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Abstract. We construct a family of maximal commutative subalgebras in the tensor product of
n copies of the universal enveloping algebra U(g) of a semisimple Lie algebra g. This family is pa-
rameterized by finite sequences µ, z1, . . . , zn , where µ ∈ g∗ and zi ∈ C. The construction presented
here generalizes the famous construction of the higher Gaudin Hamiltonians due to Feigin, Frenkel,
and Reshetikhin. For n = 1, the corresponding commutative subalgebras in the Poisson algebra
S(g) were obtained by Mishchenko and Fomenko with the help of the argument shift method. For
commutative algebras of our family, we establish a connection between their representations in the
tensor products of finite-dimensional g-modules and the Gaudin model.

Key words: Gaudin model, argument shift method, Mishchenko–Fomenko subalgebra, affine Kac–
Moody algebra, critical level.

1. Introduction

Let g be a semisimple complex Lie algebra, and let U(g) be its universal enveloping algebra. The
algebra U(g) bears the natural filtration by degree with respect to the generators. The associated
graded algebra is the symmetric algebra S(g) = C[g∗] by the Poincaré–Birkhoff–Witt theorem. The
commutator on U(g) defines the Poisson–Lie bracket on S(g).

The argument shift method gives a way to construct subalgebras in S(g) commutative with
respect to the Poisson–Lie bracket. The method is as follows. Let ZS(g) = S(g)g be the center of
S(g) with respect to the Poisson bracket, and let µ ∈ g∗ be a regular semisimple element. Then
the subalgebra Aµ ⊂ S(g) generated by the elements ∂n

µΦ with Φ ∈ ZS(g) (or, equivalently, by the
central elements of S(g) = C[g∗] shifted by tµ for all t ∈ C) is commutative with respect to the
Poisson bracket and has maximal possible transcendence degree, equal to 1

2(dim g+rk g) (see [10]).
Moreover, the subalgebras Aµ are maximal subalgebras in S(g) commutative with respect to the
Poisson–Lie bracket [17]. In [19], the subalgebras Aµ ⊂ S(g) were named the Mishchenko–Fomenko
subalgebras.

In the present paper, we lift the subalgebras Aµ ⊂ S(g) to commutative subalgebras in the
universal enveloping algebra U(g). More precisely, for each semisimple Lie algebra g we construct
a family of commutative subalgebras Aµ ⊂ U(g) parameterized by regular semisimple elements
µ ∈ g∗ , so that grAµ = Aµ . For classical Lie algebras g, this was done (by other methods) by
Olshanski and Nazarov (see [14], [11]) and also by Tarasov in the case g = slr [16].

The construction presented here is a modification of the famous construction of higher Gaudin
Hamiltonians (cf. [7], [3]). The Gaudin model was introduced in [8] as a spin model related to the
Lie algebra sl2 and generalized in [9, 13.2.2] to the case of an arbitrary semisimple Lie algebra.
The generalized Gaudin model has the following algebraic interpretation. Let Vλ be an irreducible
representation of g with highest weight λ. For any finite sequence (λ) = λ1, . . . , λn of integral
dominant weights, let V(λ) = Vλ1 ⊗ · · · ⊗ Vλn . For any x ∈ g, consider the operator x(i) = 1⊗ · · · ⊗
1⊗x⊗1⊗· · ·⊗1 (x is in the ith position) acting on the space V(λ) . Let {xa}, a = 1, . . . ,dim g, be
an orthonormal basis of g with respect to the Killing form, and let z1, . . . , zn be pairwise distinct
complex numbers. The Hamiltonians of the Gaudin model are the following commuting operators
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in the space V(λ) :

Hi =
∑

k �=i

dim g∑

a=1

x
(i)
a x

(k)
a

zi − zk
. (1)

We can treat Hi as elements of U(g)⊗n . A method for constructing a large commutative sub-
algebra A (z1, . . . , zn) ⊂ U(g)⊗n containing Hi was suggested in [7]. For g = sl2 , the algebra
A (z1, . . . , zn) is generated by Hi and the central elements of U(g)⊗n . In other cases, the algebra
A (z1, . . . , zn) also has some new generators, known as higher Gaudin Hamiltonians. The construc-
tion of A (z1, . . . , zn) uses the deep fact [4] that the completed universal enveloping algebra of
the affine Kac–Moody algebra ĝ at the critical level has a large center Z(ĝ). To any finite se-
quence z1, . . . , zn of pairwise distinct complex numbers, one can naturally assign a homomorphism
Z(ĝ) → U(g)⊗n . The image of this homomorphism is A (z1, . . . , zn).

In the present paper, we construct a family of homomorphisms Z(ĝ) → U(g)⊗n ⊗ S(g) pa-
rameterized by finite sequences z1, . . . , zn of pairwise distinct complex numbers. For each finite
sequence z1, . . . , zn , the image of the corresponding homomorphism is a commutative subalgebra
A (z1, . . . , zn,∞) ⊂ U(g)⊗n ⊗ S(g). Evaluation at any point µ ∈ g∗ = Spec S(g) gives a commu-
tative subalgebra Aµ(z1, . . . , zn) ⊂ U(g)⊗n depending on z1, . . . , zn and µ ∈ g∗ . For n = 1, we
obtain commutative subalgebras Aµ(z1) = Aµ ⊂ U(g), which do not depend on z1 . We show that
gr Aµ = Aµ for regular semisimple µ, i.e., that the subalgebras Aµ ⊂ U(g) are lifts of Mishchenko–
Fomenko subalgebras. For µ = 0, we have A0(z1, . . . , zn) = A (z1, . . . , zn); i.e., the subalgebras
A0(z1, . . . , zn) ⊂ U(g)⊗n are generated by (higher) Gaudin Hamiltonians. We show that the sub-
algebras Aµ(z1, . . . , zn) for generic z1, . . . , zn , and µ have maximal possible transcendence degree.
These subalgebras contain the following “non-homogeneous Gaudin Hamiltonians”:

Hi =
∑

k �=i

dim g∑

a=1

x
(i)
a x

(k)
a

zi − zk
+

dim g∑

a=1

µ(xa)x(i)
a .

The main problem in the Gaudin model is the problem of simultaneous diagonalization of
(higher) Gaudin Hamiltonians. The bibliography on this problem is enormous (cf. [5], [6], [7], [12]).
It follows from the construction in [7] that all elements of A (z1, . . . , zn) ⊂ U(g)⊗n are invariant
with respect to the diagonal action of g, so that it suffices to diagonalize the algebra A (z1, . . . , zn)
in the subspace V sing

(λ) ⊂ V(λ) of singular vectors with respect to diagn(g) (i.e., with respect to the
diagonal action of g). The standard conjecture says that for generic zi the algebra A (z1, . . . , zn)
has simple spectrum in V sing

(λ) . This conjecture is proved in [12] for g = slr and λi equal to ω1 or
ωr−1 (i.e., for the case in which every Vλi is the standard representation of slr or its dual).

It is also natural to pose the problem of diagonalization of Aµ(z1, . . . , zn) in the space V(λ) .
We show that the representation of the algebra Aµ(z1, . . . , zn) in the space V(λ) is a limit of
the representation of A (z1, . . . , zn+1) in [V(λ) ⊗ M∗

zn+1µ]sing as zn+1 → ∞. Here M∗
zn+1µ is the

contragredient module of the Verma module with highest weight zn+1µ, and the space [V(λ) ⊗
M∗

zn+1µ]sing consists of all singular vectors in V(λ)⊗M∗
zn+1µ with respect to diagn+1(g). This means

that the representation of Aµ(z1, . . . , zn) in V(λ) is, in a sense, a limit case of the Gaudin model.
We prove the conjecture on the simplicity of the spectrum for the representation of Aµ(z1, . . . , zn)

in the space V(λ) for g = slr . The key point of our proof is the fact that the closure of the family
Aµ contains the Gelfand–Tsetlin subalgebra. (On the level of Poisson algebras, this was proved by
Vinberg [19].) Hence, for g = slr , we conclude that the algebra Aµ(z1, . . . , zn) for generic µ and
z1, . . . , zn has simple spectrum in V(λ) for any V(λ) . As a consequence, we find that the spectrum
of the algebra A0(z1, . . . , zn) in V sing

(λ) is simple for generic zi and (λ).
The paper is organized as follows. In Secs. 2 and 3, we collect some well-known facts on

Mishchenko–Fomenko subalgebras and the center Z(ĝ) at the critical level, respectively. In Sec. 4,
we describe the construction of the subalgebras Aµ and prove that grAµ = Aµ . In Sec. 5, we
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describe the general construction of the subalgebras Aµ(z1, . . . , zn) ⊂ U(g)⊗n and prove that these
subalgebras have the maximal possible transcendence degree. In Sec. 6, we describe the representa-
tion of Aµ(z1, . . . , zn) in V(λ) as a “limit” Gaudin model. Finally, in Sec. 7 we prove the assertions
on simplicity of spectrum for g = slr .

I thank B. L. Feigin, E. B. Vinberg, V. V. Shuvalov, A. V. Chervov, and D. V. Talalaev for
useful discussions.

2. The Argument Shift Method

The argument shift method is a special case of the following construction (cf. [1]). Let R be a
commutative algebra equipped with two compatible Poisson brackets, { · , · }1 and { · , · }2 . (That
is, any linear combination of { · , · }1 and { · , · }2 is a Poisson bracket.) Let Zt be the center of R
with respect to { · , · }1 + t{ · , · }2 . Let A be the subalgebra of R generated by all Zt for generic t.

Fact 1 [1, Proposition 4]. The subalgebra A ⊂ R is commutative with respect to any Poisson
bracket { · , · }1 + t{ · , · }2.

Proof. Let a ∈ Zt1 and b ∈ Zt2 , t1 �= t2 . The expression {a, b}1 + t{a, b}2 is linear in t and, on
the other hand, vanishes at two distinct points t1 and t2 . It follows that {a, b}1 + t{a, b}2 = 0 for
all t.

Now suppose that a, b ∈ Zt0 . Since t0 is generic, it follows that there exists a continuous function
a(s) such that a(t0) = a and a(s) ∈ Zs for s in a neighborhood of t0 . For any s in a punctured
neighborhood of t0 , we have {a(s), b}1 + t{a(s), b}2 = 0, and therefore, {a, b}1 + t{a, b}2 = 0.

Corollary 1. Suppose that ZS(g) = S(g)g is the center of S(g) with respect to the Poisson–Lie
bracket, and let µ ∈ g∗. Then the algebra Aµ ⊂ S(g) generated by the elements ∂n

µΦ with Φ ∈ ZS(g)
(or, equivalently, by the central elements of S(g) = C[g∗] shifted by tµ for all t ∈ C) is commutative
with respect to the Poisson–Lie bracket.

Proof. Take the Poisson–Lie bracket for { · , · }1 and the “frozen argument” bracket for { · , · }2 .
(This means that

{x, y}2 = µ([x, y]), x, y ∈ g,

for the generators.) Then the algebra Zt is generated by the central elements of C[g∗] = S(g)
shifted by tµ.

Since the Lie algebra g is semisimple, we can identify g with g∗ and write µ ∈ g.
Fact 2 [10]. For a regular semisimple µ ∈ g, the algebra Aµ is a free commutative subalgebra

in S(g) with 1
2(dim g + rk g) generators. (This means that Aµ is a commutative subalgebra of

maximal possible transcendence degree.) One can take the elements ∂n
µΦk , k = 1, . . . , rk g, n =

0, 1, . . . ,deg Φk , where the Φk are basis g-invariants in S(g), as free generators of Aµ.
Shuvalov [15] described the closure of the family of subalgebras Aµ ⊂ S(g) under the condition

µ ∈ hreg . (That is, the parameter µ lies in a given Cartan subalgebra.) In particular, the following
assertion was proved in [15].

Fact 3. Suppose that µ(t) = µ0 + tµ1 + t2µ2 + · · · ∈ hreg for generic t. Set zk =
⋂k

i=0 zg(µi)
(where zg(µi) is the centralizer of µi in g) and z−1 = g. Then

1. The subalgebra limt→0 Aµ(t) ⊂ S(g) is generated by all elements of S(zk)zk and their deriva-
tives (of any order) along µk+1 for all k.

2. lim
t→0

Aµ(t) is a free commutative algebra. As the free generators one can take some of the

derivatives of the generators of S(zk)zk along µk+1.
This means, in particular, that the closure of the family Aµ for g = slr contains the Gelfand–

Tsetlin algebra (see [19, 6.1–6.4]). We shall discuss this case in Sec. 7.
The following results were obtained by Tarasov.
Fact 4 [17]. The subalgebras Aµ and the limit subalgebras limt→0 Aµ(t) are maximal commutative

subalgebras; i.e., they coincide with their Poisson centralizers in S(g).
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The symmetrization map σ : S(g) → U(g) is defined by the following property:

σ(xk) = xk ∀x ∈ g, k = 0, 1, 2, . . . .

Fact 5 ([16], [18]). For g = slr , some systems of generators of Aµ and the limit subalgebras
limt→0 Aµ(t) can be lifted to commuting elements of U(g) by the symmetrization map. This lift of
Aµ to the universal enveloping algebra is unique.

Remark 1. The generators of Aµ and the limit subalgebras limt→0 Aµ(t) to be lifted by the
symmetrization are explicitly indicated in [16]. Up to proportionality, these are the elements ∂n

µΦk ,
k = 1, . . . , r − 1, n = 0, 1, . . . ,deg Φk , and their limits, respectively (where Φk ∈ S(slr)slr are the
coefficients of the characteristic polynomial as functions on slr). We only use the fact that this
system of generators, up to proportionality, is continuous in the parameter µ.

3. The Center at the Critical Level

Let ĝ be the affine Kac–Moody algebra corresponding to g. The Lie algebra ĝ is a central
extension of the formal loop algebra g((t)) by an element K . The commutator relations are defined
as follows:

[g1 ⊗ x(t), g2 ⊗ y(t)] = [g1, g2] ⊗ x(t)y(t) + κc(g1, g2) Rest=0 x(t)dy(t) · K, (2)

where κc is the invariant inner product on g defined by the formula

κc(g1, g2) = −1
2

Trg ad(g1) ad(g2). (3)

Set ĝ+ = g[[t]] ⊂ ĝ and ĝ− = t−1g[t−1] ⊂ ĝ.
Define the completion Ũ(ĝ) of U(ĝ) as the inverse limit of U(ĝ)/U(ĝ)(tng[[t]]), n > 0. The

action of Ũ(ĝ) is well defined on ĝ-modules in the category O0 (i.e., ĝ-modules on which the Lie
subalgebra ĝ+ acts locally finitely). We set Ũ(ĝ)c = Ũ(ĝ)/(K − 1). This algebra acts on ĝ-modules
of the critical level (i.e., ĝ-modules on which the element K acts as the unity). The name “critical”
is explained by the fact that representation theory at this level is most complicated. In particular,
the algebra Ũ(ĝ)c has a nontrivial center Z(ĝ). The following fact shows that this center is rather
large.

Fact 6 [4]. 1. The natural homomorphism Z(ĝ) → (U(ĝ)/U(ĝ)(ĝ+ +C(K−1)))ĝ+ is surjective.
2. The Poincaré–Birkhoff–Witt filtration on the enveloping algebra yields a filtration on the ĝ+-

module U(ĝ)/U(ĝ)(ĝ+ + C(K − 1)). We have gr(U(ĝ)/U(ĝ)(ĝ+ + C(K − 1)))ĝ+ = (S(ĝ)/S(ĝ)(ĝ+ +
CK))ĝ+ with respect to this filtration.

Now let us give an explicit description of the algebra (S(ĝ)/S(ĝ)(ĝ+ + CK))ĝ+ . Since ĝ = ĝ+ ⊕
ĝ−⊕CK as vector spaces, it follows that every element of U(ĝ)/U(ĝ)(ĝ+ +C(K−1)) (respectively,
S(ĝ)/S(ĝ)(ĝ++CK)) has a unique representative in U(ĝ−) (respectively, in S(ĝ−)). Thus we obtain
the natural embeddings

(U(ĝ)/U(ĝ)(ĝ+ + C(K − 1)))ĝ+ ↪→ U(ĝ−) (4)
and

(S(ĝ)/S(ĝ)(ĝ+ + CK))ĝ+ ↪→ S(ĝ−). (5)
Let A ⊂ U(ĝ−) and A ⊂ S(ĝ−) be the images of these embeddings, respectively. Consider the
following derivations of the Lie algebra ĝ− :

∂t(g ⊗ tm) = mg ⊗ tm−1 ∀g ∈ g, m = −1,−2, . . . , (6)

t∂t(g ⊗ tm) = mg ⊗ tm ∀g ∈ g, m = −1,−2, . . . . (7)

The derivations (6) and (7) can be extended to derivations of the associative algebras S(ĝ−) and
U(ĝ−). The derivation (7) defines a grading of these algebras.

Let i−1 : S(g) ↪→ S(ĝ−) be the embedding that takes g ∈ g to g ⊗ t−1 . Let Φk , k = 1, . . . , rk g,
be the generators of the algebra S(g)g of invariants.
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Fact 7 [2], [6], [13]. The subalgebra A ⊂ S(ĝ−) is freely generated by the elements ∂n
t Sk ,

k = 1, . . . , rk g, n = 0, 1, 2, . . . , where Sk = i−1(Φk).
It follows from Fact 6 that the generators Sk can be lifted to the (commuting) generators of

A . This means that the following assertion is true.
Corollary 2. 1. There exist elements Sk ∈ A homogeneous with respect to t∂t and satisfying

gr Sk = Sk .
2. A is the free commutative algebra generated by ∂n

t Sk , k = 1, . . . , rk g, n = 0, 1, 2, . . . .
In subsequent considerations, we use only the existence of the commutative subalgebra A ⊂

U(ĝ−) and its description in Corollary 2.
Remark 2. No general explicit formulas for the elements Sk are known at the moment. For the

quadratic Casimir element Φ1 , the corresponding element S1 ∈ A is obtained from S1 = i−1(Φ1)
by the symmetrization map.

Remark 3. The construction of the higher Gaudin Hamiltonians is as follows. The commu-
tative subalgebra A (z1, . . . , zn) ⊂ U(g)⊗n is the image of the subalgebra A ⊂ U(ĝ−) under the
homomorphism U(ĝ−) → U(g)⊗n of specialization at the points z1, . . . , zn (see [7], [3]). We discuss
this in Section 5.

4. Maximal Commutative Subalgebras in U(g)

For each z �= 0, we have the evaluation homomorphism

φz : U(ĝ−) → U(g), g ⊗ tm 
→ zmg. (8)

We also have the homomorphism

φ∞ : U(ĝ−) → S(g), g ⊗ t−1 
→ g, g ⊗ tm 
→ 0, m = −2,−3, . . . . (9)

Let ∆: U(ĝ−) ↪→ U(ĝ−) ⊗ U(ĝ−) be the comultiplication. For each z �= 0, we have the homo-
morphism

φz,∞ = (φz ⊗ φ∞) ◦ ∆: U(ĝ−) → U(g) ⊗ S(g). (10)
More explicitly,

φz,∞(g ⊗ tm) = zmg ⊗ 1 + δ−1,m ⊗ g.

We set
A (z,∞) = φz,∞(A ) ⊂ U(g) ⊗ S(g).

Proposition 1. The subalgebra A (z,∞) is generated by the coefficients of the principal parts
of the Laurent series for the functions Sk(w) = φw−z,∞(Sk) around z and by the values of these
functions at ∞.

Proof. Indeed, A (z,∞) is generated by the elements φz,∞(∂n
t Sk). These elements are the

Taylor coefficients of Sk(w) = φw−z,∞(Sk) around w = 0. Since Sk(w) has a unique pole at z , it
follows that the Taylor coefficients of Sk(w) around w = 0 are linear expressions in the coefficients
of the principal part of the Laurent series for the same function around z and its value at ∞, and
vice versa.

Corollary 3. The subalgebra A (z,∞) ⊂ U(g) ⊗ S(g) is independent of z.
Proof. Indeed, the Laurent coefficients of the functions Sk(w) = φw−z,∞(Sk) around the point

z and the values of these functions at ∞ are independent of z .
Every µ ∈ g∗ defines the homomorphism S(g) → C of “specialization at the point µ”. We

denote this homomorphism also by µ. Consider the following family of commutative subalgebras
of U(g) parameterized by µ ∈ g∗ :

Aµ := (id⊗µ)(A (z,∞)) ⊂ U(g). (11)

Proposition 2. All elements of the subalgebra Aµ ⊂ U(g) are zg(µ)-invariant (where zg(µ) is
the centralizer of µ in g).
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Proof. Indeed, A (z,∞) ⊂ [U(g) ⊗ S(g)]∆(g) , and the homomorphism µ is zg(µ)-equivariant.
Therefore, Aµ ⊂ U(g)zg(µ) .

Now let us prove that the subalgebras Aµ ⊂ U(g) give a quantization of the Mishchenko–
Fomenko subalgebras in S(g) obtained by the argument shift method.

Theorem 1. gr Aµ = Aµ for regular semisimple µ ∈ g∗.
Proof. Let E be the g-invariant derivation of U(ĝ−)⊗S(g) acting as follows on the generators:

E((g ⊗ x(t)) ⊗ 1) = 1 ⊗ g Rest=0 x(t) dt, E(1 ⊗ g) = 0 ∀ g ∈ g. (12)

In other words,
(g ⊗ t−m) ⊗ 1 
→ δ−1,m ⊗ g, 1 ⊗ g 
→ 0 ∀ g ∈ g.

Lemma 1. The subalgebra A (z,∞) ⊂ U(g) ⊗ S(g) is generated by the elements

(φz ⊗ id)(Ej(Sk ⊗ 1)) ∈ U(g) ⊗ Sj(g).

Proof. Note that

(id⊗φ∞ ◦ ∆)(∂n
t Sk) = (expE)(∂n

t Sk) ∈ U(ĝ−) ⊗ S(g).

Since the elements Sk are homogeneous with respect to t∂t , it follows that the elements (φz ⊗
id)(Ej(Sk⊗1)) are the Laurent coefficients of the function Sk(w) = φw−z,∞(Sk) = φw−z((exp E)(Sk

⊗ 1)) at the point w = z . Now it remains to use Proposition 1.
Now let e be a g-invariant derivation of S(g) ⊗ S(g) acting on the generators by the formula

e(g ⊗ 1) = 1 ⊗ g, e(1 ⊗ g) = 0. (13)

Clearly, (id⊗µ) ◦ ej(f ⊗ 1) = ∂j
µf for each f ∈ S(g).

Note that

gr(φz ⊗ id)(Ej(Sk ⊗ 1)) = z(− deg Φk+j)ej(Φk ⊗ 1) ∈ S(g) ⊗ Sj(g),

since gr Sk = i−1(Φk). Hence

gr(id⊗µ) ◦ (φz ⊗ id)(Ej(Sk ⊗ 1)) = z(− deg Φk+j)∂j
µ(Φk).

Since the elements ∂j
µ(Φk) generate Aµ , we have gr Aµ ⊃ Aµ . The elements ∂j

µ(Φk) are algebraically
independent by Fact 2, and the lemma says that the elements (id⊗µ) ◦ (φz ⊗ id)(Ej(Sk ⊗ 1))
generate Aµ . Thus grAµ = Aµ .

5. Commutative Subalgebras in U(g)⊗n

Now let us generalize our construction. Let U(g)⊗n be the tensor product of n copies of U(g).
We denote the subspace 1 ⊗ · · · ⊗ 1 ⊗ g ⊗ 1 ⊗ · · · ⊗ 1 ⊂ U(g)⊗n , where g stands at the ith place,
by g(i) . Accordingly, we set

u(i) = 1 ⊗ · · · ⊗ 1 ⊗ u ⊗ 1 ⊗ · · · ⊗ 1 ∈ U(g)⊗n (14)

for each u ∈ U(g).
Let diagn : U(ĝ−) ↪→ U(ĝ−)⊗n be the diagonal embedding. For any finite sequence of pairwise

distinct complex numbers zi , i = 1, . . . , n, we have the homomorphism

φz1,...,zn,∞ = (φz1 ⊗ · · · ⊗ φzn ⊗ φ∞) ◦ diagn+1 : U(ĝ−) → U(g)⊗n ⊗ S(g). (15)

More explicitly,

φz1,...,zn,∞(g ⊗ tm) =
n∑

i=1

zm
i g(i) ⊗ 1 + δ−1,m ⊗ g.

Set
A (z1, . . . , zn,∞) = φz1,...,zn,∞(A ) ⊂ U(g)⊗n ⊗ S(g).

The following assertion can be proved in the same way as Proposition 1 and Corollary 2.
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Proposition 3. 1. The subalgebras A (z1, . . . , zn,∞) are generated by the coefficients of the
principal parts of the Laurent series of the functions

Sk(w; z1, . . . , zn) = φw−z1,...,w−zn,∞(Sk)

at the points z1, . . . , zn and by the values of these functions at ∞.
2. The subalgebras A (z1, . . . , zn,∞) are stable under simultaneous affine transformations zi 
→

azi + b of the parameters.
3. All elements of A (z1, . . . , zn,∞) are invariant with respect to the diagonal action of g.
Consider the following family of commutative subalgebras in U(g)⊗n parameterized by z1, . . . , zn

∈ C and µ ∈ g∗ :
Aµ(z1, . . . , zn) := (id⊗µ)(A (z1, . . . , zn,∞)) ⊂ U(g)⊗n. (16)

We obtain the following assertion as an immediate corollary of Proposition 3.
Proposition 4. 1. The subalgebras Aµ(z1, . . . , zn) are stable under simultaneous translations

zi 
→ zi + b of the parameters.
2. All elements of Aµ(z1, . . . , zn) are invariant with respect to the diagonal action of zg(µ).
Remark 4. The subalgebra A0(z1, . . . , zn) ⊂ U(g)⊗n can be obtained as the image of the

subalgebra A ⊂ U(ĝ−) under the homomorphism

φz1,...,zn = (φz1 ⊗ · · · ⊗ φzn) ◦ diagn : U(ĝ−) → U(g)⊗n.

These subalgebras are just the subalgebras A (z1, . . . , zn) ⊂ U(g)⊗n of higher Gaudin Hamiltonians
introduced in [7] (see also [3]). The quadratic Gaudin Hamiltonians (1) are linear combinations of
the elements φz1,...,zn(∂n

t S1), n = 0, 1, 2, . . . .
We shall write A (z1, . . . , zn) instead of A0(z1, . . . , zn).
Proposition 5. The subalgebras Aµ(z1, . . . , zn) contain the “nonhomogeneous Gaudin Hamil-

tonians”

Hi =
∑

k �=i

dim g∑

a=1

x
(i)
a x

(k)
a

zi − zk
+

dim g∑

a=1

µ(xa)x(i)
a .

Proof. Since the element S1 ∈ A is the symmetrization of S1 = i−1(Φ1), it follows that Hi is
the coefficient of 1/(z− zi) in the expansion of S1(w; z1, . . . , zn) = φw−z1,...,w−zn,∞(S1) at the point
w = zi . Now it remains to apply Proposition 3.

The algebra U(g)⊗n⊗S(g)⊗m has an increasing filtration by finite-dimensional spaces, U(g)⊗n⊗
S(g)⊗m =

⋃∞
k=0(U(g)⊗n ⊗ S(g)⊗m)(k) (by degree with respect to the generators). We define the

limit lims→∞ B(s) for any one-parameter family of subalgebras B(s) ⊂ U(g)⊗n ⊗ S(g)⊗m as
∞⋃

k=0

lim
s→∞B(s) ∩ (U(g)⊗n ⊗ S(g)⊗m)(k).

It is clear that the limit of a family of commutative subalgebras is a commutative subalgebra. It
is also clear that the passage to the limit commutes with homomorphisms of filtered algebras (in
particular, with the projection onto any factor and with finite-dimensional representations).

Theorem 2. lims→∞ Aµ(sz1, . . . , szn) = A
(1)
µ ⊗ · · · ⊗ A

(n)
µ ⊂ U(g)⊗n for regular semisimple

µ ∈ g∗.
Proof. We use the following lemma.
Lemma 2. limz→∞ φz = ε, where ε : U(ĝ−) → C · 1 ⊂ U(g) is the counit.
Proof. It suffices to verify this on the generators. We have

lim
z→∞φz(g ⊗ tm) = lim

z→∞ zmg = 0 ∀ g ∈ g, m = −1,−2, . . . . �

Now let us choose the generators of A (sz1, . . . , szn,∞) as in Proposition 3. The coefficients of
the Laurent expansion of Sk(w; sz1, . . . , szn) at any point szi are equal to the Laurent coefficients
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of Sk(w + szi; sz1, . . . , szn) at the point 0. On the other hand,

lim
s→∞Sk(w + szi; sz1, . . . , szn) = lim

s→∞φw−s(z1−zi),...,w,...,w−s(zn−zi),∞(Sk)

= (ε ⊗ · · · ⊗ ε ⊗ φw ⊗ ε ⊗ · · · ⊗ ε ⊗ φ∞) ◦ diagn+1(Sk) = S
(i)
k (w; 0)

by Lemma 2. This means that the generators of A (sz1, . . . , szn,∞) give the generators of A (z1,∞)(1)

· · ·A (zn,∞)(n) in the limit. Hence

lim
s→∞A (sz1, . . . , szn,∞) ⊃ A (z1,∞)(1) · · ·A (zn,∞)(n),

and therefore,
lim

s→∞Aµ(sz1, . . . , szn) ⊃ A (1)
µ ⊗ · · · ⊗ A (n)

µ .

By Fact 4, the subalgebra A
(1)
µ ⊗ · · · ⊗ A

(n)
µ ⊂ U(g)⊗n coincides with its own centralizer. Thus

lims→∞ Aµ(sz1, . . . , szn) = A
(1)
µ ⊗ · · · ⊗ A

(n)
µ .

Corollary 4. For generic parameter values, the commutative subalgebra Aµ(z1, . . . , zn) ⊂
U(g)⊗n has the maximal possible transcendence degree (which is equal to n

2 (dim g + rk g)).

Proof. Indeed, for generic µ the subalgebra A
(1)
µ ⊗ · · ·⊗A

(n)
µ ⊂ U(g)⊗n has the maximal pos-

sible transcendence degree owing to Fact 2. Since these subalgebras are contained in the closure of
the family Aµ(z1, . . . , zn), it follows that for generic parameter values the subalgebra Aµ(z1, . . . , zn)
has the maximal possible transcendence degree as well.

Consider the one-parameter family U(g)t of associative algebras generated by g with the defin-
ing relations

xy − yx = t[x, y] ∀x, y ∈ g. (17)

For each t �= 0, the map g → g, x 
→ t−1x, induces an associative algebra homomorphism

ψt : U(g)→̃U(g)t. (18)

For t = 0, we have U(g)0 = S(g).
Consider the commutative subalgebra

(id⊗n ⊗ψz−1)(A (z1, . . . , zn, z)) ⊂ U(g)⊗n ⊗ U(g)z−1 .

Passing to the limit as z → ∞, we obtain a commutative subalgebra in U(g)⊗n ⊗ S(g).
Theorem 3.

lim
z→∞(id⊗n ⊗ψz−1)(A (z1, . . . , zn, z)) = A (z1, . . . , zn,∞) ⊂ U(g)⊗n ⊗ S(g).

Proof. We use the following lemma.
Lemma 3. limz→∞ ψz−1 ◦ φz = φ∞.
Proof. It suffices to check this on the generators. We have

ψz−1 ◦ φz(g ⊗ tm) = z · zmg ∈ U(g)z−1 ∀ g ∈ g, m = −1,−2, . . . .

Hence
lim

z→∞ψz−1 ◦ φz(g ⊗ tm) = δ−1,mg = ψ∞(g ⊗ tm) ∈ S(g). �

Using Lemma 3, we obtain

lim
z→∞(id⊗n ⊗ψz−1)(A (z1, . . . , zn, z)) = lim

z→∞(φz1 ⊗ · · · ⊗ φzn ⊗ (ψz−1 ◦ φz)) ◦ diagn+1(A )

= lim
z→∞(φz1 ⊗ · · · ⊗ φzn ⊗ φ∞) ◦ diagn+1(A )

= A (z1, . . . , zn,∞) ⊂ U(g)⊗n ⊗ S(g). �
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6. The “Limit” Gaudin Model

Let Vλ be a finite-dimensional irreducible g-module of highest weight λ.
Consider the U(g)⊗n-module

V(λ) := Vλ1 ⊗ · · · ⊗ Vλn . (19)

The subalgebra A (z1, . . . , zn) ⊂ U(g)⊗n consists of diagn(g)-invariant elements and hence acts
on the space V sing

(λ) ⊂ V(λ) of singular vectors with respect to diagn(g). This representation of
A (z1, . . . , zn) is known as the (n-point) Gaudin model.

We claim that for semisimple µ ∈ g∗ the representation of the subalgebra Aµ(z1, . . . , zn) ⊂
U(g)⊗n in the space V(λ) is a limit case of the (n + 1)-point Gaudin model.

Let M∗
χ be the contragredient module of the Verma module with highest weight χ. This module

can be constructed as follows. Let ∆+ be the set of positive roots of g. Then M∗
χ = C[xα]α∈∆+

(the generators xα have (multi-)degree α), and the elements of g act by the following formulas:
1. The elements eα , α ∈ ∆+ , of the subalgebra n+ act as

∂

∂xα
+

∑

β>α

Pα
β

∂

∂xβ
,

where Pα
β is a certain polynomial of degree β − α.

2. The elements h ∈ h act as

χ(h) −
∑

β∈∆+

β(h)xβ
∂

∂xβ
.

(3) The generators e−αi (where αi are the simple roots) of the subalgebra n− act as

χ(hαi)xαi +
∑

β∈∆+

Qαi
β

∂

∂xβ
,

where Qαi
β is a polynomial of degree β + αi .

Consider the U(g)⊗n ⊗U(g)-module V(λ) ⊗M∗
zµ . We identify the vector space M∗

zµ with C[xα]
and rescale the generators by setting yα = zht(α)xα , where ht(α) stands for the height of a root α.
The formulas for the action of the Lie algebra g on M∗

zµ = C[yα] now look as follows:

eα = zht(α) ∂

∂yα
+

∑

β>α

zht(α)Pα
β

∂

∂yβ
,

h = zµ(h) −
∑

β∈∆+

β(h)yβ
∂

∂yβ
,

e−αi = µ(hαi)yαi + z−1
∑

β∈∆+

Qαi
β

∂

∂yβ
.

Thus we can assume that the basis of V(λ) ⊗ M∗
zµ = V(λ) ⊗ C[yα] is independent of z and that

the operators in U(g)⊗n⊗U(g) do depend on z . Now the subspace [V(λ)⊗M∗
zµ]sing ⊂ V(λ)⊗C[yα] of

singular vectors depends on z as well. Furthermore, the space V(λ) ⊗M∗
zµ = V(λ) ⊗C[yα] is graded

by the weights of the diagonal action of g, where the homogeneous components are independent of
z and have finite dimensions. The subspace [V(λ) ⊗ M∗

zµ]sing ⊂ V(λ) ⊗ C[yα] is contained in a finite
sum of homogeneous components, and hence the limit limz→∞[V(λ)⊗M∗

zµ]sing ⊂ V(λ)⊗C[yα] is well
defined. Moreover, the limit of the image of A (z1, . . . , zn, z) in End([V(λ) ⊗ M∗

zµ]sing) as z → ∞ is
a commutative subalgebra in End(limz→∞[V(λ) ⊗ M∗

zµ]sing).
Theorem 4. As z → ∞,
1. The limit of [V(λ) ⊗ M∗

zµ]sing ⊂ V(λ) ⊗ C[yα] is V(λ) ⊗ 1.



197

(2) The limit of the image of A (z1, . . . , zn, z) in End([V(λ) ⊗ M∗
zµ]sing) contains the image of

Aµ(z1, . . . , zn) in End(V(λ) ⊗ 1) = End(V(λ)).
Proof. Let us prove the first assertion. The subspace [V(λ) ⊗ M∗

zµ]sing ⊂ V(λ) ⊗ M∗
zµ is the

intersection of kernels of the operators diagn+1(eα) =
∑n+1

i=1 e
(i)
α , α ∈ ∆+ . Clearly,

lim
z→∞ z−ht(α) diagn+1(eα) = 1⊗n ⊗

(
∂

∂yα
+

∑

β>α

Pα
β

∂

∂yβ

)
.

Hence

lim
z→∞[V(λ) ⊗ M∗

zµ]sing ⊂
⋂

α∈∆+

Ker 1⊗n ⊗
(

∂

∂yα
+

∑

β>α

Pα
β

∂

∂yβ

)
= V(λ) ⊗ 1.

Since dim[V(λ) ⊗ M∗
zµ]sing � dim V(λ) , we conclude that limz→∞[V(λ) ⊗ M∗

zµ]sing = V(λ) ⊗ 1.
Now let us prove the second assertion. The module V(λ) ⊗M∗

zµ = V(λ) ⊗ C[yα] can be regarded
as U(g)⊗n ⊗U(g)z−1 -module with highest weight (λ1, . . . , λn, µ). Using the formulas for the action
of the Lie algebra g on C[yα], we see that

lim
z→∞ 1 ⊗ · · · ⊗ 1 ⊗ e−αi = lim

z→∞ z−11 ⊗ · · · ⊗ 1 ⊗ ψz−1(e−αi) = 0

for any simple root αi ∈ ∆+ .
Therefore, the subspace V(λ)⊗1 ⊂ V(λ)⊗C[yα] is invariant under the action of limz→∞ U(g)⊗n⊗

U(g)z−1 = U(g)⊗n⊗S(g). Moreover, the algebra 1⊗· · ·⊗1⊗S(g) acts on this space via the character
µ. By Theorem 3,

lim
z→∞(id⊗n ⊗ψz−1)(A (z1, . . . , zn, z)) = A (z1, . . . , zn,∞) ⊂ U(g)⊗n ⊗ S(g).

This means that the limit of the image of A (z1, . . . , zn, z) in End([V(λ) ⊗ M∗
zµ]sing) contains the

image of the algebra (id⊗µ)(A (z1, . . . , zn,∞)) = Aµ(z1, . . . , zn) in End(V(λ) ⊗ 1).

7. The Case of slr

In this section, we set g = slr .
Lemma 4. For g = slr and µ(t) = E11 +tE22 + · · ·+tn−1Enn, the limit subalgebra limt→0 Aµ(t)

is the Gelfand–Tsetlin subalgebra in U(slr).
Proof. It follows from Shuvalov’s results (Fact 3) that the associated graded algebra limt→0 Aµ(t)

⊂ S(g) is the Gelfand–Tsetlin subalgebra in S(g). Indeed, in this case zk is the Lie algebra
slr−k−1 ⊕ C

k+1 , consisting of all matrices A ∈ slr satisfying

Aij = Aji = 0, i = 1, . . . , k + 1, j = 1, . . . , r, i �= j.

The subalgebra of S(slr) generated by S(zk)zk for all k is the Gelfand–Tsetlin subalgebra.
For any µ, the generators of Aµ are the images of those of Aµ under the symmetrization map

(Fact 5). Therefore, the generators of limt→0 Aµ(t) ⊂ U(g) are the images of the generators of
limt→0 Aµ(t) ⊂ S(g) under the symmetrization map as well.

The uniqueness of the lift (Fact 5) implies that limt→0 Aµ(t) is the subalgebra in U(slr) gener-
ated by all elements of ZU(zk) for all k, i.e., the Gelfand–Tsetlin subalgebra in U(slr).

Theorem 5. For any finite sequence (λ) of dominant integer weight, the algebra Aµ(z1, . . . , zn)
with generic µ and z1, . . . , zn has simple spectrum in V(λ).

Proof. 1. The Gelfand–Tsetlin subalgebra in U(slr) has simple spectrum in Vλ for any λ;
this is a well-known classical result.

2. Since the Gelfand–Tsetlin subalgebra is a limit of Aµ , it follows that for generic µ the algebra
Aµ has simple spectrum in Vλ as well.

3. This means that for generic µ the subalgebra Aµ(z1)(1)⊗· · ·⊗Aµ(zn)(n) has simple spectrum
in V(λ) . Since the subalgebra Aµ(z1)(1) ⊗ · · · ⊗ Aµ(zn)(n) belongs to the closure of the family of
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subalgebras Aµ(z1, . . . , zn), it follows that for generic µ and zi the algebra Aµ(z1, . . . , zn) has
simple spectrum in V(λ) as well.

Corollary 5. There exists a subset W ⊂ Λ+ × · · · × Λ+, which is Zariski dense in h∗ (where
Λ+ is the set of integral dominant weights), such that for any (λ) = (λ1, . . . λn) ∈ W the Gaudin
subalgebra A (z1, . . . , zn) with generic z1, . . . , zn has simple spectrum in V sing

(λ) .

Proof. For given λ1, . . . λn−1 , the condition of nonsimplicity of the spectrum of A (z1, . . . , zn)
in the space [Vλ1 ⊗ · · · ⊗ Vλn−1 ⊗ M∗

λn
]sing is an algebraic condition on λn ∈ h∗ for any z1, . . . , zn .

By Theorems 4 and 5, this condition is not always satisfied. This means that the set of λn ∈ Λ+

such that the spectrum of the algebra A (z1, . . . , zn) in [Vλ1 ⊗ · · · ⊗ Vλn−1 ⊗ M∗
λn

]sing is simple for
generic z1, . . . , zn is Zariski dense in h∗ for any finite sequence λ1, . . . λn−1 . Since Vλn ⊂ M∗

λn
, it

follows that the spectrum of the algebra A (z1, . . . , zn) in the space V sing
(λ) is simple for any of these

finite sequences λ1, . . . , λn .
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