ∇u dx =

∫
Ω

g · ∇u dx. (4.2)

The comparison with (1.13) shows that relation (2.3) with K = Ω holds, and Theorem 4.1 follows
from Proposition 2.2.

3. Proof of Theorem 4.2. Let

ρ ∈ C∞(Ω), ρ � 0, ρ = 0 in a neighborhood of S.

Proposition 4.5. Suppose that
(i) vε ∈ W 1,β

0 (Ω) and vε ⇀ v in W 1,α
0 (Ω).

(ii) The sequence vε is compact in Lβ(Ω).
Then

lim
ε→0

∫
Ω

ρAε(x,∇uε) · ∇vε dx =
∫

Ω
ρz · ∇v dx.

Proof. It follows from identity (1.10) that

Jε ≡
∫

Ω
Aε(x,∇uε) · ∇vερ dx = −

∫
Ω

Aε(x,∇uε)vε · ∇ρ dx +
∫

Ω
g · ∇(vερ) dx,

lim
ε→0

Jε = −
∫

Ω
zv · ∇ρ dx +

∫
Ω

g · ∇(vρ) dx, (4.3)

where the convergence Aε(x,∇uε)vε ⇀ zv in (L1(Ω))d and the convergence vερ ⇀ vρ in W 1,α
0 (Ω),

which follow from (ii), have been used. Since vρ ∈ H
1,p(·)
0 (Ω) by the assumption of the theorem

and the choice of ρ, it follows that the right-hand side in (4.2) is equal to
∫
Ω ρz · ∇v dx, which

completes the proof of the proposition.
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It is now tempting to take vε = uε , but condition (ii) does not hold for uε in general (since
condition (2.1) is not assumed). For this reason, for vε we take the cutoff function

u(N)
ε =

{
uε(x) for |u(x)| � N,

±N for |u(x)| > N.

Then for fixed N we have

lim
ε→0

∫
Ω

ρAε(x,∇uε) · ∇u(N)
ε dx =

∫
Ω

ρz · ∇u(N) dx. (4.4)

In what follows (see Lemma 4.6), we indicate a relation permitting one to remove the cutoff
from (4.4). Then the inequality

lim sup
ε→0

∫
Ω∩B

Aε(x,∇uε) · ∇uε dx �
∫

Ω∩B
z · ∇u dx,

where B is a ball and B∩S = ∅, can readily be obtained. Now all assertions of Theorem 4.2 follow
from Proposition 2.2.

Lemma 4.6. One has

0 � Aε(x,∇uε) · ∇u(N)
ε � Aε(x,∇uε) · ∇uε,

lim
N→∞

∫
Ω

Aε(x,∇uε) · (∇uε −∇u(N)
ε ) dx = 0 uniformly with respect to ε.

Proof. Set T ε
N = {x ∈ Ω, |uε(x)| > N}. We have

|T ε
N | � N−1‖uε‖L1(Ω) � cN−1.

Take ϕ = uε and ϕ = u
(N)
ε in (1.10). Then∫

Ω
Aε(x,∇uε)(∇uε −∇u(N)

ε ) dx =
∫

T ε
N

g · ∇uε dx

�
( ∫

Ω
|∇uε|α dx

)1/α( ∫
T ε

N

|g|α′
dx

)1/α′

� c1

( ∫
T ε

N

|g|α′
dx

)1/α′

,

and it suffices to use the absolute integrability of the integrable function |g|α′
. The proof of the

lemma and hence of Theorem 4.2 is complete.

4. Proof of Theorem 4.3. It follows from (1.13) and (1.5) that

lim
ε→0

∫
Ω

Aε(x,∇uε) · ∇uε dx =
∫

Ω
|∇u|p dx.

Since the functional f(x, ξ) = |ξ|p(x) is strictly convex, by the Reshetnyak theorem (see [14]) we
obtain the strong convergence uε → u in W 1,α

0 (Ω). Therefore, we can assume that ∇uε(x) → ∇u(x)
for almost all x ∈ Ω. Then Aε(x,∇uε(x)) → |∇u(x)|p(x)−2∇u(x) almost everywhere. Consequently,
Aε(x,∇uε) ⇀ |∇u|p−2∇u in Lβ′

(Ω), as desired.
We omit the proof of Theorem 4.4, because a similar assertion (Lemma 4.8) is proved below.
5. So far, the approximation (1.8) has been studied. Now let us consider the approximation

(1.17) and study which solutions of the original problem (1.1) are attainable, i.e., can be obtained
with the use of the approximation (1.17). (In this connection, see [15] and [16].)

Lemma 4.7. If pε � p, then the limit function is the W -solution.

Proof. By closure, identity (1.10) holds for every function ϕ ∈ H
1,pε( · )
0 (Ω) ≡ W

1,pε( · )
0 (Ω),

in particular, for ϕ ∈ W
1,p( · )
0 (Ω) = W . Here the regularity of the exponents pε (see (1.17)) and
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the inequality pε � p have been used. Furthermore, the flows Aε(x,∇uε) turn out to be bounded
in Lp′( · )(Ω, Rd), and hence Aε(x,∇uε) ⇀ z in Lp′( · )(Ω, Rd). It follows that∫

Ω
z · ∇ϕ dx =

∫
Ω

g · ∇ϕ dx ∀ϕ ∈ W ; (4.5)

in particular, relation (4.2) holds. The comparison with (1.13) shows that relation (2.3) holds with
K = Ω. It follows that z = |∇u|p−2∇u, and identity (4.5) itself means that u is the W -solution.
The proof of the lemma is complete.

Lemma 4.8. If pε � p, then the limit function u is the H -solution.

Proof. By the Minty lemma (see [17, Chap. III]), we have∫
Ω
[Aε(x,∇ϕ) − g] · (∇ϕ −∇uε) dx � 0 ∀ϕ ∈ C∞

0 (Ω),

and the passage to the limit leads to the inequality∫
Ω
[|∇ϕ|p−2∇ϕ − g] · (∇ϕ −∇u) dx � 0 ∀ϕ ∈ C∞

0 (Ω). (4.6)

Since the exponents pε are regular and uε ∈ H
1,pε( · )
0 (Ω) ⊂ H

1,p( · )
0 (Ω), we have u ∈ H

1,p( · )
0 (Ω).

Relation (4.6) holds automatically for ϕ ∈ H
1,p( · )
0 (Ω), and therefore (by the Minty lemma), it

means that u is the H -solution. The proof of the lemma is complete.
These lemmas imply the following assertion.

Lemma 4.9. If the H - and W -solutions do not coincide, then there exists a continuum of
approximation solutions.

Proof. Let p̄ε and p̂ε be approximations leading to the W - and the H -solution, respectively.
Take pε(x, t) = p̄ε(x)t + p̂ε(x)(1− t), 0 � t � 1, and denote the corresponding solution by un(x, t).
If u1 is the W -solution, u2 is the H -solution, and u1 
= u2 , then there exists a linear functional l ∈
(L1(Ω))∗ = L∞(Ω) such that l(u1) 
= l(u2). Consider the approximation pε(x) = pε(x, tε), where
tε is determined by the condition

lim
ε→0

l(uε( · , tε)) =
l(u1) + l(u2)

2
.

Then u 
= u1 and u 
= u2 for u = limε→0 u( · , tε). The proof of the lemma is complete.

6. Consider the model example and an approximation pε → p that gives a weak solution u
other than the H - and W -solutions. In this example, the exponent (see (1.6)) is regular outside
the origin, and by Theorem 4.2 we have

|∇uε|pε ⇀ |∇u|p in L1(Ω \ Bδ), Bδ = {|x| < δ}. (4.7)

Here there is no convergence |∇uε|pε ⇀ |∇u|p in L1(Ω). Indeed, this convergence would mean
(see (1.13)) that ∫

Ω
|∇u|p dx = lim

ε→0

∫
Ω
|∇uε|pεdx =

∫
Ω

g · ∇u dx;

i.e., u would be a variational solution, which is impossible, since the H - and W -solutions are the
only variational solutions. Thus,

lim
ε→0

∫
Ω
|∇uε|pε dx >

∫
Ω
|∇u|p dx.

This, together with (4.7), implies that the sequence |∇uε|pε is not weakly compact in L1(Ω) and
that the limit measure µ admits the representation dµ = |∇u|p dx + dµs , where µs is a nontrivial
measure concentrated at the point x = 0.
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5. Some Applications

1. We start from the well-known thermistor problem. Consider the system{
div(|∇u|σ(θ)−2∇u) = div g, u|∂Ω = 0,

−∆θ = |∇u|σ(θ), θ|∂Ω = 0,
(5.1)

where σ(θ) is a measurable function on [0,∞) satisfying the condition

1 < α � σ(θ) � β and β < α∗ for α < d. (5.2)

System (5.1) provides a simultaneous description of the electric field (u is the electric potential)
and temperature θ. Such systems, and especially systems of similar structure in hydromechanics,
have been subject of much attention (see [18]–[22]). Earlier, existence theorems were proved only
under some smallness conditions, e.g., in the case of a sufficiently small Lipschitz constant for the
function σ. For a survey of this kind of results, see [24]. The above-developed technique for passing
to the limit allows one to dispose of any smallness requirements. Let us introduce the regularized
system {

div Aε(x,∇uε) = div g, uε|∂Ω = 0,

−∆θε = Aε(x,∇uε) · ∇uε, θε|∂Ω = 0,
(5.3)

where Aε(x,∇uε) = |∇uε|pε(x)−2∇uε + ε|∇uε|β−2∇uε and pε(x) = σ(θε(x)).
By the estimate (1.12), the right-hand side f ≡ Aε(x,∇uε) ·∇uε of the second equation in (5.3)

is bounded in L1(Ω). By the L1-theory for the Laplacian (see [24]),

‖θε‖W 1,γ
0 (Ω)

� c(γ)‖f‖L1(Ω) ∀γ ∈
[
1,

d

d − 1

)
. (5.4)

We assume without loss of generality that uε ⇀ u in W 1,α
0 , θε ⇀ θ in W 1,1

0 , and pε(x) → p(x) =
σ(θ(x)) almost everywhere. Then, by Theorem 2.1, the limit function u is a weak solution of the
first equation in (5.1). Let us pass to the limit in the second equation in system (5.3). To this end,
we rewrite the equation in the form

−div∇θε = div[(Aε(x,∇uε) − g)uε] + g · ∇uε

and use Theorem 2.1. Since the flows are weakly convergent to a flow in Lβ′
(Ω) and (by virtue of

the condition β < α∗) uε → u strongly in Lβ(Ω), we have

−div∇θ = div[(|∇u|σ(θ)−2∇u − g)u] + g · ∇u

in the sense of distributions. Note that the passage to the limit can also be performed right in
the second equation of system (5.3) (without the above-indicated transformation), but then there
arises a measure µ on the right-hand side of the equation,

−div∇θ = µ = |∇u|σ(θ) + µs.

This equation with measure is understood in the sense of distributions as well.
Theorem 5.1. There exist functions

θ ∈ W 1,γ
0 (Ω) ∀ γ ∈ [1, d/(d − 1)),

u ∈ W
1,p( · )
0 (Ω), p(x) = σ(θ(x)),

such that

div(|∇u|σ(θ)−2∇u) = div g,

−∆θ = div[(|∇u|σ(θ)−2 − g)u] + g · ∇u = |∇u|σ(θ) + µs

in the sense of distributions. Furthermore,∫
Ω
|∇u|σ(θ) dx �

∫
Ω

g · ∇u dx. (5.5)
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If equality holds in (5.5), then µs = 0.

2. Consider the well-known coupled system in hydromechanics,⎧⎪⎨
⎪⎩

div[(a(θ)|Du|σ(θ)−2Du − u ⊗ u)] = div g + ∇π,

div u = 0, u|∂Ω = 0,

−∆θ + u · ∇θ = a(θ)|Du|σ(θ), θ|∂Ω = 0.

(5.6)

Here u is the velocity vector, Du is the symmetric part of the gradient ∇u, π is pressure, θ is
temperature, g = {gij} is a symmetric matrix, gij ∈ L∞(Ω), and the function a(θ) is measurable
and satisfies the condition 0 < a1 � a(θ) � a2 < ∞, where a1 and a2 are some constants. To be
definite, let d = 2, 3. We assume that σ(θ) satisfies condition (5.2) with

α >
3d

d + 2
. (5.7)

This assumption is related to the presence of the inertial term div(u ⊗ u).
Let us introduce the regularized system⎧⎪⎨

⎪⎩
div[Aε(x, Duε) − uε ⊗ uε] = div g + ∇πε

div uε = 0, uε|∂Ω = 0
−∆θε + uε · ∇θε = Aε(x, Duε) · Duε, θε|∂Ω = 0,

(5.8)

where Aε(x, Duε) = a(θε)|Duε|pε(x)−2Duε + ε|Duε|β−2Duε , ε > 0, and pε(x) = σ(θε(x)). For
fixed ε > 0, the solvability of this system is well known ([19], [22]). The energy relation∫

Ω
Aε(x, Duε) · Duε dx =

∫
Ω

g · Duε dx

implies an estimate of the form (1.12) with ∇uε replaced by Duε . It follows from this estimate
and from the Korn inequality that the sequence uε is bounded in W 1,α

0 (Ω) and that the sequence
of “flows” Aε(x, Duε) is bounded in Lβ′

(Ω). It is important that, as follows from condition (5.7)
and embedding theorems, the sequence uε ⊗ uε is bounded in Lα′

. It is also necessary to study
the sequence of pressures πε . We assume without loss of generality that

∫
Ω πε dx = 0. Consider the

“total flow”

wε = Aε(x, Duε) − uε ⊗ uε − g − πεI, where I is the identity matrix.

We use a well-known result due to Bogovskii [26]: if h ∈ Lβ(Ω) and
∫
Ω h dx = 0, then there exists

a vector ϕ ∈ W 1,β
0 (Ω) such that div ϕ = h and ‖∇ϕ‖Lβ(Ω) � c0‖h‖Lβ(Ω) . Now it follows from the

relation div wε = 0 that∫
Ω

πεh dx =
∫

Ω
πεI · ∇ϕ dx =

∫
Ω
(πεI − wε) · ∇ϕ dx � c1‖h‖Lβ ,

since ‖wε − πε‖Lβ′ � c2 . This implies the inequality ‖πε‖Lβ′ � c1 , i.e., the boundedness of the
total flow wε in Lβ′

(Ω). By the relation πεI · ∇uε = 0 and the above-mentioned boundedness
of the sequence uε ⊗ uε in Lα′

(Ω), the sequence wε · ∇uε is bounded in L1(Ω). (Thus, we have
condition (iii) in Lemma 2.4.) The right-hand side f = Aε(x, Duε) ·Duε of the last relation in (5.8)
is bounded in L1 . As will be shown later, the estimate (5.4) remains valid. Therefore, we assume
without loss of generality that the following convergence relations hold:

θε ⇀ θ in W 1,γ
0 , pε(x) = σ(θε(x)) → p(x) = σ(θ(x)) almost everywhere,

uε ⇀ u in W 1,α
0 , uε ⊗ uε → u ⊗ u in Lα′

,

Aε(x, Duε) ⇀ z, πε ⇀ π in Lβ′
.

Here u ∈ W
1,p( · )
0 and z ∈ Lp′( · ). By Lemma 2.4,

wε · ∇uε dx ⇀ (z − u ⊗ u − g − π) · ∇u dx + dµs,
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and therefore,
Aε(x, Duε) · ∇uε = Aε(x, Duε) · Duε ⇀ z · Du + dµs.

For an arbitrary closed set K ⊂ Ω \ S , where S is the support of the measure µs , we have

lim sup
ε→0

∫
K

Aε(x, Duε) · Duε dx �
∫

K
z · Dudx,

and by Lemma 3.3 we conclude that z = a(θ)|Du|p−2Du. This allows us to pass to the limit in the
first equation in (5.8). Next, we write

−div∇θε + uε · ∇θε = div[(Aε(x, Duε) − g)uε] + g · Duε.

On the left-hand side, the convergence uε · ∇θε ⇀ u · ∇θ in L1(Ω) takes place. Indeed, using
conditions (5.7) for d = 2, 3, we see that uε → u in L(α∗+d)/2 (because α∗ > d) and ∇θε ⇀ ∇θ
in Lγ(Ω), γ = (α∗+d

2 )′ < d
d−1 . The passage to the limit on the right-hand side is based on the same

argument as in the termistor problem considered above.
It remains to justify estimate (5.4) for the solution of the second equation in (5.8).
The sequence of solenoidal vectors uε is bounded in Lα∗

, and α∗ > d by condition (5.7).
Therefore, the representation uε = div Gε holds, where Gε ∈ W 1,α∗

(Ω), ‖Gε‖L∞ � M , is a skew-
symmetric matrix. By condition (5.7), our equation can be rewritten in the divergence form

−∆θε + uε · ∇θε = −div((I − Gε)∇θε) = f,

and the estimate (5.4) follows from the results of the L1-theory [25].
Theorem 5.2. There exist functions

θ ∈ W 1,γ
0 (Ω) ∀γ ∈ [1, d/(d − 1)),

u ∈ (W 1,p( · )
0 (Ω))d, p = σ(θ), div u = 0, and π ∈ Lβ′

(Ω)

such that{
div[a(θ)|Du|σ(θ)−2Du − u ⊗ u] = div g + ∇π,

−∆θ + u · ∇θ = div[(a(θ)|Du|σ(θ)−2Du − g)u] + g · Du = a(θ)|Du|σ(θ) + µs

in the sense of distributions, where µs is a singular measure in Ω. Furthermore,∫
Ω

a(θ)|Du|σ(θ) dx �
∫

Ω
g · Dudx. (5.9)

If equality holds in (5.9), then µs = 0.

6. Model Example

1. Let d = 2, let Ω = {|x| < 1} be the unit disk, and let the exponent p be given by
relation (1.6). The coordinate axes divide the disk Ω into four sectors Ω1 , Ω2 , Ω3 , and Ω4 in
accordance with the natural numbering of quarter-planes. Consider the function

ψ0(x) = (1 − r2)ψ(x), ψ(x) =

⎧⎪⎪⎨
⎪⎪⎩

1 for x ∈ Ω1,
sin θ for x ∈ Ω2,
0 for x ∈ Ω3,
cos θ for x ∈ Ω4,

(6.1)

where r, θ are polar coordinates. Note that |∇ψ0| � 2 on Ω1 ∪ Ω3 and |∇ψ0| � 2r−1 on Ω2 ∪ Ω4 .
Therefore,

∫
Ω |∇ψ0|p(x) dx < ∞; i.e., ψ0 ∈ W

1,p( · )
0 . Let us verify that ψ0 /∈ H

1,p( · )
0 (Ω). Assuming

the contrary, we find a sequence uε ∈ C∞
0 (Ω) such that∫

Ω
|∇uε|p dx � C < ∞, ∇uε → ∇ψ0 in Lα(Ω).
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It follows that the family uε is bounded in W 1,β(Ω1) and W 1,β(Ω3). We have β > 2, and therefore,
by the Sobolev embedding theorem, this family is uniformly Hölder in the closed domain Ω1 ∪Ω3 .
Therefore, the function ψ0 itself must be continuous in the closed domain Ω1 ∪ Ω3 as well, which
is obviously untrue.

Thus, we have proved that the exponent (1.6) is not regular in Ω. This is a long-known re-
sult (see [3], [4]). By contrast, we also mention the well-known fact stated in the lemma below.

Lemma 6.1. The exponent (1.6) is regular in the annulus {0 < δ < |x| < 1}
2. As was mentioned above, the function u ∈ W

1,p( · )
0 (Ω) is continuous in each of the closed

domains Ω1 and Ω3 , and one can speak of the limit values of u at x = 0 from the first and third
quadrants.

Lemma 6.2. A function u ∈ W
1,p( · )
0 (Ω) belongs to the subspace H

1,p( · )
0 (Ω) if and only if the

above-mentioned limit values coincide.

Proof. We can assume that the common limit value is zero. Take the cutoff function

η ∈ C∞(R2), η ≡ 0 for |x| � 1/2, η ≡ 1 for |x| � 1,

and set uε(x) = ηε(x)u(x) and ηε(x) = η(ε−1x). Note that uε ∈ H0 by Lemma 6.1 and it remains
to prove the weak convergence

∇uε = ηε∇u + u∇ηε ⇀ ∇u in Lp( · ), (6.2)

since the space Lp( · ) is reflexive (see [1]) and, by the Mazur lemma (see [13, Chap. I, Sec. 1]),
there exists a suitable approximation in norm. In turn, since ∇uε(x) → ∇u(x) almost everywhere,
to prove the weak convergence (6.2), it suffices to establish the boundedness of the family ∇uε in
Lp( · ). The boundedness of the first term ηε∇u is obvious, and therefore everything is now reduced
to the boundedness of u∇ηε . By the embedding theorem, we have

|u(x)| � c |x|(1−2/β) on Ω1 ∩ Ω3,

and the gradient ∇ηε is concentrated in the disk Bε = {|x| < ε}. It follows that∫
Ω1∪Ω3

|∇ηε|β|u|β dx � c1ε
−βε2εβ(1−2/β) = c1.

Furthermore, by the embedding theorem, u ∈ L2α/(2−α)(Ω2 ∪ Ω4), and by the Hölder inequality,
∫

Ω2∪Ω4

|∇ηε|α|u|α dx � c2ε
−α

∫
Bε

|u|α dx � c2ε
−α

( ∫
Bε

|u|2α/(2−α) dx

)(2−α)/2

|Bε|α/2 → 0.

Thus, the proof of the lemma is complete.

Theorem 6.3. The space H
1,p(·)
0 (Ω) has codimension 1 in W

1,p(·)
0 (Ω).

Proof. Let u be an arbitrary function in W
1,p( · )
0 (Ω), let c1 and c3 be the limit values from

the sectors Ω1 and Ω3 , respectively, and let λ = c1 − c3 . Then, by Lemma 6.2, we have u − λψ0 ∈
H

1,p( · )
0 (Ω), as desired.

3. Let us indicate a nontrivial functional vanishing on H
1,p( · )
0 . Set

w(x) = w(x1, x2) = ψ(−x2, x1), b(x) =
{
− ∂w

∂x2
,

∂w

∂x1

}
. (6.3)

By construction (see also (6.1)), the vector b belongs to the Orlicz space Lp′( · )(Ω). Furthermore,
b is solenoidal; namely, div b = 0 in the sense of distributions,

∫
Ω b·∇ϕ dx = 0 for every ϕ ∈ C∞

0 (Ω).
Indeed, since w ∈ W 1,1(Ω), we have∫

Ω

(
− ∂w

∂x2

∂ϕ

∂x1
+

∂w

∂x1

∂ϕ

∂x2

)
dx =

∫
Ω

w

(
∂2ϕ

∂x2∂x1
− ∂2ϕ

∂x1∂x2

)
dx = 0.
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It follows that the functional
l(ϕ) =

∫
Ω

b · ∇ϕ dx

is continuous on W
1,p( · )
0 (Ω) and is annihilated by H

1,p( · )
0 (Ω). Next, by construction,

b(x) · ∇ψ(x) ≡ 0 almost everywhere on Ω. (6.4)
Let us verify that

l(ψ0) =
∫

Ω
b · ∇ψ0 dx = −1. (6.5)

By (6.4), b ·∇ψ0 = −b ·∇u, where u = r2ψ ∈ W 1,∞(Ω). Therefore, is suffices to use the proposition
below.

Proposition 6.4. If u ∈ W 1,∞(Ω) and u|∂Ω = ψ , then
∫
Ω b · ∇u dx = 1.

Proof. If ν is the unit outward normal to ∂Ω = {|x| = 1}, then

b · ν = − ∂w

∂x2
cos θ +

∂w

∂x1
sin θ = −∂w

∂θ
,

∫
Ω
∇u · b dx =

∫
∂Ω

ψb · ν ds = −
∫ π/2

0

∂w

∂θ
dθ =

∫ π/2

0
sin θ dθ = 1,

as desired.

4. Let us show that the set of weak solutions is nonconvex. Consider the Dirichlet problem (1.1)
with g = b, where b is the vector defined in (6.3). Since the vector b is solenoidal, it follows that
the H -solution is zero. Relation (6.5) shows that the W -solution is nonzero. We denote it by u.
Let us verify that tu is not a weak solution for small t > 0. Assuming the contrary, we obtain∫

Ω
|t∇u|p−2t∇u · ∇ϕ dx =

∫
Ω

b · ∇ϕ dx = 0 ∀ϕ ∈ C∞
0 (Ω),

tβ−2

∫
Ω1∪Ω3

|∇u|β−2∇u · ∇ϕ dx + tα−2

∫
Ω2∪Ω4

|∇u|α−2∇u · ∇ϕ dx = 0,

∫
Ω2∪Ω4

|∇u|α−2∇u · ∇ϕ dx = 0, (6.6)

where the passage to the limit as t → 0 has been performed. By continuity, since u ∈ W
1,p( · )
0 (Ω) ⊂

W 1,α
0 (Ω), relation (6.6) holds for every ϕ∈W 1,α

0 (Ω). It follows that u = 0 on Ω2∪Ω4 . However, this
means that the limit values of u from the sectors Ω1 and Ω3 are zero as well, i.e., that u ∈ H

1,p( · )
0 ,

which is impossible.
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[9] F. Murat, “Compacité par compensation,” Ann. Scuola Norm. Sup. Pisa. Cl. Sci. Fis. Mat.,

5:3 (1978), 489–507.
[10] V. V. Zhikov, V. V. Kozlov, and S. M. Oleinik, Homogenization of Differential Operators [in

Russian], Nauka, Moscow, 1993.
[11] V. V. Zhikov, “On passage to the limit in nonlinear elliptic equations,” Dokl. Ross. Akad.

Nauk, 420:3 (2008), 300–305; English transl.: Russian Acad. Sci. Dokl. (Math.), 77:3 (2008),
383–387.

[12] N. Dunford and J. Schwartz, Linear Operators. General Theory, Interscience Publishers, New
York–London, 1958.

[13] I. Ekeland and R. Temam, Convex Analysis and Variational Problems, New York, North-
Holland, 1976.

[14] Yu. G. Reshetnyak, “General theorems on semicontinuity and on convergence with a func-
tional,” Sibirsk. Mat. Zh., 8:5 (1967), 1051–1069; English transl.: Siberian Math. J., 8 (1967),
801–816.

[15] V. V. Zhikov, “On the homogenization technique for variational problems,” Funkts. Anal.
Prilozhen., 35:1 (2001), 23–39; English transl.: Functional. Anal. Appl., 33:1 (1999), 11–24.

[16] S. E. Pastukhova, “Degenerate equations of monotone type: Lavrent′ev phenomenon and at-
tainability problems,” Mat. Sb., 198:10 (2007), 89–118; English transl.: Russian Acad. Sci.
Sb. Math., 198:10 (2007), 1465–1494.

[17] D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their
Applications, Academic Press, New York–London, 1980.

[18] S. D. Howison, J. F. Rodrigues, and M. Shillor, “Stationary solutions to the thermistor prob-
lem,” J. Math. Anal. Appl., 174:2 (1993), 573–588.
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