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Abstract. In the space of diffeomorphisms of an arbitrary closed manifold of dimension � 3, we
construct an open set such that each diffeomorphism in this set has an invariant ergodic measure
with respect to which one of its Lyapunov exponents is zero. These diffeomorphisms are constructed
to have a partially hyperbolic invariant set on which the dynamics is conjugate to a soft skew product
with the circle as the fiber. It is the central Lyapunov exponent that proves to be zero in this case,
and the construction is based on an analysis of properties of the corresponding skew products.
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1. Introduction

By definition, hyperbolic dynamical systems have nonzero Lyapunov exponents. However, they
are not generic in the space of all dynamical systems [1]. A wider class is that of nonuniformly
hyperbolic systems studied in Pesin’s theory [2]. Such systems as well have nonzero Lyapunov
exponents and are also globally nongeneric.

In more detail, Pesin’s theory deals with diffeomorphisms that have nonzero Lyapunov ex-
ponents with respect to some given invariant measure and describes the behavior of trajectories
generic with respect to this measure. The invariant measure can be given in advance and be coor-
dinated with the smooth structure, or it can be determined by the dynamical system. These two
cases substantially differ from each other.

Bochi [7] discovered that generic area-preserving C1-diffeomorphisms of two-dimensional man-
ifolds are either Anosov or have zero Lyapunov exponents.

Shub and Wilkinson [10] discovered a surprising property of volume-preserving diffeomorphisms
in dimensions greater than two. They found an open set of partially hyperbolic diffeomorphisms of
the three-dimensional torus with the following property. Every diffeomorphism belonging to this set
admits an invariant fibration of the torus into circles. These fibers continuously (but not absolutely
continuously) depend on the initial condition. However, almost all (in the sense of the invariant
Lebesgue measure) the orbits of each of these maps have nonzero (two positive and one negative)
Lyapunov exponents. Paradoxically, the set of full measure consisting of these orbits meets each
fiber in a set of measure zero on the circle. Later, Katok observed and Ruelle an Wilkinson [11]
proved that the intersection consists of finitely many points.

For volume-preserving partially hyperbolic systems, under certain additional assumptions, Bar-
aviera and Bonatti [9] proved that the zero central Lyapunov exponent for the preserved volume
(taken as an invariant measure) can be eliminated by a C1-small perturbation in the class of such
systems. The cited results belong to so-called conservative dynamics.

Our research follows the “nonconservative approach,” i.e., the study of systems whose invariant
measures are determined by the dynamics and may not be coordinated with the smooth structure.
One important problem of nonconservative dynamics was stated in [10]: “Is it true that a generic
diffeomorphism has nonzero Lyapunov exponents with respect to all ‘good’ invariant measures?”
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An invariant measure is said to be good if it can be obtained as a partial limit of the time averages
of the Lebesgue measure (the Krylov–Bogolyubov procedure).

Until recently, even the simpler question as to whether a generic diffeomorphism has nonzero
Lyapunov exponents with respect to all invariant measures has been open. We provide a negative
answer this question. The present paper is a continuation of [18].

Earlier, Gorodetski and Ilyashenko [14]–[17] proved that the presence of a single orbit with zero
central Lyapunov exponent may be irremovable by small perturbations.

2. Main Results

In the present paper, we prove that, in a sense (see Theorem 1 below), zero Lyapunov exponents
are persistent. We follow the strategy suggested by Gorodetski and Ilyashenko. First, the new
phenomenon is revealed for step skew products. (We recall the definitions in Sec. 3.) Then the
technique is adapted to the case of soft skew products. Finally, the smooth realization technique is
used to derive the corresponding result for smooth systems. The first step (the study of Lyapunov
exponents for step skew products) was made in [18]. Here we make the second and third steps.

Theorem 1 (main result). Let M be a closed manifold with dim M � 3. Then there exists a
domain U ⊂ Diff1(M) such that every diffeomorphism f ∈ U has the following property. There
exists a locally maximal partially hyperbolic set Λ ⊂ M and a nonatomic ergodic invariant measure
µ with supp µ ⊂ Λ such that one of the Lyapunov exponents of f with respect to µ is zero.

2.1. Scheme of proof of the main result. In this section, we outline the proof of the main
result. As was already mentioned, this theorem is proved by combining the following two theorems.
The first of these (rigorously stated in Sec. 4) establishes that zero Lyapunov exponents are generic
for soft skew products.

Theorem 2. The space of Hölder soft skew products over the Smale horseshoe contains an
open domain including step skew products arbitrarily close to the identity product and consisting of
products each of which has a measure with zero Lyapunov exponent along the fiber.

The methods used to prove this assertion are similar to those applied in [18] to step skew
products. Namely, we use an iterative procedure to construct a sequence of periodic orbits with
increasing periods. In this sequence, the subsequent orbits become more and more “similar” to
the preceding ones (more precisely, to the preceding orbits passed several times). The Lyapunov
exponents corresponding to these orbits tend to zero. As a result, the sequence of measures corre-
sponding to these orbits weakly converges to some ergodic measure whose Lyapunov exponent is
zero.

The other theorem, which is due to Gorodetski [16], is rigorously stated in Sec. 5. Roughly
speaking, it states that, under certain conditions, the property of a smooth dynamical system to
have a (locally maximal partially hyperbolic) invariant set on which the dynamics is a soft skew
product is preserved under small perturbations, the soft skew products for the perturbed systems
being Hölder and close to the original soft skew product.

The main result can be derived from these two theorems as follows. One considers a smooth
realization of the Smale horseshoe and constructs a step skew product over it in the domain guar-
anteed by Theorem 2. For each diffeomorphism sufficiently close to the one thus constructed, there
exists a subset on which the dynamics is conjugate to a Hölder soft skew product close to the orig-
inal one. Thus, this skew product belongs to the same domain and hence has an invariant measure
with zero Lyapunov exponent along the fiber. It follows that one of the Lyapunov exponents for
the corresponding invariant measure of the perturbed diffeomorphism is zero.

The technique of smooth realizations used in this argument was developed by Gorodetski and
Ilyashenko [14]–[16].

2.2. Acknowledgments. The authors are keenly grateful to Yu. S. Ilyashenko for patience
and all-round support of the present paper and to A. S. Gorodetski for helpful ideas and discussion.
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2.3. Outline of the paper. Section 3 introduces notation and definitions. Theorem 2 is
rigorously stated in Sec. 4, where we also describe the idea and outline of the proof. In Sec. 5,
we use the smooth realization technique and the theory of partially hyperbolic systems to derive
Theorem 1 from Theorem 2. Finally, we prove Theorem 2 in Secs. 6–9.

3. Notation and Definitions

Let ΣN be the space of two-sided infinite sequences over the alphabet {0, . . . , N − 1}, and let
σ : ΣN → ΣN be the Bernoulli shift. We equip ΣN with the metric dΣN (ω, ω′) = 2−min{|n|:ωn �=ω′

n}
and set M = ΣN × S1 .

Let gi : S1 → S1 , i = 0, . . . , N − 1, be diffeomorphisms of the circle. Consider the map

G : M → M, (ω, x) → (σω, gω0(x)). (1)

Note that the action of G on the fiber over a point ω of the base depends only on the element ω0

rather than on the entire sequence ω. We refer to such skew products as step skew products.
Now let fω : S1 → S1 , ω ∈ ΣN , be a family of diffeomorphisms of the circle. Consider the map

F : M → M, (ω, x) → (σω, fω(x)). (2)

We refer to such skew products as soft skew products, since the map on the fiber depends on the
entire word ω and is not determined by any finite part of ω.

Definition 1. The soft skew product F given by (2) is said to be (C, α)-Hölder if

∀ω, ω′ ∈ ΣN , dC0(fω, fω′) < C · dΣN (ω, ω′)α. (3)

Definition 2. An (L, C, α)-system is a (C, α)-Hölder skew product such that the maps fω

depend on ω continuously in the Diff1-norm (in particular, the skew product is smooth along the
fibers) and the estimate

∀ω ∈ ΣN , max
x∈S1

max(f ′
ω(x), (f−1

ω )′(x)) < L

holds for the maximum dilatation rate.

We equip the space of (L, C, α)-systems with the metric

d(F, F̃ ) = sup
ω∈Σn

dDiff1(fω, f̃ω)

of the uniform Diff1-distance.
Let us introduce the notation

f̄m[ω] = fσm−1ω ◦ · · · ◦ fσω ◦ fω, , f̄−m[ω] = f−1
σ−mω

◦ · · · ◦ f−1
σ−1ω

, f̄0[ω] = id .

Definition 3. Let F be a skew product of the form (2). The Lyapunov exponent along the fiber
at a point (ω, x) is the following function (defined at the points where the limit exists):

λc(ω, x) := lim
n→∞

1
n

ln |Df̄n[ω](x)|.

If F has an ergodic probability measure ν , then there exists a set of full ν -measure such that
the Lyapunov exponent along the fiber is defined for each point of this set and is independent of
the point. Thus, the function λc(ω, x) is constant on a set of full ν -measure, and one can speak
of the Lyapunov exponent along the fiber with respect to the measure ν . (This exponent will be
denoted by λc(ν).)
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4. Main Result for Soft Skew Products

Theorem 2. Let the number of symbols satisfy the inequality N � 5. Then for any L > 1,
C > 0, and α ∈ (0, 1) the space of (L, C, α)-systems contains an open domain in which every
system has a nonatomic ergodic invariant measure with zero Lyapunov exponent along the fiber.
This domain contains step skew products arbitrarily close to the identity (along the fiber) map.

To prove Theorem 2, we shall construct the desired measure as a limit of measures uniformly
distributed on periodic orbits whose Lyapunov exponents tend to zero and which, in a sense,
“resemble” one another.

The idea is implemented as follows. In Sec. 6, following Gorodetski and Ilyashenko (see [15] and
[16]), we study the divergence of orbits of soft skew products. Section 7 describes a construction
that, given a periodic orbit, produces another periodic orbit that has a larger period and a smaller
absolute value of the Lyapunov exponent and sufficiently “resembles” the original orbit. In Sec. 8,
we inductively construct the desired sequence of orbits, prove that the limit measure is ergodic
and nonatomic, and show that, as a consequence of ergodicity, the Lyapunov exponent along the
fiber for the limit measure is the limit of Lyapunov exponents. Finally, in Sec. 9 we construct
diffeomorphisms satisfying the conditions in Sec. 6.

5. Smooth Realization and Proof of Theorem 1

Consider the Smale horseshoe realized as a map of pairwise disjoint rectangles. Namely, let
B = [0, 1] × [0, 1] be the unit rectangle on the coordinate plane. We divide it into eleven equal
vertical rectangles Ck , k = 0, . . . , 10, and set Di := C2i+1 . Let us divide the same rectangle into
eleven equal horizontal rectangles C ′

k and set D′
i := C ′

2i+1 .
Let D =

⋃4
i=0 Di and D′ =

⋃4
i=0 D′

i . The map T : D → D′ acts on each of the rectangles Di

by linear contraction along the vertical and linear dilatation along the horizontal and takes it to
the respective rectangle D′

i .
It is well known that T has an invariant set Λ homeomorphic to Σ5 with T |Λ being conjugate

to the Bernoulli shift σ : Σ5 → Σ5 . We denote the conjugating homeomorphism by Φ0 : Λ → Σ5 .
Let diffeomorphisms {gi}i=0,...,4 of the circle be given. Then we can construct a smooth realiza-

tion of the step skew product (1). Namely, set

F : D × S1 → D′ × S1, F (z, x) = (T (z), gj(x)) for z ∈ Dj .

It is easily seen that F |Λ×S1 is conjugate to the map (1). The set Λ×S1 is partially hyperbolic
for F (provided that the gi are sufficiently close to the identity map), and its central fibers are
fibers of the projection Λ × S1 → Λ onto the first factor Λ � Σ5 .

Theorem 3 (Gorodetski [16]). Let T : D → D′ be a Cr+1-smooth (0 � r � ∞) map that is
hyperbolic with locally maximal set Λ =

⋂
n∈Z

Tn(D), and let M be a closed manifold. Consider
the map F0 = T × idM : D ×M → D′ ×M . There exists a Cr+1-neighborhood V of F0 such that
the following assertions hold for each diffeomorphism B ∈ V :

1. There exists an invariant subset ∆B homeomorphic to Λ × M .
2. The projection Φ: (∆B, B) → (Λ, T ) is a semi-conjugation.
3. The fibers Φ−1(z) are Cr+1-smooth manifolds for all z ∈ Λ.
4. The dependence of the fibers Φ−1(z) on the point z ∈ Λ is Hölder continuous in the Cr -norm.

Moreover, the related Hölder exponent and constant can be chosen to be the same for all diffeomor-
phisms in V .

In addition, we need the following assertion, which is a special case of Theorem 6.8 in [13].
Theorem 4 (Hirsch, Pugh, and Shub). Under the assumptions of Theorem 3, the central fibers

depend on the point in ∆B and on the diffeomorphism B continuously in the Cr+1-topology.
Consider a map B : D × S1 → U(D′) × S1 that is C1-close to T × idS1 . By Theorem 3, it

has a locally maximal partially hyperbolic set close to Λ × S1 and homeomorphic to this product;
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moreover, the dynamics on the set of central fibers is conjugate to the map T : Λ → Λ. Next, by
Theorem 4, the central fibers (circles) into which this set is divided are C1-close to the central fibers
of the unperturbed map. The map B permutes the fibers of the invariant set and hence defines an
induced map on the set of these fibers. It follows that if B is sufficiently close to F0 , then the map

GB : ∆B → Σ5 × S1, GB(z, x) = (Φ0 ◦ Φ(z, x), x),

is a homeomorphism C1-smooth along the central fibers. Note that GB preserves the coordinate
along S1 and conjugates the induced map on the set of central fibers with the Bernoulli shift; the
coordinates “along the base” (z and ω, respectively) are Hölder functions of each other (uniformly
with respect to x). Let V2 ⊂ V be a neighborhood of F0 in which GB is a homeomorphism.

Let us write out the restriction B|∆B
in these coordinates. We set

FB : Σ5 × S1 → Σ5 × S1, FB = GB ◦ B ◦ G−1
B .

We obtain a soft Hölder skew product that is C1-smooth along the fibers and whose maps depend
on the base point C0-Hölder continuously. Moreover, for B ∈ V2 this soft skew product C1-
continuously depends on B ; in particular, FB is close to the identity map.

We refer to FB as the rectification of B . By Theorem 3, there exists a C1-neighborhood
V3 ⊂ V2 of the map F0 = T × idS1 and constants C and α such that the rectification of any of the
maps B ∈ V3 is a (C, α)-system. Take an L0 > 1 such that L02−α < 1.

By Theorem 2, the intersection of the domain given by that theorem with the domain V3

contains a step skew product that is an (L0, C, α)-system. Consider its realization by the map B0 .
Note that the rectification of a C1-small perturbation B of B0 is an (L0, C, α)-system as well and
is close to the original system. Indeed, the Hölder constant and exponent are preserved by virtue of
the choice of the neighborhood V3 , and the strict inequality on the derivatives is preserved under
a C1-small perturbation.

By the construction of B0 , this rectification satisfies the conclusion of Theorem 2, i.e., has a zero
Lyapunov exponent along the fiber (since the rectification still belongs to the same domain). But
then one of the Lyapunov exponents (namely, the central Lyapunov exponent) of the corresponding
measure for the original map B is zero as well. We have proved that for each map B sufficiently
C1-close to B0 there exists an ergodic invariant measure with one of the Lyapunov exponents equal
to zero.

Finally, one can readily see that the map B0 itself can be extended to a diffeomorphism of an
arbitrary three-dimensional manifold. (Indeed, it is easy to extend it to a diffeomorphism, identical
on the boundary, of the solid torus [−1, 2] × [−1, 2] × S1 , and the solid torus can be embedded
in an arbitrary three-dimensional manifold.) Since close diffeomorphisms have close restrictions to
D × S1 , this proves Theorem 1.

6. Choice of a Domain in the Space of Soft Skew Products
and Divergence of Trajectories

Let a be an arbitrary finite word in the symbols 0, . . . , 4. By {. . . |a . . . } we denote an arbitrary
infinite sequence ω ∈ Σ5 in which a occurs starting from the zeroth position. In a similar way, we
introduce the notation {. . . a| . . . } and {. . . a|b . . . }. In what follows, we use the Greek letter ω to
denote infinite words and the Latin letter w to denote finite words. Finally, for a given finite word
w (with the zeroth position indicated), by (w) we denote the (appropriately positioned) infinite
periodic sequence with period w.

Definition 4. Let a soft skew product F be an (L, C, α)-system in the sense of Definition 2.
We say that it exhibits

• The dilatation property if there exist ν > 1 and δ1 > 0 such that for an arbitrary interval
I ⊂ S1 with |I| < δ1 one has

∃j1 ∈ {0, . . . , 4} : ∀ω = {. . . |j1 . . . } ∀x ∈ I, (Dfω)(x) > ν. (4)
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• The inverse dilatation property if there exist ν > 1 and δ1 > 0 such that for an arbitrary
interval I ⊂ S1 with |I| < δ1 one has

∃j2 ∈ {0, . . . , 4} : ∀ω = {. . . j2| . . . } ∀x ∈ I, (Df−1
σ−1ω

)(x) > ν. (5)

• A δ2-rotation if

dC0(fω, Rδ2) <
δ2
2

40
(6)

for each sequence ω = {. . . |0 . . . }; here Rδ2 stands for the rotation by the angle δ2 .
• A weakly attracting orbit if there exists an attracting periodic orbit X whose Lyapunov

exponent λ(X) < 0 along the fiber satisfies

λ(X) + ln ν > 0. (7)

• γ-predictability of trajectories, γ > 0, if

diam{f̄m[ω](x) | ω = {. . . w∗ . . . }} < γ, (8)

diam{f̄−m[ω](x) | ω = {. . . w∗ . . . }} < γ (9)

for each x ∈ S1 , each positive integer m, and each finite word w∗ = {w−m . . . w−1|w0 . . . wm−1}.
Finally, we say that the system is controllable if it possesses all of the properties mentioned above

and the constants in these properties can be chosen to satisfy the following constant compatibility
condition:

γ < δ2/40, δ1 > 3δ2, (10a)
and

α > log2 L. (10b)
Clearly, all these properties except for predictability of trajectories can be satisfied simultane-

ously for an appropriately chosen step skew product as well as for all soft systems sufficiently close
to it. The following lemma, which is due to Gorodetski, derives predictability of trajectories from
the condition on the Hölder exponent and the dilatation rate.

Lemma 1 [15, Lemma 3.1]. Let there be given constants L, C , and α such that condition (10b)
is satisfied. Then there exists a K = K(L, C, α) such that

dC0(f̄±m[ω], f̄±m[ω′]) � γ := Kδβ , (11)

where β = 1 − (ln L/ ln 2α), for any (L, C, α)-system δ-close to a step system.

7. Main Lemma on Periodic Orbits

Definition 5. Let X be a periodic orbit of F with period P , and let ε > 0. A point y is said
to be (ε, P )-good for X if there exists a point x ∈ X such that

∀l = 0, 1 . . . P − 1, d(F l(x), F l(y)) < ε.

Lemma 2 (Main Lemma). Let F be a controllable skew product of the form (2). Let X be an
arbitrary periodic orbit of F with period P and fiber multiplier θ , 0 < θ < 1, and suppose that the
fiber Lyapunov exponent λ := ln θ/P of X satisfies the inequality

λ + ln ν > 0.

Then for each ε > 0 there exists a periodic orbit Y of F with period P ′ > 2P and fiber Lyapunov
exponent λ′ < 0 such that

1. |λ′| < C|λ|, where C = C(F ), 0 < C < 1, is a global constant depending only on F .
2. λ′ + ln ν > 0.
3. There exists a subset Ỹ ⊂ Y and a projection π : Ỹ → X such that

(a) All points of Ỹ are (ε, P )-good with respect to X , and one can take x = π(y) in
Definition 5.
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(b) The proprotion κ := #Ỹ /#Y of points where the projection π is defined admits the
lower bound

κ � 1 − 3|λ|
lnL

.

(c) The number of elements in the preimage π−1(x) is the same for all x ∈ X .

A periodic orbit of a skew product is specified by an initial point (ω, x), ω ∈ ΣN , x ∈ S1 , where
ω = (w) is a periodic sequence with period w = { | w0 . . . wP−1} and

σP ω = ω, f̄P [ω](x) = x.

The idea of the proof is to fix an interval J on the central fiber and find a series of words w′(k)
in the base whose length increases with increasing positive integer k. The corresponding maps of
the skew product contract J into itself, thus guaranteeing the existence of a fixed point attractive
along the fiber, and their derivative on J is bounded uniformly with respect to k. By increasing k,
one can ensure a negative Lyapunov exponent arbitrarily close to zero.

When constructing the new orbit Y , we incidentally ensure the closeness of points of the new
and old orbits (properties 3(a)–3(c)). This permits us to obtain the ergodicity of the limit measure
as a consequence of the Birkhoff–Khinchin theorem.

Proof of Lemma 2. Let X be a periodic orbit with initial point (ω, x) = ((w), x), where
w is the period of the sequence ω. We shall construct a new periodic orbit Y with initial point
(ω′, y) = ((w′), y), where

w′ = {R1w
n1wr′(k)wk|wkwn1R2R3}. (12)

Here k, r′(k), and n1 are large positive integers to be chosen below, w, w′ , and Ri are words of
finite length, wm is the mth power of the word w, the vertical bar in the period marks the place
corresponding to the origin in ω′ , and finally, x and y are points on the circle.

The words wk in (12) ensure simultaneous unlimited growth in the length of w′ and strong
contraction of some interval J to a tiniest size. The word R2 dilates the image of J to J2 , using
fewer letters. (The specific efficiency, i.e., the logarithm of the derivative per letter, is at least ln ν
compared with |λ|, which is close to zero, for the letters of the orbit X .) The word R1 dilates
the preimage of J to J1 under inverse iterations, thus creating a “funnel”; entering the (large)
“opening” J1 of this funnel guarantees entering J after a number of iterations. The word R3 maps
the interval J2 into J1 , thus closing the chain of embeddings, so that the resulting periodic word
maps J into itself over the period. The words wn1 and wr′(k) play a technical role; they permit to
control the “error” along the fiber.

Fix an ε > 0. By the Diff1-continuous dependence of fω on the parameter in the base, for
any θ+ and θ− , 0 < θ− < θ < θ+ < 1, there exists a number n1(θ±) ∈ N and an interval
J(n1, θ

±) ⊂ S1 , J 
 x, LP |J | < ε, |J | < δ1 , such that

f̄P [ω∗](J) ⊂ J, (13)

Df̄P [ω∗]|J ∈ (θ−, θ+) (14)

for each sequence ω∗ = {. . . wn1 |wn1 . . . } and

diam{f̄l[ω∗](y) | ω∗ = {. . . wn1 |wn1 . . . }} < ε (15)

for all l, 0 � l � P − 1, and y ∈ J . The upper bound on the length of J readily implies the
inequality

ρ(f̄l[ω](x), f̄l[ω](y)) < ε (16)
for any pair of points x, y ∈ J , each integer l = 0, . . . , P − 1, and fixed ω.

Take θ− and θ+ sufficiently close to θ (the specific conditions on these will be indicated later)
and fix n1(θ±) and J(n1, θ

±).
Naturally, all constants and intervals to be constructed below depend on the choice of J , n1 ,

and θ± . In what follows, we do not emphasize this dependence.
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Proposition 1 (the “funnel”). There exists a finite word R1 and an interval J1 of length
|J1| � δ1 − 4γ such that

f̄−(|R1|+n1P )[ω](J) ⊃ J1 (17)

for all ω = {. . . R1w
n1 |wn1+�|R1|/P � . . . }.

Proof. We construct the word R1 by induction, starting from the empty word and writing out
the letters from right to left. Suppose that the last l letters have already been constructed. Let R1(l)
be the word formed by these letters. Consider some word ω of the form {. . . R1(l)wn1 |wn1+�l/P � . . .}
and find the preimage of the interval Il = f̄−(l+n1P )[ω](J).

If the length of Il exceeds δ1 − 2γ , then, by applying the predictability property (9) for trajec-
tories to the ends of J , we see that f̄−(l+n1P )[ω](J) ⊃ J1 for any other word ω of the same form,
where the interval J1 is obtained from Il by retreating inside by γ from each end. The desired
interval J1 and word R1 = R1(l) have thus been constructed.

If the length of Il is less than δ1 − 2γ , then the same predictability property for trajectories
implies that

f̄−(l+n1P )[ω](J) ⊂ I∗l := Uγ(Il)
for any other word ω of the same form. Since |I∗l | < δ1 , it follows from the inverse dilatation
property that there exists a letter al+1 ∈ {0, . . . , 4} such that all maps corresponding to it dilate
at least by a factor of ν at each point of I∗l when taking the preimage. And we append just this
letter at the beginning, R1(l + 1) = al+1Rl .

It can easily be seen that this process terminates in at most C = �logν(δ2L
n1P /|J |) steps,

since the preimage decreases at most by a factor of L at each of the first n1P steps and increases
at least by a factor of ν at each of the subsequent steps.

Note that the embedding (17) implies the embedding

f̄|R1|+n1P [ω](J1) ⊂ J (18)

for any sequence ω = {. . . |R1w
2n1+�l/P � . . . }.

Proposition 2 (“rotation”). For each interval J2 of length |J2| < δ2 , there exists j , 0 � j �
M := �1/δ2, such that

f̄j [ω](J2) ⊂ J1 (19)
for each word of the form ω = {. . . |0j . . . }. (We set R3 := 0j .)

Proof. First, note that if the maps f1, . . . , fj are δ̄-close in the C0-metric to the rotation Rδ2 ,
then their composition is jδ̄-close to the rotation Rjδ2 ,

d(f1 ◦ · · · ◦ fj , R
j
δ2

) � d(f1 ◦ · · · ◦ fj , Rδ2 ◦ f2 ◦ · · · ◦ fj)

+ d(Rδ2 ◦ f2 ◦ · · · ◦ fj , R
2
δ2 ◦ f3 ◦ · · · ◦ fj) + · · · + d(Rj−1

δ2
◦ fj , R

j
δ2

)

� d(f1, Rδ2) + · · · + d(fj , Rδ2) � jδ̄.

A simple geometric argument shows that there exists a j , 0 � j � M , such that the rotation
by the angle jδ2 moves J2 to the inside of J1 in such a way that the length of each of the two
complementary intervals is not less than δ2/2. (Recall that δ1 > 3δ2 .)

Then, by the preceding,

f̄j [ω](J2) ⊂ Uj·δ2
2/40(R

j
δ2

(J2)) ⊂ Uδ2/5(Rjδ2(J2)) ⊂ J1

for each word ω = {. . . |0j . . . }.
Fix C and M according to Propositions 1 and 2. Set

δ = min
(

1
L2n1(J,θ±)P+C(J)+M

,
δ2 − 2γ

Ln1P |J |
)

. (20)

Let k > max(C(J), M) be an arbitrary large number. (In what follows, we subject k to addi-
tional lower bounds.)



279

Take an r(k) such that
δ

L
� (θ+)kLr(k) < δ. (21)

Set r′(k) := [r(k)/P ] + 1.

Proposition 3 (“dilatation”). There exists a word R2 = R2(k) of length |R2| = r(k) and an
interval J2 = J2(k) of length not exceeding δ2 such that

Df̄S+r(k)[ω]|J > (θ−)kL−n1P νr(k), (22)

f̄S+r(k)[ω](J) ⊂ J2 (23)

for each sequence ω = {. . . wn1+r′(k)+k|wk+n1R2 . . . }, where S := (k + n1)P .

Proof. Just as in Proposition 1, we write out the word R2 by induction, starting from the
empty word. Assuming that the first l letters (which form a word that we denote by R∗

2(l)) have
already be written out, consider the (l + S)th image

Il = f̄l+S [ω](J)

of the interval J for some word ω = {. . . wn1+r′(k)+k|wk+n1R2 . . . }. Note that the length of this
image does not exceed

|J | · (θ+)k · Ln1P+l � (|J |Ln1P ) · (θ+)k · Lr(k) � δ2 − 2γ.

By the predictability property (8) for trajectories, it follows that the lth image of J under the
action of any other word ω of the same form is contained in the corresponding γ -neighborhood
I∗l := Uγ(Il); moreover, |I∗l | � 2γ + |Il| � δ2 . By the dilatation property (4), there exists a letter
bl+1 such that all maps corresponding to it dilate at least by a factor of ν on I∗l . We append this
letter at the end of the part already constructed, R∗

2(l + 1) = R∗
2(l)bl+1 . On having written out

r(k) letters, we terminate the process and set R2 = R∗
2(r(k)). Then it follows from the preceding

that
∀ω = {. . . wn1+r′(k)+k|wk+n1R2 . . . }, f̄S+r(k)[ω](J) ⊂ J2 := I∗r(k).

On the other hand, since the derivative of each of the maps used on the part R2 is not less
than ν on the corresponding interval, we obtain

Df̄S+r(k)[ω]|J > (θ−)kL−n1P νr(k). �

Take and fix R1 and J1 according to Proposition 1 and R2 and J2 according to Proposition 3.
Take R3 according to Proposition 2.

Consider the periodic sequence ω′ specified by the word

w′ = {R1w
n1+r′(k)+k|wk+n1R2R3}.

It readily follows from the chain of embeddings (23), (19), (18) and (13) (the last of them is
applied k + r′(k) times) that

f̄|w′|[ω′](J) ⊂ J.

Now (20) and (21) imply the estimate

(Df̄|w′|[ω′])|J � (θ+)2k+r′(k)L2n1P+r(k)+M+C(J) < 1;

hence the map f̄|w′|[ω′] has an attractive fixed point y on J . We have constructed the orbit Y =
(ω′, y).

Proposition 4. For sufficiently large k , the Lyapunov exponent of Y possesses properties 1
and 2 in Lemma 2.
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Proof. Recall that so far we have not imposed any requirements on θ± in the construction
of Y . These requirements will be specified in the proof of this proposition.

Let us find a lower bound for the derivative of f̄|w′|[ω′] on J :

(Df̄|w′|[ω′])|J � (θ−)2k+r′(k)νr(k)L−(2n1P+M+C(J)).

By (21), there exists a constant C1 = C1(J, θ±, n1), independent of k, such that

r(k) >
1

ln L
(−k ln θ+) + C1.

Hence there exist constants C2 and C3 , independent of k either, such that

ln ‖Df̄|w′|[ω′]‖ � (2k +
r(k)
P

) ln θ− + r(k) ln ν + C2

> 2k ln θ− − k ln θ+ ln θ−

P ln L
+

C1 ln θ−

P lnL
− k ln θ+ ln ν

lnL
+ C3,

which implies the estimate

λ′ :=
ln ‖Df̄|w′|[ω′](y)‖

|w′| >
ln ‖Df̄|w′|[ω′](y)‖

2kP
= h(α) + O

(
1
k

)

for the Lyapunov exponent of Y , where

h(α) := λ

(

(1 − α) − (1 − α2) ln θ

2P lnL
− (1 + α) ln ν

2 lnL

)

, θ± := θ1±α, α > 0.

The function h(α) is continuous at zero; furthermore, the inequalities

0 < q :=
λ + ln ν

2 lnL
< 1

imply the estimate

h(0) = λ

(

1 − ln θ/P + ln ν

2 lnL

)

> (1 − q)λ.

We fix a sufficiently small α < 1 (and, simultaneously, θ±) such that h(α) > (1− q/2)λ. Then the
estimate

λ′ > (1 − q/3)λ
for sufficiently large k proves property 1 in Lemma 2.

The inequality λ′ > λ implies property 2.
It remains to justify property 3 in Lemma 2. We define the set Ỹ and the projection π as

follows. Let K = K(ε, w) be the minimum positive integer such that 2−KP � ε. For k > K , set

Ỹ = {F j(ω′, x′) | −(k − K)P � j < (k − K − 1)P}.
Define the projection π : Ỹ → X by the formula

π(F j(ω′, x′)) = F ρ(ω, x),

where ρ is the remainder of the division of j by P . Obviously, the number of points in the preimage
π−1(ω̃, x̃) is independent of (ω̃, x̃) and is equal to 2k − 2K − 1. Hence assertion 3(c) of the lemma
holds.

Proposition 5. All points of Ỹ are (3ε, P )-good for X .

Proof. Let us estimate the distance along the base. By the choice of K , for each ỹ ∈ Ỹ the
distance between the ΣN -coordinates of the points F l(ỹ) ∈ Ỹ and π(F l(ỹ)) ∈ X does not exceed
ε for all l = 0, . . . , P − 1.

Let us estimate the distance along the fiber. By construction, after iterations on the part
wk+n1R2R3R1w

n1 , the point x′ enters the interval J . The subsequent iterations map J into itself
by virtue of the choice of n1 and relation (13). Hence the distance between F j(ω′, x′) and F j(ω, x) =
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F ρ(ω, x) is the distance between the ρth iterations of some points of J under the action of some
(distinct!) words that have the form {. . . wn1 |wn1 . . . }, where ρ is the remainder of the division of
j by P .

Consider iterations of the point corresponding to the new orbit by the word ω. (The coordinate
is taken on the base of the old orbit.) By virtue of inequality (15), the change in the coordinate
along the fiber in ρ iterations does not exceed ε. But now both points are iterated by the word of
the old orbit, and the number of iterations does not exceed P ; consequently, by inequality (16),
the distance between them does not exceed ε. Thus, the distance between F j(ω′, x′) and F j(ω, x)
along the fiber does not exceed 2ε.

It follows that the first P iterations of the points ỹ ∈ Ỹ and π(ỹ) diverge in ΣN × S1 by a
distance less than 3ε. This proves assertion 3(a) of Lemma 2.

Let us estimate the proportion of points of Y that are not good for X . There exists a constant
C4 , independent of k, such that

1 − #Ỹ

#Y
=

2n1P + r′(k)P + r(k) + M + C(J) + (2K + 1)P
|w′| � 2r(k) + C4

2kP
.

By (21), there exists a constant C5 , independent of k, such that

r(k) <
1

lnL
(−k ln θ+) + C5 <

1
lnL

(−2k ln θ) + C5

and hence

1 − #Ỹ

#Y
< − 2λ

lnL
+ O

(
1
k

)

.

This implies assertion 3(b) in Lemma 2 for sufficiently large k. The proof of Lemma 2 is
complete.

8. Sequence of Periodic Orbits, Ergodicity, and Zero Lyapunov Exponents

In this section, we give a lemma on the zero Lyapunov exponent and prove Theorem 2.
Lemma 3. For an arbitrary controllable system, there exists an ergodic invariant measure with

zero Lyapunov exponent along the fiber.

Proof. Using Lemma 2, we can construct a sequence, starting from a weakly attractive orbit,
of periodic orbits attractive along the fiber (see (7)). The Lyapunov exponents for these orbits tend
to zero exponentially, and each subsequent orbit spends most of the time near the preceding orbit.

Consider the sequence of atomic measures uniformly distributed on these orbits. It can be
derived from the condition that the orbits “resemble” one another (see assertion 3 in Lemma 2)
with the use of the Birkhoff–Khinchin ergodic theorem that each limit point of this sequence is an
ergodic invariant measure; one can also readily verify that the limit measure is nonatomic. Since
the space of measures on Σ5×S1 is weakly∗ compact, it follows that this sequence has a convergent
subsequence, whose limit, by virtue of the preceding, is an ergodic invariant measure. This limit
measure is precisely the desired measure.

Indeed, the Lyapunov exponent for an ergodic invariant measure can be expressed as the integral
of a continuous function, namely, of the derivative of the map along the fiber, over this measure.
Hence the Lyapunov exponent of the limit measure is the limit of the Lyapunov exponents, i.e.,
zero.

This argument is carried out rigorously in [18] (see Lemmas 1 and 2) for the case of step systems
and can be transferred to the soft case word for word. Hence we do not fully reproduce it here.

Proof of Theorem 2. By Lemma 4 (see Sec. 9), in the space of (L, C, α)-systems there exists
an open domain that contains step systems arbitrarily close to the identity (along the fiber) and
has the property that each map in this domain is controllable. On the other hand, by Lemma 3,
for each controllable system there exists an ergodic measure with zero Lyapunov exponent along
the fiber.
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Thus, each map in the domain thus constructed possesses an ergodic measure with zero Lya-
punov exponent along the fiber. The proof of Theorem 2 is complete.

9. Construction of Domains of Controllable Systems

In this section, for any L > 1, C > 0, and α ∈ (0, 1) we construct diffeomorphisms g0, g1, . . . , g4

of the circle that are arbitrarily close to the identity diffeomorphisms and possess the property that
all (L, C, α)-systems close to the corresponding step product are controllable. This construction
completes the proof of Theorem 2 and hence of the main result, Theorem 1.

Let there be given some constants L, C , and α. Take an L1 < L such that 1 < L1 < 2α . All
diffeomorphisms gi to be constructed below will satisfy the condition

max
x∈S1

max(g′i(x), (g−1
i )′(x)) < L1

on the derivatives.
Let W ⊂ Diff1(S1) be an arbitrarily small neighborhood of the identity map of the circle. We

represent the circle in the form S1 = R/Z; let g1 : S1 → S1 be a Morse–Smale diffeomorphism
with attractor p = 0 and repeller q = 1/2 such that g′1(x) < 1 for x ∈ [−1/5, 1/5], g′1(x) > 1 for
x ∈ [3/10, 7/10], and g1 ∈ W . Set g2(x) := g1(x + 1/3) and g3(x) := g1(x − 1/3).

Next, set

δ1 :=
1
15

, ν0 := min
(
( max
x∈[−1/5...1/5]

g′1(x))−1, min
x∈[3/10...7/10]

g′1(x)
)
. (24)

Then for each interval I of length less than δ1 one of the maps gi (i = 1, 2, 3) dilates it at each
point with derivative not less than ν0 . The same is true for the inverse maps.

Take a δ2 , 0 < δ2 < δ1/3, such that the map g0 := Rδ2 (the rotation of the circle by the angle
δ2) belongs to W .

Let g4 ∈ W be a Morse–Smale diffeomorphism with attractive periodic orbit X0 whose Lya-
punov exponent satisfies the inequality

λ(X0) +
ln ν0

2
> 0.

Lemma 4. In the space of (L, C, α)-systems, all systems in a sufficiently small neighborhood
of the step system corresponding to the maps g0, . . . , g4 constructed above are controllable.

Proof. All desired conditions except for predictability of trajectories are preserved under small
perturbations and, by construction, hold for the step system itself. The predictability of trajectories
follows from condition (10b) and Lemma 1. For the first part (10a) of the compatibility condition
for constants to hold, it suffices to require that the distance δ from the step system to the perturbed
system satisfy the inequality Kδβ < δ2/40.

All conditions comprising the controllability condition hold in a sufficiently small neighborhood
of the step system constructed above.
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