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Abstract
Extreme return financial time series are often challenging to model due to the pres-
ence of heavy temporal clustering of extremes and strong bursts of return volatility.
One approach to model both these phenomena in extreme financial returns is the
marked Hawkes self-exciting process. However, the Hawkes process restricts the
arrival times of exogenously driven returns to follow a Poisson process and may fail
to provide an adequate fit to data. In this work, we introduce a model for extreme
financial returns, which provides added flexibility in the specification of the back-
ground arrival rate. Our model is a marked version of the recently proposed renewal
Hawkes process, in which exogenously driven extreme returns arrive according to a
renewal process rather than a Poisson process. We develop a procedure to evaluate
the likelihood of the model, which can be optimized to obtain estimates of model
parameters and their standard errors. We provide a method to assess the goodness-
of-fit of the model based on the Rosenblatt residuals, as well as a procedure to
simulate the model. We apply the proposed model to extreme negative returns for
five stocks traded on the Australian Stock Exchange. The models identified for the
stocks using in-sample data were found to be able to successfully forecast the out-of-
sample risk measures such as the value at risk and provide a better quality of fit than
the competing Hawkes model.
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1 Introduction

Modeling extreme financial returns has important applications, such as in the esti-
mation of risk measures. However, like many other financial time series, the series
of extreme returns are challenging to model due to the presence of heavy temporal
clustering of extremes and strong bursts of return volatility. To address this chal-
lenge, Chavez-Demoulin et al. (2005) and Chavez-Demoulin and McGill (2012)
proposed the marked Hawkes process model, and reported sufficient fits to extreme
negative return data on a share price and on the Dow Jones Industrial Average
index, while the traditional peaks over threshold (POT) model was shown not to
be suitable for the data considered. The use of marked Hawkes processes for the
purpose of forecasting market risk measures has also been applied in the work of
McNeil et al. (2005, pp 306–311) and Herrera and Schipp (2009). Furthermore,
Embrechts et al. (2011) considered multi-type event sequence data in which the mul-
tivariate version of the marked Hawkes process was used to model the interaction
between positive and negative extreme returns for the Dow Jones Industrial Average
index.

Extreme returns are fundamental to the risk management of financial institutions
such as investment banks, insurers and pension funds as they are often required
to demonstrate their financial stability under extreme market conditions. A useful
measure of risk for extreme loss outcomes is given by the quantile of the loss dis-
tribution of a given asset or portfolio over a predefined period of time and this
is known as the value at risk (VaR). Many approaches to estimate the uncon-
ditional VaR assume that the return distribution is normally distributed and then
forecast volatility using the exponential-weighted moving average method as in
Mina and Xiao (2001). Other unconditional approaches often rely on generalized
autoregressive conditional heteroskedasticity (GARCH)models with either normal or
t innovations.

In other approaches to estimate the VaR, the conditional return distribution, which
takes into account the current financial environment in which the asset is traded,
are often used. McNeil and Frey (2000) introduced a conditional approach using a
two-stage procedure by combining GARCH models to forecast volatility and then
applying techniques from extreme value theory (EVT) to the residuals from the
GARCH analysis. Although this method circumvents the use of unconditional return
distributions, it introduces a new problem that relates to the sensitivity of the EVT
analysis on the GARCH model fit. Another conditional approach was developed
by Chavez-Demoulin et al. (2005), in which they apply the POT model from EVT
to the excesses (return above a given threshold), which are treated as independent
and identically distributed (i.i.d.) observations and model the temporal patterns of
exceedances (days when an excess occurs), using a marked Hawkes self-exciting
process (Hawkes 1971) self-exciting process. This approach models the serial depen-
dence present in returns and provides a convenient method to estimate the conditional
VaR and other risk measures of interest, such as the expected shortfall (ES).
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However, despite their success, marked Hawkes processes are not always able to
provide an adequate fit to data. On these occasions, added flexibility in the specifi-
cation of the background arrival rate may be required. For instance, the background
arrival rate may be allowed to depend on some covariates, but this approach requires
appropriate external covariates to be available. We propose that the marked renewal
Hawkes (RHawkes) process model can provide this flexibility without the need
to find suitable covariates. The RHawkes process is an adaptation of the classical
Hawkes process, recently proposed by Wheatley et al. (2016), in which the Hawkes
process is modified so that the immigrant arrival times are described by a renewal
process rather than a Poisson process with a constant arrival rate. Chen and Stindl
(2018) developed an algorithm to evaluate the likelihood of the RHawkes process, in
quadratic time, which enables statistical inferences such as estimation, convenient to
implement.

Unlike the marked Hawkes process in which the likelihood function is easy
to evaluate using the direct likelihood formula for point process models (see e.g.
Daley and Vere-Jones 2003, Proposition 7.2.III.), the likelihood function for the
marked RHawkes process poses some additional computational challenges as the
intensity function relative to the natural filtration is non-trivial to evaluate. To cir-
cumvent this difficulty, we develop a readily implementable recursive algorithm to
evaluate the likelihood of the model in linear storage space and quadratic com-
putational time, which can be optimized to obtain estimates of model parameters
and their standard errors. We develop a procedure to assess the goodness-of-fit for
both aspects of the model, the temporal patterns of exceedances and the distri-
bution of excesses, by calculating the Rosenblatt residuals (see Rosenblatt 1952)
and testing the residuals for uniformity and independence. As by-products of the
direct likelihood evaluation algorithm, we obtain estimates of the two risk mea-
sures, conditional VaR and conditional ES. Furthermore, we provide methods to
make predictions about future extreme negative returns, and in particular, the wait-
ing time until the next exceedance and compare these predictions with actual
observations.

In the next section, we introduce the dataset. Section 3 introduces the marked
RHawkes process model, which includes its estimation and inferential methods such
as goodness-of-fit assessment, prediction and estimation of risk measures. Numerical
illustrations will follow in Section 4 with a simulation study. The focus of Section 5
is on applying the proposed methods to extreme negative returns for each of the five
ASX stocks.

2 ASX stock data

This section introduces five commonly traded stocks on the ASX that are used in
the analysis conducted in Section 5. The data was obtained from the Yahoo! Finance
database and consists of the date, open, high, low and close price for the following
stocks traded on the ASX from 1 January 2006 to 31 December 2016; JB Hi-Fi
Limited (JBH), Adelaide Brighton Limited (ABC), Computershare Limited (CPU),
Downer EDI Limited (DOW) and James Hardie Industries plc (JHX).
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To assess the RHawkes model’s performance at forecasting market risk and in par-
ticular estimating the conditional VaR, we shall perform backtesting. Therefore, the
time period under consideration is split into two non-overlapping periods, which we
call the in-sample and out-of-sample period. Data in the in-sample period are used to
estimate the model parameters, and then the estimated model is used to make forecast
of market risk measures during the out-of-sample period and the actual data in the
out-of-sample period is used to assess the forecasted risk measures. The period from
1 January 2006 to 31 December 2015 is the in-sample period while the following
year from 1 January 2016 to 31 December 2016 is used as the out-of-sample period.
Descriptive statistics for the daily log-losses for the in-sample period are reported
in Table 1, which contains the number of observations, minimum, maximum, mean,
standard deviation and kurtosis. We observe that the kurtosis for all stocks are larger
than three, which suggest that the return distributions are leptokurtic rather than
normal.

Denote the percentage log-loss from day t−1 to day t by rt = −100×log(st /st−1)

where st is the closing price. Our analysis is concerned with extreme negative returns
which exceed a high threshold denoted by u. If the loss on day t exceeds the threshold
value u, we say that an exceedance has occurred and provided that an exceedance
has occurred, the excess is given by wt = rt − u. The choice of the threshold value
u requires special attention. In our analysis, a threshold equal to the 90% quantile
of the log-losses in the in-sample period was used for each stock, so that the 10%
largest losses are considered as extreme negative returns. The choice of threshold
value u is to some extent rather arbitrary, but we follow the convention used in the
work of Chavez-Demoulin et al. (2005) and argue that using a lower threshold would
question the validity of EVT while using a higher threshold would reduce the sample
size considerably. With the current choice, the mean-excess plots (not shown) do not
indicate that a violation of the assumptions is apparent (see e.g., Embrechts et al.
1997, p. 355). The threshold value u for all five stocks are shown in Table 2 as well
as some descriptive statistics, including the number of exceedances, mean excess and
median excess for the in-sample period.

Figure 1 visualizes the transformation from raw price data into exceedance data
with threshold u = 2.425 for the stock JBH. The top panel shows a time series plot
of the daily closing asset price st . The daily closing asset prices are then transformed
to daily losses on the log scale rt excluding weekends and non-trading weekdays
aggregated together and the time series plot is shown in the middle panel. The plot

Table 1 Descriptive statistics for the in-sample daily log-losses in percent for each of the five ASX stocks

Stock JBH ABC CPU DOW JHX

n 2528 2527 2528 2524 2528

Min –16.03 –13.31 –14.51 –13.35 –20.15

Max 16.57 14.61 11.20 36.38 12.84

Mean –0.0624 –0.0323 –0.0213 0.0260 –0.0262

Std. dev. 2.316 2.049 1.893 2.611 2.359

Kurtosis 8.125 7.430 8.011 30.212 8.320
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Table 2 Descriptive statistics for the in-sample loss excesses for each of the five ASX stocks with a
threshold value u chosen as the 90% quantile

Stock JBH ABC CPU DOW JHX

Threshold 2.425 2.281 2.082 2.662 2.645

No. of exceedances 253 252 253 253 253

Mean excess 1.608 1.456 1.255 1.873 1.401

Median excess 1.074 0.898 0.743 0.935 0.887

shows clear signs of strong bursts of loss volatility. Next, we compute the excess above
the threshold u given that the log-loss rt exceeds the threshold. The bottom panel shows
the times of exceedances and size of excesses wt . The presence of heavy temporal
clustering of extremes is evident and typically occur near periods of large losses.

3 Model andmethodologies

Let the arrival times of exceedances be denoted by {τi}i≥1 ⊂ R>0, τi < τi+1
and denote the associated excesses by {wi}i≥1. Let N(t) be a simple point pro-
cess on R>0 that counts the number of exceedances by time t . There are two
types of exceedance events, namely exogenously and endogenously driven ones.
The type is identified by a further (unobservable) mark Mi ∈ {0, 1}, where
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Fig. 1 JB Hi-Fi Limited (JBH) stock data from 1 January 2006 to 31 of December 2015. Top panel: time
series plot of the daily closing stock price. Middle panel: time series plot of the negative daily log returns.
Bottom panel: time of exceedances and size of excesses over the threshold u = 2.425
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Mi = 0 indicates the arrival of an immigrant (exogenously driven exceedance) and
Mi = 1 indicates an offspring event (endogenously driven exceedance). Furthermore,
let I (t) := max {i; τi < t, Mi = 0} denote the index of the most recent immigrant,
with the convention that I (t) := 0 when t < τ1 and τ0 := 0.

To model the exceedance times and excesses we propose the marked RHawkes
process, where the waiting times between successive immigrants are assumed to be
i.i.d. so that the immigrants arrive according to a renewal process, and the exciting
mechanism among the events is the same as in the classical marked Hawkes process
model. That is, we assume the ground intensity process λ(t), t ≥ 0 relative to the
enlarged filtration F̃t = σ

{
N(s),w1:N(s), I (s); s ≤ t

}
, t ≥ 0 is given by

λ(t) =
E

[
dN(t)|F̃t−

]

dt
= μ(t − τI (t)) + ∑N(t−)

j=1 ηh(t − τj )g(wj ) (1)

=: μ(t − τI (t)) + φ(t).

The functionμ : R≥0 → R≥0 is the hazard rate function of the waiting times between
successive exogenously driven exceedances (immigrants). For the stability of the pro-
cess, we require that

∫ ∞
0 e−∫ t

0μ(s)dsdt < ∞, which ensures the expected waiting time
between successive immigrants is finite. The mark’s influence on the conditional
intensity is governed by the impact function g : R → R≥0. The constant η ≥ 0 is a
normalizing constant, and for stability we require that ηE [g(wi)]<1 so that the expec-
ted number of children of an event is less than one. If the impact function is norma-
lized so thatE [g(wi)] = 1, the parameter η ∈ [0, 1) has the interpretation of a branch-
ing ratio. The function h : R≥0 → R≥0 is the offspring density function. The process
φ(t) describes the total excitation effect of past events on current event intensity.

From the model specification (1), we can see that the background intensity
depends on when the most recent immigrant arrives, and it resets to the function μ(·)
upon the arrival of an immigrant. When the hazard function μ(·) is a constant, the
waiting times are exponentially distributed and the immigrants arrive according to
a Poisson process, and therefore the model reduces to the marked Hawkes process
in Chavez-Demoulin et al. (2005) and Chavez-Demoulin and McGill (2012). How-
ever, in general, the marked RHawkes process is substantially more flexible than the
marked Hawkes process because the event counts of the marked RHawkes process in
regular time intervals can be over- or under-dispersed relative to the Poisson process,
while the counts in a marked Hawkes process can only be over-dispersed.

The conditional intensity function in Eq. 1 is the time-intensity and only describes
the dynamics of the ground process. It does not take into account the distribution of
the marks. For full specification of the intensity process of the marked point process,
we also need to specify the distribution of the event mark given an event happens
at a certain time t and all the information before time t . In this work, we impose
a conditional independence assumption, so that the mark wi is independent of the
event time τi conditional on the previous exceedance times τ1:i−1 := (τ1, . . . , τi−1)

and excesses w1:i−1 := (w1, . . . , wi−1). This conditional independence assumption
makes parametric methods for modeling marks simple to implement. In this instance,
optimization of the log-likelihood function can be split into two separate optimization
problems, and therefore the maximum likelihood estimators (MLEs) for parameters
in the ground process model and in the mark distribution can be obtained separately.

710



Modeling extreme negative returns using marked renewal Hawkes...

3.1 Likelihood evaluation algorithm

This section develops an algorithm to compute the likelihood function of the marked
RHawkes process. The likelihood function can be expressed as a product of condi-
tional joint densities of the event time and mark, conditional on all previous times
and marks as follows

L(θ |τ1:n, w1:n) =

pθ(τ1, w1)

{
n∏

i=2

pθ(τi, wi |τ1:i−1, w1:i−1)

}

Pθ (τn+1 > T |τ1:n, w1:n) , (2)

where T is the censoring time and Pθ (τn+1 > T |τ1:n, w1:n) is the probability that no
event occurs in the interval (τn, T ]. In what follows, we drop the subscript θ in pθ

and Pθ for notational convenience, while the dependence of the relevant densities and
probabilities on the parameter θ is silently understood. The conditional independence
assumption allows the log-likelihood function in Eq. 2 to be split into two separate
components and inferences can be performed separately for the temporal patterns of
exceedances and the loss excesses. The log-likelihood function is then given by

l(θ |τ1:n, w1:n) =
[

logp(τ1) +
n∑

i=2

logp(τi |τ1:i−1, w1:i−1) + logP (τn+1 > T |τ1:n, w1:n)
]

(3)

+
[

logp(w1) +
n∑

i=2

logp(wi |τ1:i−1, w1:i−1)

]

=: lτ + lw, (4)

with lτ and lw denoting the temporal component and the mark component of the log-
likelihood respectively. We will treat the modeling of the marks and the evaluation of
lw in the next section. The remainder of this section is devoted to the evaluation of lτ .

The ground intensity function λ(t) depends on the most recent immigrant arrival
time and so to compute the conditional densities required in Eq. 3, the distribution of
the most recent immigrant is needed. If we define the following terms

dij := p (τi |τ1:i−1, w1:i−1, I (τi) = j) , (5)

Sn+1,j := P (τn+1 > T |τ1:n, w1:n, I (τn+1) = j) , (6)

pij := P (I (τi) = j |τ1:i−1, w1:i−1) , (7)

and by conditioning on the index of the most recent immigrant, we obtain the
following

p (τi |τ1:i−1, w1:i−1) =
i−1∑

j=1

dijpij , i = 2, . . . , n, (8)

P (τn+1 > T |τ1:n, w1:n) =
n∑

j=1

Sn+1,jpn+1,j . (9)
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We introduce some convenient notation to obtain computable expressions for
Eqs. 8 and 9. Let U(t) = ∫ t

0μ(s)ds be the cumulative immigrant hazard function,
H(t) = ∫ t

0h(s)ds be the offspring distribution function and �(t) = ∫ t

0φ(s)ds =
η

∑N(t−)
j=1 H(t − τj )g(wj ). By construction of the process, the first event is an immi-

grant with event time density p(τ1) = e−U(τ1)μ(τ1). The conditional densities and
survival probabilities in Eqs. 5 and 6 are computed using

dij = e−{U(τi−τj )−U(τi−1−τj )}−{�(τi )−�(τi−1)} (
μ(τi − τj ) + φ(τi)

)
, (10)

Sn+1,j = e−{U(T −τj )−U(τn−τj )}−{�(T )−�(τn)}, (11)

see also Eq. 6 and Eq. 7 in Chen and Stindl (2018). Next, the conditional probabil-
ities pij in Eq. 7 are computed using the following forward recursion with initial
conditions p21 = 1 and p(τ2|τ1, w1) = d21,

pij =
{

φ(τi−1)

μ(τi−1−τj )+φ(τi−1)

di−1,j pi−1,j
p(τi−1|τ1:i−2,w1:i−2)

, j = 1, . . . , i − 2,

1 − ∑i−2
k=1 pik, j = i − 1,

(12)

for i = 3, . . . , n + 1. The derivation of Eq. 12 is similar to the derivation of Eq. 8
found in the supplementary materials of Chen and Stindl (2018).

Direct evaluation of the likelihood is now possible given some parameter val-
ues. To evaluate the conditional densities p(τi |τ1:i−1, w1:i−1) and the most recent
immigrant probabilities pij , we implement the bivariate recursion given in Eqs. 8
and 12 together with the dij given by Eq. 10. The survival probability P(τn+1 >

T |τ1:n, w1:n) is computed using Eqs. 9, 11, and the pn+1,j . The above terms are then
substituted into the first pair of square brackets in Eq. 3, to calculate the part of the
log-likelihood needed for the estimation of parameters of the ground process model,
that is, lτ .

3.2 Excess modeling

The generalized Pareto distribution (GPD) is frequently used in EVT and has been
applied to model excesses of extreme negative returns (e.g. Chavez-Demoulin et al.
2005), and shall also be used in our work. The use of GPD is justified by the follow-
ing result from the EVT (cf. Embrechts et al. 1997, Theorem 3.4.5): If the random
variable X has a distribution function F(·) belonging to the maximum domain of
attraction of the standard generalized extreme value distribution Hξ(·),

Hξ(x) =
{
1 − exp

{−(1 + ξx)−1/ξ
}
, ξ �= 0;

1 − exp
{−e−x

}
, ξ = 0,

then there exists a positive function a(·) such that
P(X − u ≤ x|X > u) → Gξ,a(u)(x), as u → xF ,

where xF = sup {x ∈ R : F(x) < 1}, andGξ,σ is the generalized Pareto distribution
function with shape parameter ξ and scale parameter σ , defined by

Gξ,σ (x) =
{
1 − (1 + ξx/σ)

−1/ξ
+ , ξ �= 0;

1 − exp(−x/σ), ξ = 0.
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Following Chavez-Demoulin et al. (2005), we model the loss excesses using gen-
eralized Pareto distributions with a common shape parameter and scale parameters
evolving according to a first order Markov process. More specifically,

wi |w1:i−1 ∼ Gξ,a+bwi−1, (13)

with parameters ξ > 0, a > 0 and b > 0. For stability we also require that ξ +
b < 1. It can then be shown using Theorem 3.2 in Cline and Pu (2002) that the
Markov process (13) is geometrically ergodic. These parameters can be estimated by
maximizing the part of the log-likelihood in the second pair of brackets in Eq. 3, that
is,

lw =
n∑

i=1

{
−(

1

ξ
+ 1) log

(
1 + ξwi

a + bwi−1

)
− log(a + bwi−1)

}
, (14)

where we set w0 := a/(1 − ξ − b) to be the mean of the excesses.

3.3 Goodness-of-fit assessment

Two aspects of the model should be considered in the goodness-of-fit assessment;
the temporal patterns of exceedances and the distribution of excesses. For the former,
we apply a similar procedure to Chen and Stindl (2018) using the Rosenblatt (1952)
residuals. The basis of the method is to transform the exceedance times using the
Rosenblatt (1952) transformation to produce residuals which should be independent
and uniformly distributed on the unit interval when the model is correctly specified.

The residuals are given by U1 = F̂1(τ1) = 1 − e−Û (τ1) and

Ui = F̂i(τi |τ1:i−1, w1:i−1) = 1 −
i−1∑

j=1

p̂ij Ŝij , i = 2, . . . , n, (15)

where F̂i(t |τ1:i−1, w1:i−1) is the estimated conditional distribution function of τi

conditional on τ1:i−1 and w1:i−1, p̂ij are the estimated most recent immigrant
probabilities in Eq. 12 and Ŝij are given by

Ŝij = e
−

{
Û (τi−τj )−Û (τi−1−τj )

}
−

{
�̂(τi )−�̂(τi−1)

}

, j = 1, . . . , i − 1.

Note that Û (t) and �̂(t) are the plug-in estimates of the cumulative hazard function
U(t) and cumulative excitation effect �(t) defined on Page 7 above (10).

For a consistent approach to the goodness-of-fit assessment of the model, we also
apply the Rosenblatt (1952) transformation to the excesses. We only consider the
case of the GPD model in Eq. 13, although the procedure is general enough to apply
to most choices of marked distributions. In this instance, the residuals are given by

Vi = Ĝi(wi |τ1:i−1, w1:i−1) = 1 −
[

1 + ξ̂wi

â + b̂wi−1

]−1/ξ̂

(16)

where Ĝi(w|τ1:i−1, w1:i−1) is the estimated conditional distribution function of wi

conditional on τ1:i−1 and w1:i−1. However, for the GPD model considered in this
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paper, the conditional distribution function Ĝi(·|τ1:i−1, w1:i−1) only depends on
wi−1.

The two residual series {Ui} and {Vi} then serve as the basis for assessing the
model’s ability to model the temporal patterns of exceedances and the distribution
of excesses. Both residual series should be approximately i.i.d. uniformly on (0,1)
if both aspects of the model are adequate. To check the uniformity and indepen-
dence, we can use graphical techniques such as uniform Quantile-Quantile (Q-Q)
plot and the Autocorrelation function (ACF) plot, or formal statistical tests, such as
the Kolmogorov-Smirnov (K-S) test and the Ljung-Box (L-B) test respectively.

3.4 Predicting exceedances

Predictions using point process models often rely on simulations as explicit algo-
rithms are generally not available (Daley and Vere-Jones 2003, pp. 274). The
distribution of quantities of interests such as the time until the next exceedance or
the number of exceedances in a given time interval can be extracted from predictive
simulations. The algorithm works by sequentially simulating event times until the
censoring time, as in Section 4.1. This procedure requires a computable expression
for the hazard function (or cumulative hazard function) and so the index of the most
recent immigrant before time T needs to be simulated using the conditional proba-
bilities pn+1,j = P (I (τn+1) = j |τ1:n, w1:n) so that μ(t − τI (T )) can be computed
for all t > T . For each realization of the future we can extract any quantity of inter-
est that we want to predict, and use its empirical distribution obtained from a large
number of realizations as the basis for prediction.

A particularly important prediction for financial stakeholders is the time until the
next extreme loss. For this purpose, predictive simulations are not necessary, as we
can directly compute the predictive density and hazard function for the waiting time
until the next exceedance after the censoring time, which are given respectively by

p(τn+1|τ1:n, w1:n, τn+1 > T ) =
∑n

j=1 pn+1,j dn+1,j

P (τn+1 > T |τ1:n, w1:n)
, τn+1 > T, (17)

and

haz(τn+1|τ1:n, w1:n, τn+1 > T ) =
∑n

j=1 pn+1,j dn+1,j
∑n

j=1 pn+1,j S̃n+1,j
, τn+1 > T, (18)

where the pn+1,j ’s are calculated using (12), the denominator in Eq. 17 is computed
using (9), the dn+1,j ’s are given as in Eq. 10 and

S̃n+1,j = e−{U(τn+1−τj )−U(τn−τj )}−{�(τn+1)−�(τn)}.

The estimated parameters can then be substituted into Eqs. 17 and 18 to obtain
the estimated predictive density and hazard function which is useful in making
predictions about the time until the next exceedance.
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3.5 Forecasting conditional risk measures

Conditional risk measures such as VaR and ES are important quantities used by
many financial institutions and as such, a method to estimate their value is of
particular importance. The proposed algorithm to evaluate the likelihood of the
marked RHawkes process implies a procedure to compute the predictive distribu-
tion of loss excesses conditional on the history of the process by time t , Ft =
σ

{
N(t), τ1:N(t), w1:N(t)

}
, and therefore estimates of conditional VaR and ES can be

easily obtained. For the remainder of this article, we will refer to the conditional VaR
and conditional ES as VaR and ES, observing that these quantities are conditioned
upon all priorly observed exceedance times and loss excesses. To forecast the VaR
and ES for the out-of-sample period, the MLEs obtained from the in-sample period
are used to obtain the plug-in predictive loss distribution.

Denote Rt+1 as the daily log-loss on day t +1, then the VaR at level q on day t +1
is given by

VaRq

t+1 = inf
{
r ∈ R : FRt+1|Ft

(r) ≥ q
}
,

which takes into account the observed data up to day t . In financial applications
we are often concerned with extreme outcomes and so we typically take quantile
levels q = 0.95 or q = 0.99. Now by conditioning on the index of the most recent
immigrant before time t+1, the survival function for the daily log-lossRt+1 becomes

P (Rt+1 > r|Ft ) =
N(t)∑

k=1

P (Rt+1 > r|Ft , I (t) = k)P (I (t) = k|Ft ) . (19)

As we are only concerned with extreme returns, we condition upon the return being
greater than the threshold u, and so for r > u we obtain

P (Rt+1 > r|Ft , I (t) = k) = P (Rt+1 − u > r − u|Rt+1 > u,Ft , I (t) = k)

× P (Rt+1 > u|Ft , I (t) = k) . (20)

To compute (20) we approximate a discrete time process using a continuous time
process. The second term on the right of Eq. 20 can be approximated using the proba-
bility that at least one exceedance event occurs in the interval (t, t +1] conditional on
index k being the most recent immigrant. This type of approximation has previously
been applied in the work of Chavez-Demoulin et al. (2005) and Chavez-Demoulin
and McGill (2012). In this context, the approximation is given by

P (Rt+1 > u|Ft , I (t) = k) ≈ 1 − exp

(

−
∫ t+1

t

μ̂(s − τk) + φ̂(s)ds

)

. (21)

The first term on the right hand side of Eq. 20 is computed using the fitted GPD for
the excesses,

Rt+1 − u|Ft ; Rt+1 > u ∼ G
ξ̂,â+b̂wN(t)

.

A forecast of the VaR at level q can be obtained by solving

P
(
Rt+1 > VaRq

t+1|Ft

) = 1 − q,
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and is given by

V̂aR
q

t+1 = â + b̂wN(t)

ξ̂

[ (
Ct+1

1 − q

)ξ̂

− 1

]

+ u, (22)

where

Ct+1 =
N(t)∑

k=1

[

1 − exp

{

−
∫ t+1

t

μ̂(s − τk) + φ̂(s)ds

}]

p̂N(t)+1,k,

is an approximation to the probability that the return on day t + 1 is greater than
the threshold u, i.e. P (Rt > u|Ft ). The expression in Eq. 22 is only valid when
Ct+1/(1 − q) > 1, or more elegantly put q ≥ P (Rt+1 < u|Ft ). When this does
not hold, we apply a conservative approach and define our VaR estimate to equal the
threshold value u.

Although the VaR is a very useful tool for measuring risk, it does not give an
indication of the size of an extreme loss. This deficiency has led to alternative risk
measures being considered. One such alternative is the ES, which is an attractive risk
measure as it provides a measure of the size of the loss given that it exceeds the VaR
level. The conditional ES for day t + 1 at quantile level q is defined by

ESq

t+1 =
∫ 1
q
VaRα

t+1dα

1 − q
.

Based on this definition, a forecast of the conditional ES on day t + 1 is given by (cf.
Chavez-Demoulin and McGill 2012):

ÊS
q

t+1 =
ˆVaRq

t+1

1 − ξ̂
+ â + b̂wN(t) − uξ̂

1 − ξ̂
. (23)

4 Simulation study

4.1 Simulation algorithm

The algorithm to simulate the process requires a sequential approach as the event
marks might be autocorrelated. The algorithm works as follows. First, simulate the
initial immigrant arrival time according to the specified inter-renewal distribution.
Then each event is simulated by first simulating the corresponding waiting time since
the last event according to an appropriate hazard function, and then simulating the
event type (immigrant or offspring) according to an appropriate Bernoulli distribu-
tion, and finally simulating the event mark according to previously simulated events
marks (and event times, depending on model specification) and the specified depen-
dence structure. Events are simulated sequentially until the next simulated event time
is beyond the censoring time. The realization of the marked RHawkes process con-
sists of the time-mark pairs corresponding to all the simulated events by the censoring
time. Note that the event types are not retained.
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4.2 Simulationmodel

The rest of this section reports numerical evidence of the finite sample performance
of the MLEs in a simulation study. The models chosen to perform the simulations
are motivated by the model choices in Section 5 and consist of gamma inter-renewal
waiting times with hazard function

μ(t) = 1

�(t/β, κ)βκ
tκ−1e−t/β, (24)

where κ is the shape parameter, β is the scale parameter and �(x, k) =∫ ∞
x

sk−1e−sds is the upper incomplete gamma function. The offspring density is
exponential h(t) = e−t/γ /γ with mean waiting time parameter γ . The event marks
are conditionally generalised Pareto distributed, and follows the first order Markov
process (13) with parameters ξ , a and b. The impact function g(w) is the normalized
version of the affine function 1 + δw, that is,

g(w) = 1 + δw

E [1 + δwi]
= 1 + δw

1 + δa/(1 − ξ − b)
. (25)

The simulations consist of 1000 realizations of the marked RHawkes process up
to a predetermined censoring time T for a range of parameter values specified in
Table 3. The censoring time T is chosen so that the expected numbers of events by
T are approximately 500 and 1000 respectively. For each realization, the parameters
of the mark distribution ξ , a and b are estimated by directly minimizing −lw, and
the parameters of the RHawkes process κ , β, γ , δ and η are estimated by directly
minimizing −lτ .

4.3 Results

All computations were performed on Intel Xeon X5675 processors (12M cache, 3.06
GHz, 6.4GT/S QPI) using the R language (R Core Team 2017). Likelihood maxi-
mization was done by direct calls to the R function optim. As the log-likelihood
function is rather flat along the parameters ξ and δ, we have used the reparametriza-
tion θ = eθ ′

to improve convergence speed and estimation accuracy. Table 3 presents
the estimation results, which contains the true value for each parameter (True), the
mean of the 1000 parameter estimates (Est), the empirical standard error of each esti-
mator (SE), i.e. the standard deviation of the 1000 estimates, the average of the 1000
standard error estimates by inverting the approximate Hessian matrix (ŜE), the mean
squared error (MSE), the censoring time (T ), the mean number of events (ML) and
the mean running time (RT) to perform the optimization procedure and compute the
Hessian matrix. Due to the heavy-tailed nature of the generalized Pareto distribution,
occasionally extremely large mark values occur. The finite and somewhat small sam-
ple size allows these extreme mark values to have a substantial influence on some
parameter estimates, especially on the estimates of δ. Therefore in summarizing the
estimation results in Table 3, we have trimmed the extreme estimates by removing
a percentage (2.5% when the mean number of events is 500 and 1% when the mean
number of events is 1000) of the smallest and largest estimates for each parameter.
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Table 3 Results of the maximum likelihood estimation based on 1000 simulated data sets of the marked
RHawkes process with gamma distributed inter-immigration waiting times, exponential offspring den-
sities, normalized affine linear impact function, and event marks following the one-step Markov model
in Eq. 13

Immigration Offspring Mark Impact

κ β γ η ξ a b δ

True 2 0.5 1 0.3 0.1 1 0.1 0.1

Est. 2.039 0.495 1.138 0.289 0.094 1.009 0.098 0.366

SE 0.328 0.059 0.627 0.069 0.044 0.076 0.045 2.434

ŜE 0.359 0.067 0.588 0.074 0.050 0.087 0.049 4.695

MSE. 0.109 0.004 0.413 0.005 0.002 0.006 0.002 5.996

RT = 325.89 secs T = 350 ML = 498.71

Est. 2.023 0.500 1.081 0.296 0.097 1.005 0.099 0.146

SE 0.241 0.048 0.440 0.051 0.034 0.058 0.033 0.162

ŜE 0.254 0.049 0.509 0.055 0.035 0.061 0.035 0.195

MSE. 0.058 0.002 0.200 0.003 0.001 0.003 0.001 0.029

RT = 1031.71 secs T = 700 ML = 996.75

True 2 0.5 1 0.7 0.1 1 0.1 0.1

Est. 2.263 0.475 1.030 0.674 0.092 1.005 0.097 0.155

SE 1.045 0.151 0.260 0.072 0.043 0.074 0.041 0.170

ŜE 0.899 0.155 0.278 0.074 0.050 0.087 0.050 0.204

MSE. 1.161 0.024 0.068 0.006 0.002 0.006 0.002 0.032

RT = 330.55 secs T = 150 ML = 494.77

Est. 2.099 0.496 1.008 0.683 0.098 1.003 0.099 0.123

SE 0.689 0.124 0.183 0.054 0.032 0.057 0.034 0.109

ŜE 0.618 0.122 0.189 0.053 0.035 0.061 0.035 0.117

MSE. 0.484 0.015 0.034 0.003 0.001 0.003 0.001 0.012

RT = 1055.37 secs T = 300 ML = 990.62

True 0.5 2 1 0.3 0.1 1 0.1 0.1

Est. 0.506 2.014 1.026 0.299 0.094 1.011 0.097 0.259

SE 0.038 0.298 0.352 0.061 0.043 0.073 0.041 0.438

ŜE 0.042 0.337 0.378 0.070 0.050 0.087 0.049 0.599

MSE. 0.001 0.089 0.124 0.004 0.002 0.005 0.002 0.217

RT = 369.06 secs T = 350 ML = 500.03

Est. 0.503 2.007 1.016 0.298 0.096 1.005 0.098 0.184

SE 0.029 0.219 0.253 0.047 0.033 0.058 0.033 0.246

ŜE 0.029 0.234 0.268 0.049 0.035 0.061 0.035 0.280

MSE. 0.001 0.048 0.064 0.002 0.001 0.003 0.001 0.068

RT = 1227.40 secs T = 700 ML = 998.89

True 0.5 2 1 0.7 0.1 1 0.1 0.1

Est. 0.533 1.858 0.997 0.671 0.093 1.014 0.095 0.157

SE 0.076 0.503 0.200 0.065 0.043 0.075 0.044 0.179
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Table 3 (continued)

Immigration Offspring Mark Impact

κ β γ η ξ a b δ

ŜE 0.083 0.578 0.223 0.074 0.051 0.089 0.050 0.230

MSE. 0.007 0.274 0.040 0.005 0.002 0.006 0.002 0.035

RT = 348.17 secs T = 150 ML = 490.36

Est. 0.516 1.941 1.001 0.687 0.095 1.006 0.099 0.129

SE 0.053 0.409 0.143 0.048 0.032 0.058 0.034 0.123

ŜE 0.056 0.434 0.151 0.051 0.035 0.061 0.035 0.138

MSE. 0.003 0.171 0.021 0.002 0.001 0.003 0.001 0.016

RT = 1140.52 secs T = 300 ML = 996.05

In most cases the bias and standard errors are decreasing as the censoring time
increases. The standard errors are also decreasing and approximately at a rate of
1/

√
T as the standard errors reduce by a factor of approximately 1/

√
2 when the

censoring time T is doubled. The mean of the standard errors are fairly compara-
ble with the empirical standard errors as they agree in most cases and again this
improves as the censoring time increases. For the majority of the parameters, the
MSE is fairly close to zero with the only notable exceptions being γ and δ. However,
the MSE drops quite substantially as we increase the censoring time, e.g. the MSE
for δ decreases from 5.996 to 0.029 in the first simulation model considered while
most decrease by a factor of two.

The estimated mean waiting time γ̂ between an event and its direct offspring
events and the estimated parameter δ̂ in the impact function tend to have rather
large standard errors when compared to the standard errors of the other parameter
estimates. However, the standard errors of γ̂ and δ̂ are still shrinking as the cen-
soring time gets larger. The relatively large standard errors for the mean offspring
waiting time is also evident in the simulation study conducted by Chen and Stindl
(2018) for the RHawkes process. The estimates for γ and impact function parameter
δ have significantly less bias when the immigrant arrivals exhibit heavy clustering
(κ = 1/2) compared to when the immigrants exhibit more evenly distributed arrival
times (κ = 2). The parameter γ is well estimated when the branching ratio η is large,
i.e. when the level of self-excitation is high, as the expected number of offspring
events present in those realizations is larger. The large bias evident in the estimation
of the parameter δ relates to the heavy-tailed nature inherent in the generalised Pareto
distribution and a rather large sample would be required to reduce the bias to a rea-
sonable level. The branching ratio parameter η is generally well estimated with little
to no bias for the range of censoring times, level of self-excitation and variability of
immigrant inter-event waiting times. This leads us to draw the conclusion that the
MLE obtained by directly maximizing the log-likelihood function has satisfactory
finite sample performances.
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In Fig. 2 we present the normal Q-Q plots of the estimates of each parameter for
the last simulation model considered in Table 3. For most parameters, the standard
normal quantiles and the empirical quantiles of the estimator align fairly well. How-
ever, as the true value 0.1 for δ is very close to the lower bound 0, and because of the
large variance of the estimator of δ, the empirical distribution for the estimator of δ is
heavily skewed to the right, causing severe deviation of the quantile points from the
Q-Q line in the Q-Q plot for δ̂.

5 Modeling extreme negative returns

In this section we demonstrate the versatility of the marked RHawkes process for
modeling extreme negative returns for five stocks traded on the ASX introduced in
Section 2. The marked RHawkes process model was fitted to the data with three
different choices of inter-renewal distributions; exponential, gamma and Weibull.
Recall that the exponential inter-renewal distribution is equivalent to the competi-
tor approach based on the classical marked Hawkes process for which the marked
RHawkes process will be backtested against. The gamma model has an inter-renewal
hazard function given by Eq. 24 and the Weibull model with shape parameter κ and
scale parameter β has hazard function given by

μ(t) = κ

βκ
tκ−1, t ≥ 0. (26)

For all models, we use a normalized affine impact function as in Eq. 25, where δ

reflects the strength of the excesses on the ground intensity process. The offspring
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Fig. 2 Normal quantiles plots of the estimates of each parameter for the case where κ = 0.5, β = 2,
γ = 1, δ = 0.1 and η = 0.7 with a mean numbers of events 1000 approximately
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density is chosen to be exponential h(t) = e−t/γ /γ where γ is the mean waiting time
between an exceedance event and any exceedance events directly excited by it. The
estimated parameters for each model on the ASX stocks were found by directly opti-
mizing the log-likelihoods and the standard errors by inverting the Hessian matrix.
The Rosenblatt residuals for goodness-of-fit assessment were also calculated.

To model the loss excesses, following Chavez-Demoulin et al. (2005) we assume
the loss excesses follow the order-1 Markov process model (13). We optimized the
contribution to the likelihood in Eq. 3 based only on the excesses. The results are
reported in Table 4, which contains the estimates, the standard errors (in parenthe-
ses), and the p-values of the K–S tests and L–B tests on the Rosenblatt residuals. The
large p-values suggest the model for the excesses is adequate for most of the stocks,
except in the case of the JHX and CPU stocks, where there is still significant serial
correlation among the residuals. A higher order Markov process might be considered
for these stocks. The estimated parameter b̂ is positive for all the stocks, suggesting
that an excessively large loss is likely to be followed by another large loss, although
the result is only significant for the stocks JBH and CPU. The estimated shape param-
eter ξ̂ is positive for all the stocks, although it is statistically significant only for the
stock DOW, suggesting the loss excesses on this stock is heavier-tailed than on the
other stocks, which agrees with the kurtosis statistics shown in Table 1.

Table 5 contains the estimates of the model parameters for the temporal com-
ponent, their standard errors (in parentheses), the mean waiting time between
exogenously driven exceedances (WT) and the p-values of the K-S and L-B tests
on the residuals calculated using the in-sample data. The marked RHawkes process
with gamma or Weibull inter-renewal distributions clearly fits to the data better than
the Hawkes process model (the exponential case), with uniformity of residuals for
the RHawkes process models passing the K-S test at the 5% level on all five stocks
while the residuals for the Hawkes process are always smaller and mostly fail at the
5% level, although the results on the L-B tests of independence of residuals for the
Hawkes and RHawkes processes are very similar, except in the case of the DOW
stock. The goodness-of-fit results of the gamma and Weibull RHawkes processes are
similar, although the fit by the gamma RHawkes model is slightly better. Figure 3
shows the uniform Q-Q plots and the ACF plots of the Rosenblatt residuals Ui (15)
for the gamma RHawkes model fitted to the different stocks. Graphically, the uniform
Q-Q plots indicates good agreement between empirical and theoretical quantiles,

Table 4 Results of the maximum likelihood estimation of excesses using the GPD with common shape
parameter ξ and scale parameters evolving according to a first order Markov process σj = a + bwj−1, for
each ASX stock

ξ̂ â b̂ K–S L–B

JBH 0.113 (0.0672) 1.213 (0.152) 0.133 (0.0675) 0.7720 0.3189

ABC 0.118 (0.0706) 1.124 (0.137) 0.0883 (0.0697) 0.7737 0.4681

CPU 0.129 (0.0687) 0.748 (0.108) 0.286 (0.0883) 0.8115 0.0058

DOW 0.337 (0.0755) 1.192 (0.134) 0.0071 (0.0351) 0.4579 0.0649

JHX 0.0976 (0.0720) 1.089 (0.128) 0.122 (0.0657) 0.9627 2.656 × 10−7
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Table 5 Results of the maximum likelihood estimation of the marked RHawkes process with exponential
(mean μ), Weibull and gamma (shape κ and scale β) distributed inter-immigration waiting times, expo-
nential offspring densities (mean γ ) and linear impact function (δ describes the strength of the excesses)
and branching ratio η, for each ASX stock

κ̂ β̂ γ̂ δ̂ η̂ WT K-S L-B

JBH

Exponential μ̂ = 22.67 (5.73) 42.82 (12.67) 1.643 (3.118) 0.564 (0.115) 22.67 0.049 0.015

Weibull 1.544 (0.336) 28.07 (6.10) 29.30 (9.47) 0.694 (0.712) 0.609 (0.0906) 25.25 0.146 0.019

Gamma 1.983 (0.906) 12.44 (4.28) 29.87 (10.28) 0.772 (0.908) 0.599 (0.101) 24.67 0.189 0.019

ABC

Exponential μ̂ = 23.37 (6.33) 51.84 (16.97) 0.722 (0.870) 0.575 (0.120) 23.37 0.008 0.185

Weibull 1.384 (0.220) 24.50 (4.85) 35.37 (12.71) 0.571 (0.548) 0.555 (0.0911) 22.37 0.044 0.187

Gamma 1.606 (0.374) 13.21 (3.26) 37.37 (13.96) 0.700 (0.733) 0.530 (0.0948) 21.21 0.064 0.177

CPU

Exponential μ̂ = 27.30 (8.82) 41.77 (15.22) 0.170 (0.250) 0.639 (0.123) 27.30 0.067 0.340

Weibull 1.322 (0.242) 29.74 (8.19) 32.61 (10.86) 0.152 (0.201) 0.639 (0.103) 27.38 0.116 0.314

Gamma 1.704 (0.616) 15.66 (4.94) 32.13 (10.77) 0.160 (0.208) 0.630 (0.106) 26.68 0.131 0.314

DOW

Exponential μ̂ = 19.90 (4.29) 20.44 (6.91) 0.110 (0.137) 0.498 (0.109) 19.90 0.074 0.287

Weibull 1.768 (0.578) 30.49 (8.57) 15.49 (4.46) 0.0844 (0.0787) 0.633 (0.108) 27.14 0.230 0.139

Gamma 7.129 (4.409) 4.95 (2.60) 17.51 (4.10) 0.0791 (0.0671) 0.719 (0.0656) 35.26 0.244 0.071

JHX

Exponential μ̂ = 21.82 (6.40) 47.92 (15.61) 0.800 (1.168) 0.549 (0.139) 21.82 0.019 0.332

Weibull 1.374 (0.234) 25.39 (6.65) 36.19 (10.77) 0.552 (0.613) 0.575 (0.113) 23.21 0.065 0.345

Gamma 1.705 (0.513) 12.76 (2.98) 36.12 (11.10) 0.686 (0.856) 0.546 (0.122) 21.75 0.109 0.355
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Fig. 3 Graphical goodness-of-fit test of the Rosenblatt residuals for the RHawkes process with gamma
distributed inter-immigration waiting times for each ASX stock. The top panels are the uniform Q-Q plots
and the lower panels are the ACF plots
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although they tend to depart in the upper quantiles slightly but still remain within the
95% confidence intervals. The autocorrelations among the residuals are mostly neg-
ligible as seen in the ACF plots, and this is confirmed by the large p-values of the
L-B tests for the majority of the stocks.

The added flexibility of the RHawkes process introduces an extra parameter and
so to have an appropriate comparison between the RHawkes process and the less flex-
ible Hawkes process, we compute the Akaike information criterion (AIC) for each
model on each of the five stocks, as seen in Table 6. For each stock the Weibull and
gamma renewal models outperform the Hawkes model. The AIC for the gamma and
Weibull models are again rather comparable. Therefore, by taking into consideration
the goodness-of-fit test results and the AIC values, to correctly model the temporal
patterns of exceedances, the more flexible RHawkes model is to be preferred to the
classical Hawkes process. In the sequel, when talking about RHawkes processes, we
only consider the case with gamma distributed inter-renewal times.

In interpreting the model fit results, we consider only the JBH stock since the
results on other stocks can be interpreted similarly. The estimated shape parame-
ter of the gamma inter-renewal waiting time, κ̂ = 1.983, suggests that exogenously
driven extreme losses occur more evenly through time than suggested by the classical
Hawkes process (i.e. κ̂ = 1). The mean waiting time between successive immi-
grants is κ̂ β̂ = 24.67 days which is slightly larger than suggested by the Hawkes
model (22.67 days). The mean waiting time from an extreme loss to an extreme loss
directly generated by it is 29.87 days, while the Hawkes model suggests this mean
waiting time is considerably longer at 42.82 days. Another interesting comparison
is between the mean waiting time between exogenously and endogenously driven
exceedances suggested by the RHawkes model. By comparing the WT and the esti-
mated γ̂ values, it is clear that exogenously driven exceedances occur more rapidly
than endogenously driven ones and this is consistent with all but one of the stocks.
The value δ̂ = 0.772 reflects a moderate impact of the excess values on the propensity
for future exceedances. For example, an excess of 2% leads to an increase in propen-
sity contribution from that exceedance by 13.44% while an excess of 5% leads to
an increase of 16.7%. The estimated δ value decreases when moving from exponen-
tial inter-renewals to gamma inter-renewals and this is consistent for all the stocks.
Using gamma inter-renewals thus reduces the impact that the loss excesses has on the
intensity for future exceedances as compared to the exponential inter-renewals. The
relatively large branching ratio η̂ = 0.599 suggests a high degree of self-excitation,

Table 6 Akaike information criterion (AIC) for each ASX stock with exponential, Weibull and gamma
distributed inter-renewals

Stock JBH ABC CPU DOW JHX

Exponential 1613.36 1625.59 1634.97 1644.57 1627.29

Weibull 1609.37 1622.72 1634.06 1640.93 1623.64

Gamma 1609.60 1622.37 1633.00 1640.48 1622.41
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with the model interpreting slightly more exceedances to be endogenous rather than
exogenous.

Next we use the procedure developed in Section 3.5 to estimate the risk measures
on the five stocks. We also assess the performance of the estimation using backtest-
ing, where the number of VaR exceptions expected by the estimated risk measure
is compared to the actual number of VaR exceptions. Here, a VaR exception occurs
whenever the actual log-loss on a particular day exceeds the estimated value of the
VaR. A large number of exceptions implies that the model is underestimating the
risk. Figure 4 presents the time series plot of the log-losses and the estimated 95%
and 99% VaR based on the RHawkes process and based on the classical Hawkes pro-
cess for the ASX stocks over the period from 1 January 2012 to 31 December 2016.
Here we have used a longer time period for backtesting which contains part of the in-
sample period as well as the entire out-of-sample period, for the comparison between
the expected and actual numbers of VaR exceptions to be meaningful.

One method to formally assess how well the VaR estimator performs is to test
whether the observed proportion of VaR exceptions p̂ agrees with the expected
proportion of exceptions p = 1 − q, where q is the quantile level used in the
VaR calculation. The null hypothesis states that the model correctly forecast the
VaR, while the alternate hypothesis states that the model underestimates the VaR,
since in financial applications we typically give importance to not underestimat-
ing risk. For the stock JBH, the percentage of actual exceptions based on the
RHawkes model estimate of the 95% VaR is 4.49%, and is 0.528% based on the
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Fig. 4 Time series plot of the daily log-losses for each ASX stock for the period 1 January 2012 to 31
December 2016 together with the 95% and 99% estimates of VaR. The solid lines are based on estimates
for the gamma RHawkes model and the dashed lines are based on the Hawkes model
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99% VaR estimate. Both these values agree well with the respective expected pro-
portions, with the p-values of the one-side exact binomial tests equal to 0.8345
and 0.9839 respectively. The corresponding p-values on the other four stocks
are all much larger than 5%, suggesting the RHawkes model based VaR estima-
tor has satisfactory performance. The Hawkes model based VaR estimator also
passes the test on all five stocks, although typically with smaller p-values. There-
fore, the VaR estimators based on the RHawkes and Hawkes models have similar
performances.

However, Fig. 4 reveals that the VaR estimate based on the RHawkes model can
drop following an exceedance, while the VaR estimate by the Hawkes model always
jumps up following an exceedance. The reason for this is that the estimated shape
parameter κ̂ of the inter-renewal distribution is larger than 1, implying that the esti-
mated hazard function μ given in Eq. 24 is monotonically increasing from 0, and
therefore μ(t − τk) + φ(t) can drop following an immigrant event, which in turn
causes the approximation (21) used in the calculation of the VaR in Eq. 22 to go down
following an event with a small excess, but a high probability to be an immigrant.
In contrast, the hazard function μ in the Hawkes model is a constant, so the inten-
sity μ + φ(t) always jumps up when the excitation effect enters φ(t) following each
exceedance, which causes the VaR estimate in Eq. 22 to jump up. The estimated ES
at the 95% level for the five stocks are shown in Fig. 5, from which we can see the
estimates using both the RHawkes and the Hawkes models are again similar to each
other. However, similar to the VaR estimate, the ES estimate by the RHawkes model
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Fig. 5 Time series plot of the daily log-losses for the ASX stocks for the period 1 January 2012 to 31
December 2016 together with the 95% estimates of ES. The solid line is based on estimates from the
gamma RHawkes model and the dashed line is the Hawkes model
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can drop momentarily following an exceedance with a small excess, suggesting that
the chance and the size of an extreme loss right after a small exceedance can both be
smaller than before the exceedance.

Another interesting forecast to perform is the number of days until the next
extreme loss. The developments in Section 3.4 are used to make this forecast for each
stock and then compared with actual observations. To predict the waiting time until
the next extreme loss, we condition on all available information at the censoring time,
and compute the predictive density and hazard function using both the RHawkes and
Hawkes models. In Fig. 6 we plot the predictive densities using solid lines while the
dashed lines are used for the predictive hazard functions. The black lines are for the
RHawkes model while the grey lines are used for the Hawkes model.

For the JBH stock, the probability that an exceedance occurs in the first, sec-
ond, third and fourth 10-day period using the RHawkes model are 54.12%, 24.53%,
11.29% and 5.28% respectively, with the actual exceedance indeed occurring dur-
ing the first ten-day period. These predicted probabilities by the Hawkes model are
similar, although the predicted probability of having the first extreme loss in the first
10-day period is slightly smaller. The predictive hazard function gives us an estimate
of the hazard, or conditional probability of having an extreme loss on a given day
conditional on that it has not occurred by the previous day. We can see from Fig. 6
that by the RHawkes model, the hazard of seeing an extreme loss on 1 January 2016
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Fig. 6 Solid lines show the predictive densities and the dashed lines show the predictive hazard functions
for the waiting time (in days) until the next exceedance after the censoring time. The black lines represent
the RHawkes model while the shaded lines represent the Hawkes model
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is 7.86%, while by the Hawkes model, it is only 7.09% The predictions for the other
four stocks by the two models can be interpreted similarly. Note that the hazard func-
tion for the stock DOW increase over time and this is a result of the large estimated
shape parameter κ̂ = 7.129 and a recent exceedance having a high probability of
being exogenously driven.

6 Concluding remarks

In this work we have proposed an extension to the marked Hawkes process consid-
ered by Chavez-Demoulin et al. (2005) and Chavez-Demoulin and McGill (2012) to
a marked renewal Hawkes process, where the immigrant (or spontaneous/exogenous)
events can follow a general renewal process rather than a Poisson process. We devel-
oped a recursive algorithm to evaluate the likelihood of the proposed model that
is similar to the algorithms in Chen and Stindl (2018) and Stindl and Chen (2018)
for the evaluation of the likelihoods of the unmarked and multivariate versions of
the renewal Hawkes process. Through simulation experiments, we demonstrated that
the likelihood evaluation algorithm is effective for the purpose of fitting the marked
renewal Hawkes process model to data using the maximum likelihood approach. Our
application of the marked renewal Hawkes process to data on the extreme nega-
tive returns of several stocks showed better goodness-of-fit than the marked Hawkes
process considered by Chavez-Demoulin et al..

It should be noted that, although we have used a continuous-time approach fol-
lowing the works of Chavez-Demoulin et al. in modelling the times and excess losses
of extreme negative stock returns, marked versions of the discrete-time counterpart
of the Hawkes process (Kirchner 2016) and the binary time-series model discussed
e.g. in Cui and Lund (2009) might be more natural models for such data due to the
measurement of event times in multiples of days.
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