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Abstract
Regularly varying stochastic processes model extreme dependence between process
values at different locations and/or time points. For such stationary processes we
propose a two-step parameter estimation of the extremogram, when some part of
the domain of interest is fixed and another increasing. We provide conditions for
consistency and asymptotic normality of the empirical extremogram centred by a
pre-asymptotic version for such observation schemes. For max-stable processes with
Fréchet margins we provide conditions, such that the empirical extremogram (or
a bias-corrected version) centred by its true version is asymptotically normal. In a
second step, for a parametric extremogram model, we fit the parameters by gener-
alised least squares estimation and prove consistency and asymptotic normality of
the estimates. We propose subsampling procedures to obtain asymptotically correct
confidence intervals. Finally, we apply our results to a variety of Brown-Resnick pro-
cesses. A simulation study shows that the procedure works well also for moderate
sample sizes.
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1 Introduction

Max-stable processes and regularly varying processes have in recent years attracted
attention as time series models, spatial processes and space-time processes. Regularly
varying processes have been investigated in Hult and Lindskog (2005) and Hult and
Lindskog (2006) and basic results for max-stable processes can be found in de Haan
and Ferreira (2006). Such processes provide a useful framework for modelling and
estimation of extremal events in their different settings.

Among the various regularly varying models considered in the literature, max-
stable Brown-Resnick processes play a prominent role allowing for flexible fractional
variogram models as often observed in environmental data. They have been intro-
duced for time series in Brown and Resnick (1977), for spatial processes in
Kabluchko et al. (2009), and in a space-time setting in Davis et al. (2013a).

For max-stable processes with parametrised dependence structure, various esti-
mation procedures have been proposed for extremal data. Composite likelihood
methods have been described in Padoan et al. (2009) and Huser and Davison (2014).
Threshold-based likelihood methods have been proposed in Wadsworth and Tawn
(2014) and Engelke et al. (2015). For the max-stable Brown-Resnick process asymp-
totic results of composite likelihood estimators have been derived in Davis et al.
(2013b), Huser and Davison (2013), and Buhl and Klüppelberg (2016). In some spe-
cial cases full likelihood estimation is feasible, which opens the door for frequentist
or Bayesian approaches; see for example Dombry et al. (2018) and Thibaud et al.
(2016).

Parameter estimation based on likelihood methods can be laborious and time con-
suming, and also the choice of good initial values for the optimization routine is
essential. As a consequence, a semiparametric estimation procedure can be an alter-
native or a prerequisite for a subsequent likelihood method. Such an estimation
method has been suggested and analysed for space-time processes with additively
separable dependence function in Steinkohl (2013) and Buhl et al. (2018) based on
the extremogram, which is a natural extremal analogue of the correlation function for
stationary processes. The extremogram was introduced for time series in Davis and
Mikosch (2009) and Fasen et al. (2010), and extended to a spatial and space-time set-
tings in Steinkohl (2013) and Cho et al. (2016). Semiparametric estimation requires
a parametric extremogram model. The parameter estimation is then based on the
empirical extremogram, and a subsequent least squares estimation of the parameters.

The processes considered in Steinkohl (2013), Cho et al. (2016), Buhl and
Klüppelberg (2018), and Buhl et al. (2018) are isotropic in space; cf. model (I) in
Section 5.3 below. The central goal of this paper is to generalise the semiparametric
method developed in Buhl et al. (2018) in various aspects. We list the most important
extensions:

– In Buhl et al. (2018) ordinary least squares estimation was performed separately
for the spatial and the temporal dependence parameters. This was possible, since
we assumed an additively separable dependence model, linear in its parameters
after a suitable transformation. In the present paper we allow for a much larger



Generalised least squares estimation of regularly varying space-time... 225

class of dependence models provided they satisfy some weak regularity condi-
tions. In particular, we allow for non-linear structures in the dependence models,
and we estimate a space-time dependence model, which is not necessarily
separable.

– To fit these general models to data, we develop a generalised (weighted) least
squares estimation method, which estimates all dependence parameters in one
go.

– We again focus on extremogram estimation, but extend the observation scheme
as described below. In the context of spatial or space-time extremogram esti-
mation based on gridded data, the observation scheme used so far in Steinkohl
(2013), Cho et al. (2016), Buhl and Klüppelberg (2018), and Buhl et al. (2018)
has been a regular grid in space, possibly observed at equidistant time points and
assumed to expand to infinity in all spatial dimensions as well as in time. We
extend this observation scheme to a more realistic setting: in practice one often
observes data on a d-dimensional area (d ∈ N), which is small with respect
to some of its dimensions (for instance, the spatial dimensions) and large with
respect to others (for instance, the temporal dimension). Hence, with regard to
such cases, it is appropriate to assume the observed data to expand to infinity in
some dimensions, but remain fixed in some others. Such observation schemes
require to split up every point and every lag in its components corresponding to
the fixed and increasing domains.

– For such general observation schemes we have to extend the asymptotic the-
ory developed in Buhl and Klüppelberg (2018) considerably. The empirical
extremogram estimator used in the first step of the semiparametric estimation
procedure needs to be extended and asymptotic results need to be verified. For
an arbitrary parametric extremogram model we then derive asymptotic results
of its generalised least squares estimators, which differ considerably from those
obtained when the grid increases in all dimensions.

Our paper is organised as follows. In Section 2 we introduce the theoretical frame-
work of strictly stationary regularly varying processes. We define the extremogram,
the observation scheme with its fixed and increasing dimensions as well as assump-
tions and asymptotic second order properties following from regular variation.
Section 3 presents the empirical and the pre-asymptotic extremogram. Here we prove
a CLT for the empirical extremogram centred by the pre-asymptotic version. We
also specify the asymptotic covariance matrix. We prove a CLT for the empirical
extremogram centred by the true extremogram under more restrictive assumptions.
To formally state the asymptotic properties of the empirical extremogram, we need
to quantify the dependence in a stochastic process, taking into account the different
types of observation areas. For processes with Fréchet margins we prove asymp-
totic normality of the empirical extremogram centred by the true one. In case the
required conditions are not satisfied, we provide assumptions under which a CLT for
a bias corrected version of the empirical extremogram can be obtained. Section 4 is
dedicated to the parameter estimation by a generalised least squares method. Under
appropriate regularity conditions we prove consistency and asymptotic normality,
where the rate of convergence depends on the observation scheme. We also present
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the covariance matrix in a semi-explicit form. In Section 5 we show our method
at work for Brown-Resnick space-time processes. We state conditions for Brown-
Resnick processes that imply the mixing conditions from Section 3 and are hence
sufficient to obtain the corresponding CLTs for the empirical extremogram. These
conditions depend highly on the model for the associated variogram. Finally, in
Section 5.3 we apply these results to three different dependence models of the Brown-
Resnick process, and prove the mixing conditions, which guarantee the asymptotic
normality of the empirical extremogram, as well as the regularity conditions of the
generalised least squares estimates. In Section 6 we examine the finite sample prop-
erties of the GLSEs in a simulation study, fitting the parametric models described
in Section 5.3 to simulated Brown-Resnick processes. We apply subsampling meth-
ods to obtain asymptotically valid confidence bounds of the parameters. We examine
how the sample size affects the estimates and compare with the theoretical results
obtained in previous sections. Many proofs are rather technical and postponed to an
Appendix A.

2 Model description and the observation scheme

We consider the same theoretical framework as in Buhl and Klüppelberg (2018) and
Buhl et al. (2018) of a strictly stationary regularly varying process {X(sss) : sss ∈ R

d}
for d ∈ N, defined on a probability space (�, G ,P). This implies that there exists
some normalizing sequence 0 < an → ∞ such that P(|X(000)| > an) ∼ n−d as
n → ∞ and that for every finite set I ⊂ R

d with cardinality |I | < ∞,

nd
P

(XI

an

∈ ·
)

v→ μI (·), n → ∞, (2.1)

for some non-null Radon measure μI on the Borel sets in R
|I |\{000}, where R =

R ∪ {−∞, ∞} and XI denotes the vector (X(sss) : sss ∈ I ). The limit measure is
homogeneous:

μI (xC) = x−βμI (C), x > 0,

for every Borel set C ⊂ R
|I |\{000}. The notation

v→ stands for vague convergence,
and β > 0 is called the index of regular variation. Furthermore, f (n) ∼ g(n) as
n → ∞ means that limn→∞ f (n)/g(n) = 1. If I is a singleton; i.e., I = {sss} for
some sss ∈ R

d , we set

μ{sss}(·) = μ{000}(·) =: μ(·), (2.2)

which is justified by stationarity. For more details see Buhl and Klüppelberg (2018).
For background on regular variation for stochastic processes and vectors see Hult and
Lindskog (2005, 2006) and Resnick (1986, 2007).

The extremogram for values in R
d is defined as follows.

Definition 1 (Extremogram) Let {X(sss) : sss ∈ R
d} be a strictly stationary regularly

varying process and an → ∞ a sequence satisfying Eq. 2.1. For μ as in Eq. 2.2 and
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two μ-continuous Borel sets A and B in R\{0} (i.e., μ(∂A) = μ(∂B) = 0) such that
μ(A) > 0, the extremogram is defined as

ρAB(hhh) = lim
n→∞

P(X(000)/an ∈ A, X(hhh)/an ∈ B)

P(X(000)/an ∈ A)
, hhh ∈ R

d . (2.3)

For A = B = (1, ∞), the extremogram ρAB(hhh) is the tail dependence coefficient
between X(000) and X(hhh) (cf. Beirlant et al. (2004), Section 9.5.1).

For the data we allow for realistic observation schemes described in the following.

Assumption 1 The data are given in an observation area Dn ⊂ Z
d that can (possibly

after reordering) be decomposed into

Dn = F × In, (2.4)

where for q, w ∈ N satisfying w + q = d:

(1) F ⊂ Z
q is a fixed domain independent of n, and

(2) In = {1, . . . , n}w is an increasing sequence of regular grids.

This setting is similar to that used in Li et al. (2008), where asymptotic properties
of space-time covariance estimators are derived. The natural extension of the regular
grid In to grids with different side lengths only increases notational complexity,
which we avoid here. Our focus is on observations schemes, which are partially fixed
and partially tend to infinity.

Example 1 In the special case where the observation area is given by

Dn = F × {1, . . . , n}
for F ⊂ R

d−1, we interpret the observations as generated by a space-time process
{X(sss, t) : sss ∈ R

d−1, t ∈ [0, ∞)} on a fixed spatial and an increasing temporal
domain.

We shall need some definitions and assumptions, which we summarize as follows.

Assumption 2
(1) For some fixed γ > 0 and 000, ��� ∈ R

d we define the balls

B(000, γ )={sss ∈ Z
d : ‖sss‖≤γ

}
and B(���, γ )={sss ∈ Z

d : ‖���−sss‖ ≤ γ
} = ���+B(000, γ ).

(2) The estimation of the extremogram is based on a set H = {hhh(1), . . . ,hhh(p)} ⊂
B(000, γ ) of observed lag vectors.

(3) We decompose points sss ∈ R
d with respect to the fixed and increasing domains

into sss = (fff , iii) ∈ R
q × R

w.

(4) Similarly, we decompose lag vectors hhh = sss−sss′ or ��� = sss−sss′ for some sss, sss′ ∈ R
d

into hhh = (hhhF ,hhhI ) or ��� = (���F , ���I ) in Rq × R
w. The letter hhh is used throughout as

argument of the extremogram or its estimators.
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(5) We define the vectorised process {YYY (sss) : sss ∈ R
d} by

YYY (sss) := XB(sss,γ );
i.e., YYY (sss) is the vector of values of X with indices in the ball B(sss, γ ).

(6) We shall also need the following relations, already stated in Eqs. 3.3 and 3.4 of
Buhl and Klüppelberg (2018). For an → ∞ as in Eq. 2.1, the following limits exist
by regular variation of {X(sss) : sss ∈ R

d}. For ��� ∈ R
d and γ > 0,

μB(000,γ )(C) := lim
n→∞ nd

P(YYY (000)/an ∈ C), (2.5)

τB(000,γ )×B(���,γ )(C × D) := lim
n→∞ nd

P

(YYY (000)

an

∈ C,
YYY (���)

an

∈ D
)
, (2.6)

for a μB(000,γ )-continuous Borel set C in R
|B(000,γ )|\{000} and a τB(000,γ )×B(���,γ )-

continuous Borel set C × D in the product space.

(7) For arbitrary but fixed μ-continuous Borel sets A and B in R\{0} such that
μ(A) > 0, we define sets D1, . . . , Dp, Dp+1 by the identity

{YYY (sss) ∈ Di} = {X(sss) ∈ A, X(sss + hhh(i)) ∈ B} (2.7)

for i = 1, . . . , p, and {YYY (sss) ∈ Dp+1} = {X(sss) ∈ A}. Note in particular that, by the
relation between {YYY (sss) : sss ∈ R

d} and {X(sss) : sss ∈ R
d} and regular variation,

μB(000,γ )(Dp+1)= lim
n→∞ nd

P(YYY (000)/an ∈ Dp+1)= lim
n→∞ nd

P(X(000)/an ∈ A) = μ(A).

�

3 Limit theory for the empirical extremogram

We derive asymptotic properties of the empirical extremogram by formulating appro-
priate mixing conditions, generalising the results obtained in Buhl and Klüppelberg
(2018) to the more realistic setting of this paper. The proofs are based on spatial
mixing conditions, which have to be adapted to the decomposition into a fixed and
an increasing observation domain. In principle, our proofs rely on general results of
Ibragimov and Linnik (1971) and Bolthausen (1982).

The main theorem of this section states asymptotic normality of the empirical
extremogram sampled at lag vectors hhh ∈ H and centred by its pre-asymptotic coun-
terpart. The empirical and the pre-asymptotic extremograms are defined in Eqs. 3.2
and 3.3.

For the definition of the empirical extremogram we need the following notation:
for k ∈ N, an arbitrary set Z ⊂ Z

k and a fixed vector hhh ∈ Z
k , define the sets

Z (hhh) := {zzz ∈ Z : zzz + hhh ∈ Z }, (3.1)

which is the set of vectors zzz ∈ Z such that with zzz also the lagged vector zzz+hhh belongs
to Z .
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Definition 2 Let {X(sss) : sss ∈ R
d} be a strictly stationary regularly varying process,

which is observed onDn = F ×In as in Eq. 2.4. LetA andB beμ-continuous Borel
sets in R\{0} such that μ(A) > 0. For a sequence m = mn → ∞ and mn = o(n) as
n→∞ define the following quantities:

(1) The empirical extremogram

ρ̂AB,mn(hhh) :=

1

|Dn(hhh)|
∑

sss∈Dn(hhh)

1{X(sss)/am∈A,X(sss+hhh)/am∈B}

1

|Dn|
∑

sss∈Dn

1{X(sss)/am∈A}
, hhh ∈ H . (3.2)

For a fixed data set the value am = amn has to be specified as a large empirical
quantile.

(2) The pre-asymptotic extremogram

ρAB,mn(hhh) = P (X(000)/am ∈ A, X(hhh)/am ∈ B)

P(X(000)/am ∈ A)
, hhh ∈ R

d . (3.3)

Key of the proofs of consistency and asymptotic normality of the empirical
extremogram below is the fact that ρ̂AB,mn(hhh) is the empirical version of the pre--
asymptotic extremogram ρAB,mn(hhh). This can for different hhh ∈ B(000, γ ) in turn be
viewed as a ratio of pre-asymptotic versions of μB(000,γ )(C(hhh)) (cf. Eq. 2.5). The sets
C(hhh) are implicitly defined by {YYY (sss) ∈ C(hhh)} = {X(sss) ∈ A, X(sss + hhh) ∈ B} for
sss ∈ R

d . Then in particular, for hhh ∈ B(000, γ ),

P

(X(000)

am

∈ A,
X(hhh)

am

∈ B
)

= P

(YYY (000)

am

∈ C(hhh)
)
.

Note that, by Eq. 2.7, if hhh = hhh(i) ∈ H , then C(hhh) = Di , and if hhh = 000 and A = B

then C(hhh) = Dp+1.
In view of Eq. 2.5, μB(000,γ )(C(hhh)) can be estimated by an empirical mean, where

the estimator has to cope with Assumption 1 of an observation area with fixed and
increasing domain.

Definition 3 Assume the situation of Definition 2. Based on observations on Dn =
F ×In as in Eq. 2.4 decompose the observations sss = (fff , iii) ∈ F ×In and the lags
hhh = (hhhF ,hhhI ) ∈ H as in Assumption 2(3) and (4). For hhhF ∈ H define F (hhhF ) as
in Eq. 3.1. Then an empirical version of μB(000,γ )(C(hhh)) is for hhh ∈ H given by

μ̂B(000,γ ),mn
(C(hhh)) := md

n

nw

∑
iii∈In

1

|F (hhhF )|
∑

fff ∈F (hhhF )

1{YYY(fff ,iii)
am

∈C(hhh)}. (3.4)

�

Observe that for fixed hhhF ∈ Z
q and observations on Dn = F × In there will

be points sss = (fff , iii) ∈ F (hhhF ) × In with iii near the boundary of In, such that
not all components of the vector YYY (sss) = YYY (fff , iii) are observed. However, since we
investigate asymptotic properties ofIn whose boundary points are negligible, we can
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ignore such technical details. As will be seen in the proofs below, for every hhh ∈ H ,
the empirical extremogram ρ̂AB,mn(hhh) is asymptotically equivalent to the ratio of
estimates μ̂B(000,γ ),mn

(C(hhh))/μ̂B(000,γ ),mn
(Dp+1).

Limit results for the empirical extremogram (3.2) involve the calculation of mean
and variance of μ̂B(000,γ ),mn

(C(hhh(i))) = μ̂B(000,γ ),mn
(Di) for hhh(i) ∈ H . Strict station-

arity and Assumption 2(6) yields immediately by a law of large numbers that
E[μ̂B(000,γ ),mn

(Di)] → μB(000,γ )(Di) as n→∞. Calculation of the variance involves
the covariance structure and we decompose as in Assumption 2(4) hhh(i) into hhh(i) =
(hhh

(i)

F ,hhh
(i)

I ) ∈ R
q × R

w. We have to calculate for fff ,fff ′ ∈ F (hhh
(i)

F ) and iii, iii′ ∈ In,

Cov
[
1{YYY (fff ,iii)

am
∈Di },1{YYY (fff ′,iii′)

am
∈Di }

]
= Cov

[
1{YYY (000)

am
∈Di },1{YYY(���F ,���I )

am
∈Di }

]

with ���F = fff − fff ′ and ���I = iii − iii′, where the equality holds by stationarity.
The lag vectors ���F and ���I are contained in L

(i,i)

F and Ln, respectively, where for
i, j ∈ {1, . . . , p},
L

(i,j)

F := {fff − fff ′ : fff ∈ F (hhh
(i)

F ),fff ′ ∈ F (hhh
(j)

F )} and Ln := {iii − iii′ : iii, iii′ ∈ In}.
(3.5)

The number of appearances of the lag ���F we denote for i, j ∈ {1, . . . , p} by
N(i,j)

F (���F ) :=
∑

fff ∈F (hhh
(i)
F )

∑

fff ′∈F (hhh
(j)

F )

1{fff −fff ′=���F } (3.6)

Observe that a lag (���F , ���I )with ���I = (�
(1)
I , . . . , �

(w)

I ) appears inL
(i,i)

F ×Ln exactly

N(i,i)

F (���F )
∏w

j=1(n − |�(j)

I |) times. We show in Lemma A.1 that

Var
[
μ̂B(000,γ ),mn

(Di)
] = m2d

n

n2w|F (hhh
(i)

F )|2
Var

⎡
⎢⎣

∑

fff ∈F (hhh
(i)
F )

∑
iii∈In

1{YYY(fff ,iii)
am

∈Di }

⎤
⎥⎦

= m2d
n

n2w|F (hhh
(i)

F )|2
(
|F (hhh

(i)

F )|nw
Var

[
1{YYY (000)

am
∈Di }

]
(3.7)

+
∑

fff ,fff ′∈F (hhh
(i)
F )

∑
iii,iii′∈In

(fff ,iii) �=(fff ′,iii′)

Cov
[
1{YYY(fff ,iii)

am
∈Di },1{YYY(fff ′,iii′)

am
∈Di }

])

∼ md
n

nw

1

|F (hhh
(i)

F )|
(
μB(000,γ )(Di)

+
∑

���I ∈Zw

1

|F (hhh
(i)

F )|
∑

���F ∈L
(i,i)
F

(���F ,���I )�=000

N(i,i)

F (���F ) τB(000,γ )×B((���F ,���I ),γ )(Di × Di)
)

=: md
n

nw
σ 2

B(000,γ )(Di), n→∞. (3.8)

Remark 1 For comparison we recall the expression in the corresponding Lemma 5.1
of Buhl and Klüppelberg (2018), where F is not fixed, but part of the increasing
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regular grid. Then |F (hhh
(i)

F )| ∼ N(i,i)

F (���F ) ∼ nq as n→∞, such that Eq. 3.7 can be
approximated as follows:

Var
[
μ̂B(000,γ ),mn

(Di)
]

∼ md
n

nwnq

(
μB(000,γ )(Di) +

∑
���I ∈Zw

∑
���F ∈Zq

(���F ,���I )�=000

τB(000,γ )×B((���F ,�I ),γ )(Di × Di)
)

=
(mn

n

)d(
μB(000,γ )(Di) +

∑

���∈Zd\{000}
τB(000,γ )×B(���,γ )(Di × Di)

)
, n→∞.

Thus, a difference from the setting of a partly fixed observation area F ⊂ Dn is that
the fixed observation terms do not disappear asymptotically, but remain as constants
in the limit expression.

3.1 The extremogram for regularly varying processes

For proving asymptotic normality of the empirical extremogram we have to require
appropriate mixing conditions and make use of a large/small block argument as in
Buhl and Klüppelberg (2018). For simplicity we assume that nw/md

n is an integer and
subdivide Dn into nw/md

n non-overlapping d-dimensional large blocks F × Bi for

i = 1, . . . , nw/md
n, where the Bi are w-dimensional cubes with side lengths m

d/w
n .

From those large blocks we then cut off smaller blocks, which consist of the first rn
elements in each of the w increasing dimensions. The large blocks are then separated
(by these small blocks) with at least the distance rn in all w increasing dimensions
and shown to be asymptotically independent. Such large/small block arguments are
common in verifying properties of estimators in extreme value theory, in particular
in a time series context, cf. for example Davis and Mikosch (2009), Section 6. For
a visualization in the 2-dimensional case d = 2 with w = 1 increasing dimension,
see Fig. 1.

Fig. 1 Visualization of the large/small block argument in the case d = 2 and w = 1. The large blocks are
the hatched areas; the small blocks are given by the small areas between them
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In order to formulate the CLT below, in particular, the asymptotic covariance
matrix, we need to compute Cov[μ̂B(000,γ ),mn

(Di), μ̂B(000,γ ),mn
(Dj )] for possibly dif-

ferent i, j ∈ {1, . . . , p}. The asymptotic results stated in Theorem 1 extend those
in Theorem 4.2 of Buhl and Klüppelberg (2018), where the observation area Dn is
assumed to increase with n in all dimensions. The decomposition (2.4) into a fixed
domain F and an increasing domain In results in mixing conditions which focus
on properties for In increasing to Zw, while F remains fix and appears in the limit,
similarly as in Eq. 3.7.

Theorem 1 Let {X(sss) : sss ∈ R
d} be a strictly stationary regularly varying process,

which is observed on Dn = F × In as in Eq. 2.4. Let H = {hhh(1), . . . ,hhh(p)} ⊂
B(000, γ ) for some γ > 0 be a set of observed lag vectors. Suppose that the following
conditions are satisfied.

(M1) {X(sss) : sss ∈ R
d} is α-mixing with respect to R

w with mixing coefficients
αk1,k2(·) defined in Eq. A.1.

There exist sequences mn, rn → ∞ with md
n/nw → 0 and rw

n /md
n → 0 as n → ∞

such that:

(M2) m2d
n r2wn /nw → 0.

(M3) For all ε > 0, and for all fixed ���F ∈ R
q with am = amn → ∞ as in Eq. 2.1,

lim
k→∞ lim sup

n→∞
∑

���I ∈Zw

k<‖���I ‖≤rn

md
n P( max

sss∈B(000,γ )
|X(sss)| > εam, max

sss′∈B((���F ,���I ),γ )
|X(sss ′)|

> εam) = 0.
(M4) (i) lim

n→∞ md
n

∑
���∈Zw :‖���‖>rn

α1,1(‖���‖) = 0,

(ii)
∑

���∈Zw

αk1,k2(‖���‖) < ∞ for 2 ≤ k1 + k2 ≤ 4,

(iii) lim
n→∞ m

d/2
n nw/2 α1,nw (rn) = 0.

Then the empirical extremogram ρ̂AB,mn defined in Eq. 3.2, sampled at lags in
H and centred by the pre-asymptotic extremogram ρAB,mn given in Eq. 3.3, is
asymptotically normal; i.e.,√

nw

md
n

[
ρ̂AB,mn(hhh

(i)) − ρAB,mn(hhh
(i))
]
i=1,...,p

D→ N (000, �), n→∞, (3.9)

where � = μ(A)−4FF
ᵀ ∈ R

p×p. Writing hhh(i) = (hhh
(i)

F ,hhh
(i)

I ) for 1 ≤ i ≤ p + 1,

with the convention that (hhh
(p+1)
F ,hhh

(p+1)
I ) = 000, and recalling (3.5) and (3.6), the

matrix  ∈ R
(p+1)×(p+1) has components

ij = 1

|F (hhh
(i)

F )||F (hhh
(j)

F )|
(
|F (hhh

(i)

F ) ∩ F (hhh
(j)

F )|μB(000,γ )(Di ∩ Dj) (3.10)

+
∑

���I ∈Zw

∑

���F ∈L
(i,j)
F

(���F ,���I )�=000

N(i,j)

F (���F ) τB(000,γ )×B((���F ,���I ),γ )(Di × Dj)
)
,

1 ≤ i, j ≤ p + 1.
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If i = j , we have ii = σ 2
B(000,γ )

(Di) with σ 2
B(000,γ )

(Di) specified in Eq. 3.8. The
matrix F = [F1, F2] consists of a diagonal matrix F1 and a vector F2 in the last
column:

F1 = diag(μ(A)) ∈ R
p×p, F2 = (−μB(000,γ )(D1), . . . , −μB(000,γ )(Dp))

ᵀ
.

Note that condition (M3) is the analogue of condition (3.3) of Davis and Mikosch
(2009) in the time series case and thus similar in spirit but weaker than the classical
anti-clustering condition D′(εan) as explained there.

Corollary 1 Assume the setting of Theorem 1 and suppose that the following
conditions are satisfied.

(1) {X(sss) : sss ∈ R
d} is α-mixing with respect to R

w with mixing coefficients
αk1,k2(·) defined in Eq. A.1.

(2) There exist sequences m := mn, r := rn→∞ with md
n/nw → 0 and rw

n /md
n → 0

as n→∞ such that (M3) and (M4i) hold.

Then, as n→∞,

ρ̂AB,mn(hhh
(i))

P→ ρAB(hhh(i)), i = 1, . . . , p,

Proof As in part II of the proof of Theorem 1 (cf. Appendix A.2), we find that for
i = 1, . . . , p, as n→∞,

ρ̂AB,mn(hhh
(i)) ∼ μ̂B(000,γ ),mn

(Di)

μ̂B(000,γ ),mn
(Dp+1)

P→ μB(000,γ )(Di)

μB(000,γ )(Dp+1)
= ρAB(hhh(i)),

where the sets Di and Dp+1 are defined in Eq. 2.7. Convergence in probability fol-
lows by Lemma A.1 and Slutzky’s theorem. The last identity holds by definitions
(2.3) and (2.5), recalling that μB(000,γ )(Dp+1) = μ(A) > 0.

Remark 2 (i) If the choice mn = nβ1 and rn = nβ2 with 0 < β2 < β1d/w <

1 satisfies conditions (M3) and (M4), then for β1 ∈ (0, w/(2d)) and β2 ∈
(0,min{β1d/w; 1/2 − β1d/w}) the condition (M2) also holds and we obtain
the CLT (3.9).

(ii) The pre-asymptotic extremogram (3.3) in the CLT (3.9) can be replaced by
the true one (2.3), if the pre-asymptotic extremogram converges to the true
extremogram with the same convergence rate; i.e., if

√
nw

md
n

[
ρAB,mn(hhh

(i)) − ρAB(hhh(i))
]
i=1,...,p

→ 000, n → ∞. (3.11)

(iii) Unfortunately, for general regularly varying processes, it is not known
if the bias condition (3.11) holds, but the CLT (3.9) based on the pre-
asymptotic extremogram holds. Hence, the important asymptotic interpretation
of the empirical extremogram as a conditional probability of extremal events
remains; cf. Cho et al. (2016), Davis and Mikosch (2009), and Drees (2015)
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and references therein. An important class of processes, where we know con-
ditions such that Eq. 3.11 is satisfied or not, are the max-stable processes with
finite-dimensional Fréchet marginal distributions, as defined in Section 3.2.

3.2 The extremogram of processes with Fréchet marginal distributions

We start with the definition of max-stable processes.

Definition 4 (Max-stable process) A process {X(sss) : sss ∈ R
d} is called max-stable if

there exist sequences cn(sss) > 0 and dn(sss) for sss ∈ R
d and n ∈ N such that

{
c−1
n (sss)

( n∨
j=1

Xj(sss) − dn(sss)
)

: sss ∈ R
d
}

d= {X(sss) : sss ∈ R
d}, (3.12)

where {Xj(sss) : sss ∈ R
d} are independent replicates of {X(sss) : sss ∈ R

d} and the
maximum is taken componentwise.

If max-stable processes have Fréchet marginal distributions, they are regularly
varying. Theorem 2 below states a necessary and sufficient condition for such pro-
cesses such that both Eqs. 3.9 and 3.11 hold, yielding the CLT (3.19) for the empirical
extremogram (3.2) centred by the the true one (2.3). In case this condition is not
satisfied, Theorem 3 states conditions such that Eq. 3.19 holds for a bias corrected
version of the empirical extremogram.

Theorem 2 (CLT for processes with Fréchet margins) Let {X(sss) : sss ∈ R
d} be a

strictly stationary max-stable process with standard unit Fréchet margins, which is
observed on Dn = F × In as in Eq. 2.4. Let H = {hhh(1), . . . ,hhh(p)} ⊂ B(000, γ ) for
some γ > 0 be a set of observed lag vectors. Suppose that conditions (M1)–(M4) of
Theorem 1 hold for appropriately chosen sequences mn, rn → ∞. Let ρAB be the
extremogram (2.3) and ρAB,mn the pre-asymptotic version (3.3) for sets A = (A, A)

and B = (B, B) with 0 < A < A ≤ ∞ and 0 < B < B ≤ ∞. Then the limit
relation (3.11) holds if and only if nw/m3d

n → 0 as n→∞. In this case we obtain

√
nw

md
n

[
ρ̂AB,mn(hhh

(i)) − ρAB(hhh(i))
]
i=1,...,p

D→ N (000, �), n→∞, (3.13)

with � specified in Theorem 1.

Proof All finite-dimensional distributions are max-stable distributions with standard
unit Fréchet margins, hence they are multivariate regularly varying. Furthermore we
can choose am = md

n in Definition 1. Let V2(hhh; ·, ·) be the bivariate exponent measure
defined by P(X(000) ≤ x1, X(hhh) ≤ x2) = exp{−V2(hhh; x1, x2)} for x1, x2 > 0, cf.
Beirlant et al. (2004), Section 8.2.2. From Lemma A.1(b) of (Buhl and Klüppelberg
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2018) we know that for hhh ∈ H and with V
2
2(hhh) := AA/(A − A)(V 2

2 (hhh; A, B) −
V 2
2 (hhh; A, B) − V 2

2 (hhh; A, B) + V 2
2 (hhh; A, B)),

ρAB,mn(hhh) = ρAB(hhh) + (1 + o(1))
[ 1

2md
n

V
2
2(hhh)

]
, n→∞. (3.14)

If A = ∞ and/or B = ∞, appropriate adaptations need to be taken, which are
described in Lemma A.1 of Buhl and Klüppelberg (2018). Hence, for hhh ∈ H ,

√
nw

md
n

(
ρAB,mn(hhh) − ρAB(hhh)

) = (1 + o(1))

√
nw

m3d
n

V
2
2(hhh)

2
, n→∞,

which converges to 0 if and only if nw/m3d
n → 0.

If nw/m3d
n �→ 0 in Theorem 2, a CLT centred by the true extremogram can still be

obtained for a bias corrected empirical estimator. Equation 3.14 is the basis for such
a bias correction if the sets A and B are given by A = (A, ∞) and B = (B, ∞) with
A, B > 0. In that case we have

ρAB,mn(hhh)=ρAB(hhh)+(1+o(1))
[ 1

2md
nA

(
ρAB(hhh)−2A/B

)(
ρAB(hhh)−1

)]
, n→∞;

(3.15)
see Buhl and Klüppelberg (2018), Eq. A.4. An asymptotically bias corrected estima-
tor is given by

ρ̂AB,mn(hhh) − 1

2md
nA

(
ρ̂AB,mn

(
hhh) − 2A/B

)(
ρ̂AB,mn(hhh) − 1

)

and we set, covering both cases,

ρ̃AB,mn(hhh) := (3.16)⎧⎨
⎩

ρ̂AB,mn(hhh)− 1

2md
nA

(
ρ̂AB,mn(hhh)−2A/B

)(
ρ̂AB,mn(hhh)−1

)
if nw

m3d
n

�→0 but nw

m5d
n

→ 0,

ρ̂AB,mn(hhh) if nw

m3d
n

→0.

Theorem 3 below guarantees asymptotic normality of the bias corrected extremogram
for an—according to Theorem 1—valid sequence mn satisfying nw/m5d

n → 0. The
proof, which is given in Appendix A.3, generalises that of Theorem 4.4 of Buhl et al.
(2018), which covers the special case A = B = 1 for Brown-Resnick processes.

Theorem 3 (CLT for the bias corrected extremogram for processes with Fréchet
margins) Let {X(sss) : sss ∈ R

d} be a strictly stationary max-stable process with stan-
dard unit Fréchet margins. Assume the situation of Theorem 2 for sets A = (A, ∞)

and B = (B, ∞) with A, B > 0. Then the bias corrected extremogram (3.16) is
asymptotically normal if and only if nw/m5d

n → 0. In that case,
√

nw

md
n

[
ρ̃AB,mn(hhh

(i)) − ρAB(hhh(i))
]
i=1,...,p

D→ N (000, �), (3.17)

where � is specified in Theorem 1.
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Remark 3 From Theorems 2 and 3 in relation to Remark 2 (i) we deduce two cases:

(I) For w/(5d) < β1 ≤ w/(3d) we cannot replace the pre-asymptotic
extremogram by the theoretical version in Eq. 3.13, but can resort to a bias
correction as described in Eq. 3.16 to obtain

n(w−β1d)/2
[
ρ̃AB,mn(hhh

(i))−ρAB(hhh(i))
]
i=1,...,p

D→N (000, �), n→∞, (3.18)

for sets A = (A, ∞) and B = (B, ∞) with covariance matrix � specified in
Theorem 1.

(II) For w/(3d) < β1 < w/(2d) we obtain indeed

n(w−β1d)/2
[
ρ̂AB,mn(hhh

(i))−ρAB(hhh(i))
]
i=1,...,p

D→ N (000, �), n→∞, (3.19)

with covariance matrix � specified in Theorem 1.
Observe that Remark 3 generalises Remark 4.1 of Buhl et al. (2018).

4 Generalised least squares extremogram estimates

In this section we fit parametric models to the empirical extremogram using least
squares techniques for the parameter estimation. Our approach and extremogram
models extend the weighted least squares estimation developed in Steinkohl (2013)
and Buhl et al. (2018) considerably. In these papers isotropic space-time models
such as the Brown-Resnick model (I) of Section 5.3 below have been estimated by
separation of space and time, which is not possible for all models of interest. In
what follows we present generalised least squares approaches to fit general paramet-
ric extremogram models taking the observation scheme Dn = F × In of a fixed
and an increasing domain into account. The approach bears some similarity to the
semiparametric variogram estimation in Lahiri et al. (2002).

Our setting is as follows. Let {ρAB,θθθ (hhh) : hhh ∈ R
d , θθθ ∈ �} be some parametric

valid extremogrammodel with parameter space� and continuous inhhh ∈ R
d . Assume

that ρAB(·) = ρAB,θθθ�(·) with true parameter vector θθθ�, which lies by assumption in
the interior of �. Denote by ρ̂AB,mn(hhh) any of the estimators of Theorem 1, Theorem
2, or Theorem 3 for the appropriately chosen μ-continuous Borel sets A and B such
that μ(A) > 0 and lags hhh ∈ H = {hhh(1), . . . ,hhh(p)}.

First note that under the much weaker conditions of Corollary 1 the empirical
extremogram is a consistent estimator of the extremogram such that as n → ∞,

ρ̂AB,mn(hhh
(i))

P→ ρAB,θθθ�(hhh(i)), i = 1, . . . , p, (4.1)

Under more restrictive conditions needed for the three CLTs above,
√

nw

md
n

[
ρ̂AB,mn(hhh

(i)) − ρAB,θθθ�(hhh(i))
]
i=1,...,p

D→ N (000, �), (4.2)

where � is the covariance matrix specified in Theorem 1.
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As we shall prove below, consistency of the empirical extremogram entails consis-
tent generalised least squares parameter estimates, whereas asymptotic normality of
the empirical extremogram entails asymptotically normal generalised least squares
parameter estimates.

Definition 5 (Generalised least squares extremogram estimator (GLSE)) Let {X(sss) :
sss ∈ R

d} be a strictly stationary regularly varying process, which is observed on
Dn = F × In as in Eq. 2.4. Let A and B be μ-continuous Borel sets in R\{0} such
that μ(A) > 0. For a sequence m = mn → ∞ and mn = o(n) as n→∞ define for
θθθ ∈ � the column vector

ĝggn(θθθ) := [ρ̂AB,mn(hhh
(i)) − ρAB,θθθ (hhh

(i))
]ᵀ
i=1,...,p. (4.3)

For some non-singular positive definite weight matrix V (θθθ) ∈ R
p×p, the GLSE is

defined as

θ̂θθn,V := argmin
θθθ∈�

{̂gggn(θθθ)
ᵀ
V (θθθ )̂gggn(θθθ)}. (4.4)

Assumption 3 presents a set of conditions, which imply consistency and asymp-
totic normality of the GLSE.

Assumption 3 Assume the situation of Definition 5. We shall require the following
conditions.

(G1) Consistency: ρ̂AB,mn(hhh
(i))

P→ ρAB,θθθ�(hhh(i)) as n→∞ for i = 1, . . . , p.

(G2) Asymptotic normality:

√
nw

md
n

ĝggn(θθθ
�)

D→ N (000, �) as n→∞.

(G3) Identifiability condition: For all ε > 0 there exists some δ > 0 such that

inf
{ p∑

i=1
(ρAB,θθθ1(hhh

(i))−ρAB,θθθ2(hhh
(i)))2 : θθθ(1), θθθ(2) ∈ �, ‖θθθ(1) − θθθ(2)‖ ≥ ε

}
>

δ. If the parameter space � is compact, this condition can be replaced by the
weaker condition

(G3′)
p∑

i=1

(ρAB,θθθ1(hhh
(i)) − ρAB,θθθ2(hhh

(i)))2 > 0, θθθ(1) �= θθθ(2) ∈ �.

(G4) Smoothness condition 1: For all i = 1, . . . , p:
ρAB,θθθ (hhh

(i)) has continuous partial derivatives of order z1 ≥ 0 w.r.t. θθθ ,
where z1 = 0 corresponds to ρAB,θθθ (hhh

(i)) being continuous in θθθ .
(G5) Smoothness condition 2:

(i) sup
θθθ∈�

{‖V (θθθ)‖M+‖V (θθθ)−1‖M} < ∞,where ‖·‖M is some arbitrary matrix

norm.
(ii) The matrix valued function V (θθθ) has continuous derivatives of order

z2 ≥ 0 w.r.t. θθθ , where z2 = 0 corresponds to V (θθθ) being continuous in θθθ .
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(G6) Rank condition: For θθθ = (θ1, . . . , θk) ∈ � ⊂ R
k we denote by PAB(θθθ) the

Jacobian matrix of (−ρAB,θθθ (hhh
(1)), . . . , −ρAB,θθθ (hhh

(p)))
ᵀ
; i.e.,

PAB(θθθ)=

⎛
⎜⎜⎜⎜⎝

− ∂
∂θ1

ρAB,θθθ (hhh
(1)) − ∂

∂θ2
ρAB,θθθ (hhh

(1)) . . . − ∂
∂θk

ρAB,θθθ (hhh
(1))

− ∂
∂θ1

ρAB,θθθ (hhh
(2)) − ∂

∂θ2
ρAB,θθθ (hhh

(2)) . . . − ∂
∂θk

ρAB,θθθ (hhh
(2))

...
...

...
− ∂

∂θ1
ρAB,θθθ (hhh

(p)) − ∂
∂θ2

ρAB,θθθ (hhh
(p)) . . . − ∂

∂θk
ρAB,θθθ (hhh

(p))

⎞
⎟⎟⎟⎟⎠

∈ R
p×k .

(4.5)

The Jacobian matrix has full rank: rank(PAB(θθθ�)) = k. �

The proof of the next theorem can be found in Appendix A.4.

Theorem 4 (Consistency and asymptotic normality of the GLSE) Assume the situ-
ation of Definition 5. If Assumptions 3(G1) and (G3) hold as well as (G4) and (G5)
for z1 = z2 = 0, respectively, then the GLSE is consistent; i.e.,

θ̂θθn,V
P→ θθθ�, n → ∞. (4.6)

If Assumption 3(G2) and (G3) hold as well as (G4) and (G5) for z1 = z2 = 1,
respectively, and the rank condition (G6) holds, then the GLSE is asymptotically
normal; i.e.,

√
nw

md
n

(̂θθθn,V − θθθ�)
D→ N (000, �V ), n→∞, (4.7)

with asymptotic covariance matrix

�V = B(θθθ�)PAB(θθθ�)
ᵀ [V (θθθ�) + V (θθθ�)

ᵀ ] � [V (θθθ�) + V (θθθ�)
ᵀ ]PAB(θθθ�)B(θθθ�),

where B(θθθ�) := (
PAB(θθθ�)

ᵀ [V (θθθ�) + V (θθθ�)
ᵀ ]PAB(θθθ�)

)−1
and � is the asymptotic

covariance matrix in Eq. 4.2.

Remark 4 The quality of the GLSE depends on the matrix V (θθθ). Simple choices
for the matrix V (θθθ) in Eq. 4.4 are the identity matrix, leading to the ordinary least
squares estimator, or some general weight matrix, leading to weighted least squares
estimators.

An asymptotically optimal matrix V (θθθ) can be obtained as follows. Let � =
�(θθθ�) be the asymptotic covariance matrix of the empirical extremogram in Eq. 4.2.
Assume that �(θθθ�) has a closed form that depends on the true parameter vector θθθ�

which can be extended to a matrix function �(θθθ) on the whole parameter space ���.
Assume also that the inverse V (θθθ) = �−1(θθθ) exists for all θθθ ∈ ��� and satisfies the
Assumption 3(G5) for z2 = 1. Then, as pointed out in Lahiri et al. (2002), The-
orem 4.1, for spatial variogram estimators and in Einmahl et al. (2018), Corollary
2.3, for extreme parameter estimation based on iid random vector observations, the
resulting asymptotic covariance matrix �V = �V (θθθ�) of the GLSE in Eq. 4.7 is
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asymptotically optimal among all valid matrices V ′ = V ′(θθθ). This means that �V

is minimal in the sense that for all valid matrices V ′, the difference �V ′ − �V is
positive semidefinite.

5 Estimation of Brown-Resnick space-time processes

5.1 Brown-Resnick processes

We consider a strictly stationary Brown-Resnick process with spectral representation

η(sss) =
∞∨

j=1

{
ξj eWj (sss)−δ(sss)

}
, sss ∈ R

d , (5.1)

where {ξj : j ∈ N} are points of a Poisson process on [0, ∞) with intensity ξ−2dξ ,
the dependence function δ is nonnegative and conditionally negative definite, and
{Wj(sss) : sss ∈ R

d} are independent replicates of a Gaussian process {W(sss) : sss ∈ R
d}

with stationary increments, W(000) = 0, E[W(sss)] = 0 and covariance function

Cov[W(sss(1)), W(sss(2))] = δ(sss(1)) + δ(sss(2)) − δ(sss(1) − sss(2)).

Spectral representations of max-stable processes go back to de Haan (1984) and Giné
et al. (1990), the specific representation (5.1) to Brown and Resnick (1977) in a time
series context, to Kabluchko et al. (2009) in a spatial and to Davis et al. (2013a) in
a space-time setting. The univariate margins of the process η follow standard unit
Fréchet distributions. Non-stationary Brown-Resnick models have recently been dis-
cussed and fitted to data in Asadi et al. (2015) and Engelke et al. (2015), and Huser
and Genton (2016).

There are various quantities to describe the dependence in Eq. 5.1, where explicit
expressions can be derived:

• In geostatistics, the dependence function δ is termed the semivariogram of the
process {W(sss) : sss ∈ R

d} based on the fact that for sss(1), sss(2) ∈ R
d ,

Var[W(sss(1)) − W(sss(2))] = 2δ(sss(1) − sss(2)).

• For hhh ∈ R
d , the tail dependence coefficient is given by (see e.g. ** (*)Steinkohl,

Section 3)

ρ(1,∞)(1,∞)(hhh) = lim
n→∞P

(
η(hhh) > n

∣∣∣ η(000) > n
)

= 2
(
1 − �

(√δ(hhh)

2

))
, (5.2)

where � denotes the standard normal distribution function.
• For D = {sss(1), . . . , sss(|D|)} and yyy = (y1, . . . , y|D|) > 000 the finite-dimensional

margins are given by

P(η(sss(1)) ≤ y1, η(sss(2)) ≤ y2, · · · , η(sss(|D|)) ≤ y|D|) = exp{−VD(yyy)}. (5.3)

Here VD denotes the exponent measure (cf. Beirlant et al. (2004), Section 8.2.2),
which is homogeneous of order -1 and depends solely on the dependence func-
tion δ. For D = {sss, sss + hhh} where sss ∈ R

d and hhh ∈ R
d is some fixed lag vector,
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we get (cf. Davis et al. (2013a), Section 3)

V2(y1, y2) = V2(hhh; y1, y2) = VD(y1, y2) = 1

y1
�̃
(y2

y1

)

+ 1

y2
�̃
(y1

y2

)
, y1, y2 > 0, (5.4)

with

�̃
(x

y

)
= �̃

(
hhh; x

y

)
:= �

( log(x/y)√
2δ(hhh)

+
√

δ(hhh)

2

)
, x, y > 0. (5.5)

• For hhh ∈ R
d and sets A = (A, A) and B = (B, B) with 0 < A < A ≤ ∞ and

0 < B < B ≤ ∞, the extremogram (2.3) is given by (see Buhl and Klüppelberg
(2018), Eq. A.1)

ρAB(hhh) = AA

A − A

(
− V2(A, B) + V2(A, B) + V2(A, B) − V2(A, B)

)
(5.6)

for V2 as in Eq. 5.4. For A = (A, ∞) and B = (B, ∞) we get formula (31) of
Cho et al. (2016):

ρAB(hhh) = A
{
A−1

(
1 − �̃

(
B/A

))
+ B−1

(
1 − �̃

(
A/B

))}
. (5.7)

• The extremal coefficient ξD (see Beirlant et al. (2004), Section 8.2.7) for any
finite set D ⊂ R

d is defined as

P(η(sss(1)) ≤ y, η(sss(2)) ≤ y, · · · , η(sss(|D|)) ≤ y) = exp{−ξD/y}, y > 0;
i.e., ξD = VD(1, . . . , 1). If |D| = 2 and hhh = sss(1) − sss(2), then

ξD = 2 − ρ(1,∞)(1,∞)(hhh) = 2�
(√δ(hhh)

2

)
, (5.8)

where the first identity holds in general (cf. Beirlant et al. (2004), Section 9.5.1),
and the last one by Eq. 5.2.

Our aim is to fit a parametric extremogram model of a Brown-Resnick process
(5.1) based on observations given in Dn = F × In as in Eq. 2.4. This approach is
semiparametric in the sense that we first compute (possibly bias corrected) empirical
estimates (3.16) of the extremogram ρAB(hhh) for differenthhh ∈ H , and fit a parametric
model ρAB,θθθ (hhh) by GLSE to the empirical extremogram. For sets A = B = (A, ∞)

with A > 0, this yields an estimator of the dependence function, since by Eq. 5.5 and
(5.7) there is a one-to-one relation between extremogram and dependence function.

5.2 Asymptotic properties of the empirical extremogram of a Brown-Resnick
process

Let {η(sss) : sss ∈ R
d} be a strictly stationary Brown-Resnick process as in Eq. 5.1 with

some valid (i.e., nonnegative and conditionally negative definite) dependence func-
tion δ. Before investigating the asymptotic properties of the GLSE, we state sufficient
conditions for δ so that the regularity conditions of Theorem 1 are satisfied.
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Theorem 5 Let {η(sss) : sss ∈ R
d} be a strictly stationary Brown-Resnick process as

in Eq. 5.1, observed on Dn = F × In as in Eq. 2.4. Let H = {hhh(1), . . . ,hhh(p)} ⊂
B(000, γ ) for some γ > 0 be a set of observed lag vectors. Assume sequences

mn, rn →∞, md
n/nw →0, rw

n /md
n →0, m2d

n r2wn /nw →0, n → ∞. (5.9)

Writing vvv = (vvvF ,vvvI ) ∈ R
q × R

w according to the fixed and increasing domains,
assume that the dependence function δ satisfies for arbitrary fixed finite set L ⊂ Z

q :
(A) md

n

∑
z>rn

zw−1 exp
{

− 1
4 inf

vvv∈L×Zw :‖vvvI ‖≥z
δ(vvv)

}
→ 0 as n → ∞.

(B) m
d/2
n n(3w)/2 exp

{
− 1

4 inf
vvv∈L×Zw :‖vvvI ‖>rn

δ(vvv)
}

→ 0 as n → ∞.

Then conditions (M1)–(M4) of Theorem 1 are satisfied, and the empirical extremogram
ρ̂AB,mn defined in Eq. 3.2 sampled at lags in H and centred by the pre-asymptotic
extremogram ρAB,mn given in Eq. 3.3, is asymptotically normal; i.e.,

√
nw

md
n

[
ρ̂AB,mn(hhh

(i)) − ρAB,mn(hhh
(i))
]
i=1,...,p

D→ N (000, �), n→∞, (5.10)

where the covariance matrix � is specified in Theorem 1.

Proof First note that, since all finite-dimensional distributions are max-stable distri-
butions with standard unit Fréchet margins, they are multivariate regularly varying.
We first show (M3). Let ε > 0 and fix ���F ∈ R

q . For γ > 0 define the set

Lγ (���F , ���I ) := {sss1 − sss2 : sss1 ∈ B(000, γ ), sss2 ∈ B((���F , ���I ), γ )}.

Note that, writing sss1 = (fff 1, iii1) and sss2 = (fff 2, iii2) ∈ R
q × R

w according to the
fixed and increasing domains as before, it can be decomposed into Lγ (���F , ���I ) =
L

(1)
γ × L

(2)
γ (���I ) where L

(1)
γ := {fff 1 −fff 2 : sss1 ∈ B((000,000), γ ), sss2 ∈ B((���F ,000), γ )},

which is independent of ���I , and L
(2)
γ (���I ) := {iii1 − iii2 : sss1 ∈ B((000,000), γ ), sss2 ∈

B((���F , ���I ), γ )}. Then, recalling that am = md
n, and using a second order Taylor

expansion as in the proof of Theorem 4.3 of Buhl et al. (2018), we have as n → ∞,

P( max
sss∈B(000,γ )

η(sss) > εam, max
sss′∈B((���F ,���I ),γ )

η(sss′) > εam)

≤
∑

sss∈B(000,γ )

∑
sss′∈B((���F ,���I ),γ )

P(η(sss) > εmd
n, η(sss′) > εmd

n)

=
∑

sss∈B(000,γ )

∑
sss′∈B((���F ,���I ),γ )

(
1−2 exp

{
− 1

εmd
n

}
+ exp

{
− 2

εmd
n

�
(√δ(sss − sss′)

2

)})

≤ 2|B(000, γ )|2
εmd

n

(
1 − �

((1
2

inf
vvv∈Lγ (���F ,���I )

δ(vvv)
)1/2))+ O

( 1

m2d
n

)
.
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Therefore,

lim sup
n→∞

∑
���I ∈Zw

k<‖���I ‖≤rn

md
nP( max

sss∈B(000,γ )
η(sss) > εam, max

sss′∈B((���F ,���I ),γ )
η(sss′) > εam)

≤ 2|B(000, γ )|2 lim sup
n→∞

∑
���I ∈Zw

k<‖���I ‖≤rn

{1
ε

(
1−�

((1
2

inf
vvv∈Lγ (���F ,���I )

δ(vvv)
)1/2))+O

( 1

md
n

)}
.

Since the number of grid points ���I in Zw with norm ‖���I ‖ = z is of order O(zw−1),
there exists a positive constant C such that the right hand side can be bounded from
above by

2C|B(000, γ )|2 lim sup
n→∞

∑

k<z≤rn

{zw−1

ε

(
1−�

((1
2

inf
vvv∈Lγ (���F ,���I ):���I ∈Zw,‖���I ‖=z

δ(vvv)
)1/2))

+O
(zw−1

md
n

)}

≤ 2C|B(000, γ )|2
ε

lim sup
n→∞

∑

k<z<∞

{
zw−1

(
exp
{

− 1

4
inf

vvv∈Lγ (���F ,���I ):���I ∈Zw,‖���I ‖=z
δ(vvv)

})}

+O
( rw

n

md
n

)

≤ 2C|B(000, γ )|2
ε

lim sup
n→∞

∑

k<z<∞

{
zw−1

(
exp
{

− 1

4
inf

vvv∈L
(1)
γ ×Zw :‖vvvI ‖≥z−γ

δ(vvv)
})}

+O
( rw

n

md
n

)
,

where we have used in the second last step that 1 − �(x) ≤ exp{−x2/2} for x > 0
and in the last step the decomposition Lγ (���F , ���I ) = L

(1)
γ ×L

(2)
γ (���I ). By condition

(A), since we can neglect the constant γ , we have

lim
k→∞

∑

k<z<∞

zw−1 exp
{

− 1

4
inf

vvv∈L
(1)
γ ×Zw :‖vvvI ‖≥z−γ

δ(vvv)
}

= 0.

Together with rw
n = o(md

n) as n → ∞, this implies that

lim
k→∞ lim sup

n→∞

∑
k<z≤rn

{
zw−1

(
exp
{

− 1

4
inf

vvv∈L
(1)
γ ×Zw :‖vvvI ‖≥z−γ

δ(vvv)
})}

+ O
( rw

n

md
n

)
= 0.

Next we prove (M1) and (M4i)-(M4iii). To this end we bound the α-mixing coef-
ficients αk1,k2(·) for k1, k2 ∈ N of {η(sss) : sss ∈ R

d} with respect to R
w, which are

defined in Eq. A.2. Observe that d(�1, �2) for sets �i ⊂ Z
w as in Definition 6 can

only get large within the increasing domain. Define the set

LF := {sss1 − sss2 : sss1, sss2 ∈ F }.
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We use Eq. 5.8, as well as Dombry and Eyi-Minko (2012), Eq. 3.1 and Corollary 2.2
to obtain

αk1,k2(z) ≤ 2 sup
d(�1,�2)≥z

∑
sss1∈F×�1

∑
sss2∈F×�2

ρ(1,∞)(1,∞)(sss1 − sss2)

≤ 2k1k2|F |2 sup
vvv∈LF ×Zw :‖vvvI ‖≥z

ρ(1,∞)(1,∞)(vvv)

= 4k1k2|F |2
(
1 − �

((1
2

inf
vvv∈LF ×Zw :‖vvvI ‖≥z

δ(vvv)
) 1

2
))

≤ 4k1k2|F |2 exp
{

− 1

4
inf

vvv∈LF ×Zw :‖vvvI ‖≥z
δ(vvv)

}
. (5.11)

By condition (A) we have αk1,k2(z) → 0, since necessarily inf
vvv∈LF ×Zw :‖vvvI ‖≥z

δ(vvv) →
∞ as z → ∞ and, therefore, the process {η(sss) : sss ∈ R

d} is α-mixing; i.e., (M1)
holds. We continue by estimating

md
n

∑
���∈Zw :‖���‖>rn

α1,1(‖���‖) ≤ Cmd
n

∑
z>rn

zw−1α1,1(z)

≤ 4C|F |2md
n

∑
z>rn

zw−1 exp
{

− 1

4
inf

vvv∈LF ×Zw :‖vvvI ‖≥z
δ(vvv)

}
→ 0, n → ∞,

by condition (A). This shows (M4i). Similarly, it can be shown that (M4ii) holds, if
(A) is satisfied. Finally, we show (M4iii). Using Eq. 5.11, we find

m
d/2
n nw/2α1,nw (rn) ≤ 4md/2

n n(3w)/2|F |2 exp
{

− 1

4
inf

vvv∈LF ×Zw :‖vvvI ‖≥rn
δ(vvv)

}
→ 0

as n → ∞ because of condition (B).

The following is an immediate corollary of Theorem 5.

Corollary 2 Assume the setting of Theorem 5. Suppose that the dependence function
δ satisfies for positive constants C and α, and for an arbitrary norm ‖ · ‖ on Rw,

δ(vvv) ≥ C‖vvvI ‖α (5.12)

for every vvv = (vvvF ,vvvI ) ∈ L ×Z
w, where L ⊂ Z

q is arbitrary, but fixed. In particu-
lar, δ(vvv) → ∞ if ‖vvvI ‖ → ∞. With mn = nβ1 and rn = nβ2 with β1 ∈ (0, w/(2d))

and β2 ∈ min{β1d/w; 1/2 − β1d/w}, the conditions of Theorem 5 are satisfied for
{η(sss) : sss ∈ R

d} and we conclude

n(w−dβ1)/2
[
ρ̂AB,mn(hhh

(i)) − ρAB,mn(hhh
(i))
]
i=1,...,p

D→ N (000, �), n→∞. (5.13)

Proof Due to equivalence of norms on R
w we will make no difference between the

norm in Eq. 5.12 and the one used in Theorem 5. Clearly the sequences mn and rn
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satisfy the requirements mn, rn → ∞, md
n/nw → 0, rw

n /md
n → 0 and

m2d
n r2wn /nw → 0 as n → ∞. We have for z > 0,

exp
{

− 1

4
inf

vvv∈L×Zw :‖vvvI ‖>z
δ(vvv)

}
≤ exp

{
− 1

4
inf

vvv∈L×Zw :‖vvvI ‖>z
C‖vvvI ‖α

}

≤ exp
{

− Czα

4

}
.

Condition (B) of Theorem 5 is satisfied since

n(β1d)/2n(3w)/2 exp
{

− Crα
n

4

}
= n(β1d)/2n(3w)/2 exp

{
− Cnβ2α

4

}

= exp
{
− Cnβ2α

4
+ β1d+3w

2
log(n)

}
→ 0, n→∞.

Condition (A) holds since by Lemma A.3 of Buhl et al. (2018), there is a posi-
tive constant K such that for sufficiently large n the sequence zw−1 exp{−Czα/4} is
decreasing for z ≥ rn,

md
n

∑
z>rn

zw−1exp
{
− Czα

4

}
≤ Kmd

nrw
n exp

{
− Crα

n

4

}

= K exp
{
− Cnβ2α

4
+(β1d+β2w) log(n)

}
→0, n→∞.

With the particular choice of sequencesmn = nβ1 and rn = nβ2 given in Corollary 2,
we are in the setting of Remark 3. Hence, in addition to the CLT (5.13), we obtain the
CLT (3.19) of the empirical extremogram centred by the true one and the CLT (3.18)
corresponding to the bias corrected estimator.

Remark 5 (i) Corollary 2 requires the dependence function δ of the Brown-
Resnick process to be unbounded. This requirement is not satisfied, for
example, by the Schlather model or extremal-t-models, which do not capture
possible extremal independence between two process values; see for example
Davison et al. (2012c), Section 6.1 and Opitz (2013), Section 4.

(ii) Other prominent max-stable processes that satisfy the conditions of Theo-
rem 1 are the max-moving average processes (see Example 4.6 of Buhl and
Klüppelberg (2018)) or special cases of the random set model in Huser and
Davison (2014).

5.3 Space-time Brown-Resnick processes: different models for the extremogram

We explore the semiparametric estimation for strictly stationary Brown-Resnick pro-
cesses in their space-time form {η(sss, t) : sss ∈ R

d−1, t ∈ [0, ∞)}. For three classes
of parametric models for the dependence function δθθθ we prove that the GLSE is
consistent and asymptotically normal.

Note that by Eq. 5.7 every model {δθθθ : θθθ ∈ �} for the dependence function yields a
model {ρAB,θθθ : θθθ ∈ �} for its space-time extremogram. Moreover, the extremogram
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(5.7) is always of the same form, and only �̃ in Eq. 5.5 changes with the model. We
consider three different model classes, which together cover a large field of environ-
mental applications such as the modelling of extreme precipitation (cf. Davis et al.
2013a, Buhl and Klüppelberg 2016, de Fondeville and Davison 2018, Buhl et al.
2018), extreme wind speed (cf. Engelke et al. 2015) or extremes on river networks
(cf. Asadi et al. 2015), provided they are valid (i.e., nonnegative and conditionally
negative definite) dependence functions in the considered metric.

(I) Fractional space-time model. Davis et al. (2013a) introduce the spatially
isotropic model

δθθθ (hhh, u) = C1‖hhh‖α1 + C2|u|α2 , (hhh, u) ∈ R
d , (5.14)

with parameter vector

θθθ ∈ {(C1, C2, α1, α2) : C1, C2 ∈ (0, ∞), α1, α2 ∈ (0, 2]} .
The isotropy assumption, where Eq. 5.14 depends on the norm of the spatial lag
hhh, can be relaxed in a natural way by introducing geometric anisotropy. We only
discuss the case d −1 = 2, but the approach is easily transferable to higher dimen-
sions. Let ϕ ∈ [0, π/2) be a rotation angle and R = R(ϕ) a rotation matrix, and
T a dilution matrix with c > 0; more precisely,

R =
(
cosϕ − sinϕ

sinϕ cosϕ

)
and T =

(
1 0
0 c

)
.

The geometrically anisotropic model is then given by

δ̃θ̃̃θ̃θ (hhh, u) = δθθθ (Ahhh, u), (hhh, u) ∈ R
d , (5.15)

where A = T R is the transformation matrix. The parameter vector of the
transformed model is

θ̃̃θ̃θ ∈{(C1, C2, α1, α2, c, ϕ) : C1, C2∈(0, ∞), α1, α2 ∈ (0, 2], c>0, ϕ∈[0, π/2)} .
For more details about geometric anisotropy see Blanchet and Davison (2011),
Section 4.2, Davis et al. (2013a), Section 4.2, or Engelke et al. (2015), Section 5.2.

(II) Spatial anisotropy along orthogonal spatial directions Buhl and Klüppelberg
(2016) generalize the fractional isotropic model (5.14) to

δθθθ (hhh, u) =
d−1∑
j=1

Cj |hj |αj + Cd |u|αd , (hhh, u) ∈ R
d (5.16)

with parameter vector

θθθ ∈ {(Cj , αj , j = 1, . . . , d) : Cj ∈ (0, ∞), αj ∈ (0, 2], j = 1, . . . , d
}
.

It is more flexible than the isotropic model (I) as it allows for different rates of
decay of extreme dependence along the axes of a d-dimensional spatial grid. Arbi-
trary principal orthogonal directions can be introduced by a rotation matrix R as
introduced for the isotropic model in (I), here described for the case d − 1 = 2:

δ̃̃θ̃θ̃θ (hhh, u) = C1|h1 cosϕ − h2 sinϕ|α1 + C2|h1 sinϕ + h2 cosϕ|α2
+C3|u|α3 , (hhh, u) ∈ R

3. (5.17)
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The new parameter vector is

θ̃̃θ̃θ ∈ {(C1, C2, C3, α1, α2, α3, ϕ) : Cj ∈ (0,∞), αj ∈ (0, 2], j = 1, 2, 3, ϕ ∈ [0, π/2)
}
.

In Buhl and Klüppelberg (2016) this model is applied to extreme precipitation
in Florida and, according to a specifically developed goodness-of-fit method,
performs extremely well.

(III) Time-shifted Brown-Resnick processes With the goal to allow for some
influence of the spatial dependence from previous values of the process we time-
shift the Gaussian processes in the definition of the Brown-Resnick model (5.1).
For τττ = (τ1, τ2) ∈ R

d−1 define

W(τττ)(sss, t) := W(sss − tτττ , t).

Then {W(τττ)(sss, t) : sss ∈ R
d−1, t ∈ [0, ∞)} is also a centred Gaussian process start-

ing in 0 with stationary increments: for (sss(1), t (1)), (sss(2), t (2)) ∈ R
d−1 × [0, ∞),

because of the stationary increments of {W(sss, t)}, where d= stands for equality in
distribution,

W(τττ)(sss(1), t (1)) − W(τττ)(sss(1), t (1))
d= W(sss(1) − sss(2) − (t(1) − t (2))τττ , t(1) − t (2))

= W(τττ)(sss(1) − sss(2), t (1) − t (2)),

The corresponding time-shifted dependence function is given by

δ(τττ)(sss, t) := Var[W(τττ)(sss, t) − W(τττ)(000, 0)]
2

= Var[W(sss − tτττ , t) − W(000, 0)]
2

= δ(sss−tτ, t),

which yields the covariance function

Cov[W(τττ)(sss(1), t (1)), W(τττ)(sss(2), t (2))] =
δ(τττ)(sss(1), t (1)) + δ(τττ)(sss(2), t (2)) − δ(τττ)(sss(1) − sss(2), t (1) − t (2)).

By Theorem 10 of Kabluchko et al. (2009) the process

η(τττ)(sss, t) :=
∞∨
i=1

ξie
W

(τττ)
i (sss,t)−δ(τττ)(sss,t) = η(sss − tτττ , t), (sss, t) ∈ R

d−1 × [0, ∞),

(5.18)
defines a strictly stationary space-time Brown-Resnick process.

This method does not depend on the specific dependence function: every Brown-
Resnick process {η(sss, t) : (sss, t) ∈ R

d−1, t ∈ [0, ∞)} with dependence function
{δθθθ , θθθ ∈ �} results in a time-shifted Brown-Resnick process with dependence func-
tion
{δ(τττ)

θθθ , θθθ ∈ �,τττ ∈ R
d−1}. To give an example, for the Brown-Resnick process (II)

without rotation, the parametrised time-shifted dependence function is given by

δ
(τττ)
θθθ (hhh, u) =

d−1∑
i=1

Ci |hi − uτi |αi + Cd |u|αd , (hhh, u) ∈ R
d (5.19)
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with parameter vector

(θθθ, τττ) ∈ {(Cj , αj , j = 1, . . . , d) : Cj ∈ (0, ∞), αj ∈ (0, 2], j = 1, . . . , d
}×R

d−1.

This model is somewhat motivated by the time-shifted moving maxima Brown-
Resnick process introduced by Embrechts et al. (2016), it is however much simpler
to analyse and to estimate. As a referee has pointed out, similar models have been
suggested in Section 5.3.2, models (ii)-(iv) on p. 213 in Huser (2013).

In the following we show that models (I)-(III) satisfy Assumption 3 and the
conditions of Theorem 4 and Corollary 2.

Asymptotic properties of models (I)-(III) As before, we assume space-time observa-
tions on Dn = S × T = (S × T )(n), where S ⊂ Z

d−1 are the spatial and
T ⊂ Z the time series observations. Moreover, we assume that they decompose into
Dn = F × In, where F ⊂ Z

q is some fixed domain and In = {1, . . . , n}w is a
sequence of regular grids, and q + w = d.

For two points (sss(1), t (1)) and (sss(2), t (2)) ∈ R
d−1 ×[0, ∞), we denote by (hhh, u) =

(sss(1), t (1)) − (sss(2), t (2)) ∈ R
d their space-time lag vector. Furthermore, we choose

Borel sets A = B = (A, ∞) for some A > 0. We denote by ρ̂AB,mn(hhh, u) the
(possibly bias-corrected) empirical space-time extremogram (3.16), sampled at lags
in H ⊂ R

d , and by θ̂θθn,V the GLSE (4.4), referring to some positive definite weight
matrix V .

To show consistency and asymptotic normality of the corresponding GLSE, we
need to verify the assumptions required in Theorem 4; i.e. the relevant parts of
Assumption 3. Note that Corollary 2 applies for all models, since they all satisfy
δθθθ (hhh, u) ≥ C|u|α for C > 0 and α ∈ (0, 2]. Thus we obtain the CLTs of the empir-
ical extremogram centred by the pre-asymptotic extremogram (5.13), centred by the
true one (3.13) and of the bias corrected empirical extremogram centred by the true
one (3.18). Hence (G1) and (G2) hold for the empirical extremogram. Furthermore,
we assume that the parameter space � ⊂ R

k , which contains the true parameter
θθθ� as an interior point, is a compact subset of the spaces introduced above for the
corresponding models.

The following requirements concern the model-independent assumptions.

• In order to determine the GLSEwe need to choose a positive definite matrix V (θθθ)

for θθθ ∈ �, and we take one, which satisfies condition (G5ii) with z2 = 1. Due to
compactness of the parameter space�, condition (G5i) is therefore automatically
satisfied.

• We require that |H | ≥ k, such that the rank condition (G6) can be satisfied.

Next we discuss the model-dependent assumptions. First note that the smoothness
condition (G4) is satisfied for z1 = 0 for all models {ρAB,θθθ (·)} (equivalently {δθθθ (·)}).
Furthermore, due to compactness of the parameter space, it suffices to show condition
(G3’) in order to verify identifiability of the models. Condition (G3’) is satisfied for
models (I)-(III) if for two distinct parameter vectors θθθ(1) �= θθθ(2) there is at least one
(hhh, u) ∈ H such that ρAB,θθθ(1) (hhh, u) �= ρAB,θθθ(2) (hhh, u) or, equivalently, δθθθ(1) (hhh, u) �=
δθθθ(2) (hhh, u). This holds due to the power function structure of the models. For the
geometric anisotropic model in (I) we need to exclude c = 1 to ensure identifiability
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of the angle ϕ; however, if c = 1 then ϕ has no influence on the dependence function
and can be neglected. Thus, the GLSEs are consistent according to Theorem 4.

We now turn to the CLT (4.7), where it remains to show (G4) for z1 = 1. Dif-
ficulties arise due to norms and absolute values of certain parameters in the model
equations:

• In their basic forms without rotation or dilution, models (I) and (II) are infinitely
often continuously partially differentiable in the model parameters. Hence
asymptotic normality of the GLSEs follows by Theorem 4.

• If rotation and/or dilution parameters are included, continuous partial differen-
tiability still holds under the following restrictions: Let α1 (for model (I)) or
α1, . . . , αd−1 (for model (II)) be the spatial smoothness parameters. Since they
are the powers of some norm or absolute value, restricting them to values in
[1, 2] makes the models continuously partially differentiable; otherwise, they are
partially differentiable everywhere but not in 0. As to model (II), in the case
d − 1 = 2, one of the parameters α1 and α2 being larger than 1 is already suffi-
cient. To see this, recall that the spatial part of the dependence function is given
by

C1|h1 cosϕ − h2 sinϕ|α1 + C2|h1 sinϕ + h2 cosϕ|α2 , (h1, h2) ∈ R
2.

Assume w.l.o.g that α2 > 1. Then critical values of ϕ ∈ [0, π/2) are the roots
of h1 cosϕ − h2 sinϕ. Given a value h2 ∈ R we need to choose h1 ∈ R such
that h1 �= h2 tanϕ for all ϕ ∈ [0, π/2). Since tanϕ > 0 for ϕ ∈ [0, π2), we
can choose h1 such that sgn(h1) = −sgn(h2). If all lags (h1, h2, u) ∈ H are
chosen such that (h1, h2) have opposite signs (or, trivially, are equal to (0, 0))
and if rank(PAB(θθθ�)) = k, then the GLSE is asymptotically normal.

• Model (III) is continuous partially differentiable, if the spatial smoothness
parameters αi for i = 1, . . . , d −1 are all larger than 1. If αi ≤ 1 for some i, then
the term Ci |hi −uτi |αi is, as a function of τi , not differentiable at τi = hi/u ∈ R.
However, it is possible to restrict the parameter space such that such equalities
do not occur.

6 Simulation study

Specifications Consider the framework of Section 5.3. In particular, let {η(sss, t) :
sss ∈ R

2, t ∈ [0, ∞)} be a strictly stationary space-time Brown-Resnick process (5.1)
observed on Dn = F × In. Denote by ρ̂AB,mn(hhh, u) the space-time version of the
(possibly bias corrected) empirical extremogram given in Eq. 3.16, sampled at lags
in H ⊂ R

d , where H is specified below and we choose the sets A = B = (1, ∞).
As already indicated in its Definition 2(1), the computation involves the practical
issue of choosing the value amn = mn =: q as a large quantile, where the first
equality is due to the standard unit Fréchet distribution of the marginals of the Brown-
Resnick model, so that q should be chosen as a large quantile of the standard unit
Fréchet distribution. In a data example it should be chosen from a set Q of large
empirical quantiles of {η(sss, t) : (sss, t) ∈ Dn} for which the empirical extremograms
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ρ̂AB,q(hhh, u), are robust. For a practical guideline see Davis and Mikosch (2009),
Section 3.4 and the upper left panel of their Fig. 1, and also Davis et al. (2013c)
after their Theorem 2.1. In the following simulation scenarios we choose the lowest
quantile of a given level of the sets Q. Note that due to the variability of the large
empirical quantiles, this might involve (as below) the choice of different quantiles in
different data examples.

In order to test the small sample performance of the GLSE θ̂θθn,V defined in Eq. 4.4,
we consider some of the models (I)-(III) for the dependence function δθθθ . For the sim-
ulations we use the R-package RandomFields ((Schlather )) and the exact method
via extremal functions proposed in Dombry et al. (2016), Section 2. In this simulation
study we use standardised univariate margins. If this in not the case (as for instance in the
data example treated in Section 5 of Buhl and Klüppelberg (2016)), they need to be esti-
mated and standardised first, which naturally might lead to inferior estimation results.

(i) Spatially isotropic fractional space-time model We generate 100 realisations
from the model (5.14) on a grid of size 15×15×300. This corresponds to the
situation of a fixed spatial and an increasing temporal observation area; i.e., it is
given by Dn = F × In with F = {1, . . . , 15}2 and In = {1, . . . , 300}. We
simulate the model with the true parameter vector

θθθ�
1 = (0.8, 0.4, 1.5, 1),

which we assume to lie in a compact subset of

�1 = {(C1, C2, α1, α2) : C1, C2 ∈ (0, ∞), α1, α2 ∈ (0, 2]} .
As the large empirical quantile q we take the 96%-quantile of {η(sss, t) : (sss, t) ∈
Dn}.

(ii) Geometrically anisotropic fractional space-time model We generate 100
realisations from model (5.15) on a grid of size 15×15×300. This corresponds to
the same situation as in (i). We simulate the model with the true parameter vector

θθθ�
2 = (0.8, 0.4, 1.5, 0.5, 3, π/4),

which we assume to lie in a compact subset of

�2 = {(C1, C2, α1, α2, c, ϕ) :
C1, C2 ∈ (0, ∞), α1 ∈ [1, 2], α2 ∈ (0, 2], c > 0, ϕ ∈ [0, π/2)

}
,

where we choose α1 ≥ 1 to ensure differentiability of the model, cf. the discus-
sion in Section 5.3. As the large empirical quantile q we take the 97%-quantile of
{η(sss, t) : (sss, t) ∈ Dn}.

(iii) Spatially anisotropic time-shifted model We generate 100 realisations from
model (5.19) on a grid of size 40×40×40, and consider this as a situation where
the observation area increases in all dimensions; i.e., it is given by Dn = In with
In = {1, . . . , 40}3. We simulate the model with the true parameter vector

θθθ�
3 = (0.4, 0.8, 0.5, 1.5, 1.5, 1, 1, 1),
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which we assume to lie in a compact subset of

�3 = {(C1, C2, C3, α1, α2, α3, τ1, τ2) : Cj ∈ (0, ∞), α1, α2 ∈ [1, 2], α3 ∈ (0, 2], τj ∈ R
}
,

where we choose α1, α2 ≥ 1 to ensure differentiability of the model, cf. the dis-
cussion in Section 5.3. As the large empirical quantile q we take the 95%-quantile
of {η(sss, t) : (sss, t) ∈ Dn}. �

In all three settings we base the estimation on the set H of lags given by

H = {(0, 0, 1), (0, 0, 2), (0, 0, 3), (0, 0, 4), (1, 0, 0), (2, 0, 0), (3, 0, 0),
(4, 0, 0), (2, 1, 0), (4, 2, 0), (1, 2, 0), (2, 4, 0), (1, 1, 1), (2, 2, 2), (1, 3, 2)}.

With this choice we ensure that the lag vectors vary in all three dimensions so that
we obtain reliable estimates. Generally one should choose H such that the whole
range of clear extremal dependence is covered. However, beyond that, no lags should
be included for the estimation, since independence effects can introduce a bias in the
least squares estimates, similarly as in pairwise likelihood estimation; cf. Buhl and
Klüppelberg (2016), Section 5.3. One way to determine the range of extremal depen-
dence are permutation tests, which are described in Buhl et al. (2018), Section 6.
From those tests we know that our choice of lags satisfies this requirement for all
three models.

For the weight matrix V in Eq. 4.4 we propose two choices, which yield equally
good results in our statistical analysis. The first choice is V1 = diag{exp(−‖(hhh,

u)‖2) : (((hhh, u) ∈ H },which reflects the exponential decay of the tail dependence
coefficients ρ(1,∞)(1,∞)(hhh, u) of Brown-Resnick processes given by tail probabilities
of the standard normal distribution. The second choice is to include the (possibly bias
corrected) empirical extremogram estimates as in V2 = diag{ρ̂(1,∞)(1,∞),q(hhh, u) :
(hhh, u) ∈ H } (provided this is a valid choice; i.e., V2 has only positive diagonal
entries). Since the so defined weight matrix is random, what follows is conditional on
its realisation. It is in practice not possible to incorporate the asymptotic covariance
matrix � of the empirical extremogram estimates (ρ̂(1,∞)(1,∞),q(hhh, u) : (hhh, u) ∈ H )

(cf. Remark 4) to obtain a weight matrix that is optimal in theory. As can be seen from
its specification in Theorem 1, it contains infinite sums and is, hence, numerically
hardly tractable.

Results For each of the scenarios (i)-(iii) we report the mean, the mean absolute error
(MAE), the root mean squared error (RMSE), and a relative root mean squared error
(REL) of the resulting GLSEs for the 100 simulations. Exemplary for the parameter
C1, the REL is defined as √√√√√ 1

100

100∑
j=1

[ Ĉ1,j − C�
1

C�
1

]2
,

where C�
1 denotes the true parameter value and Ĉ1,j the j th parameter estimate.

As weight matrix we choose V2 = diag{ρ̂(1,∞)(1,∞),q(hhh, u) : (hhh, u) ∈ H } defined
above. The average computing time per simulation depends on the complexity of
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the model (i.e., the number of parameters to be estimated) and more crucially on
the chosen set H and on the grid size. We report an average time of 14.51 seconds
for scenario (i), 14.95 seconds for scenario (ii) and 14.63 seconds for scenario (iii).
The estimation results are summarised in Tables 1, 2 and 3. Furthermore, in Figs. 2,
3 and 4 we plot the parameter estimates and add 95%-confidence bounds found by
subsampling; cf. Politis et al. (1999), Chapter 5. We use subsampling methods, since
the asymptotic covariance matrix �V specified in Theorem 4 contains the matrix �

as specified in Theorem 1, which is, as explained above, hardly tractable. The fact that
subsampling yields asymptotically valid confidence intervals for the true parameter
vectors θθθ�

i for i = 1, 2, 3 can be proved analogously to the proof of Theorem 3.5 in
Buhl et al. (2018) based on Corollary 5.3.4 of Politis et al. (1999). It requires mainly
the existence of continuous limit distributions of

√
nw/md

n‖(̂θθθn,V − θθθ�
i )‖, which are

guaranteed by Theorem 4.4, and some conditions on the α-mixing coefficients, which
can be shown similarly as those required in Theorem 1.

Summarising our results, we find that the GLSE estimates the model parameters
accurately. Bias and variance are largest for the parameter estimates of model (ii).
There are two main reasons for this. Compared to model (i), for model (ii) we esti-
mate two more parameters based on the same observation scheme. However, one is
a direction, which is non-trivial to estimate and decreases the overall quality of the
estimates. For the estimation of model (iii) the observation scheme is different; in
particular, there is a relatively large number of both spatial and temporal observations
available. In contrast, in the setting of models (i) and (ii) only the number of temporal
observations is large.

FromTables 1 and 2we conclude that bias andRELof the spatial parameter estimates
Ĉ1 and α̂1 are comparable with those of the temporal parameter estimates Ĉ2 and
α̂2. Bias of the spatial estimates is slightly larger than bias of the temporal estimates,
which might be due to the fact that only the number of temporal observations is large.

From Table 3 we read off that the RELs of the estimates Ĉ1 and α̂1, which corre-
spond to the first spatial dimension, are slightly smaller than those of Ĉ2 and α̂2. A
reason for this might be the choice of the lag vectors which we included in the set H
and which show more variation with respect to the first dimension than with respect
to the second.

In her PhD thesis, Steinkohl (2013) compares computing times of the commonly
applied pairwise likelihood estimation with the semiparametric method described in
Buhl et al. (2018), which can be regarded as a special case of the method described
in this paper. She reports in Table 6.4 a reduction of computing time by about a factor
15. Furthermore, in Section 5 of Buhl et al. (2018) we show that the semiparametric

Table 1 True parameter values
(first column) and mean, MAE,
RMSE, and REL of the estimates
of the parameters of model (i)

TRUE MEAN MAE RMSE REL

Ĉ1 0.8 0.7856 0.1353 0.1763 0.2204

Ĉ2 0.4 0.3987 0.0785 0.0995 0.2486

α̂1 1.5 1.4830 0.0897 0.1131 0.0754

α̂2 1 0.9916 0.0625 0.0820 0.0820
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Table 2 True parameter values
(first column) and mean, MAE,
RMSE, and REL of the estimates
of the parameters of model (ii)

TRUE MEAN MAE RMSE REL

Ĉ1 0.8 0.7270 0.2750 0.3350 0.4192

Ĉ2 0.4 0.3708 0.1097 0.1377 0.3443

α̂1 1.5 1.4349 0.2274 0.2692 0.1794

α̂2 0.5 0.5143 0.0491 0.0684 0.1369

ĉ 3 2.9441 0.1365 0.2645 0.0882

ϕ̂ π/4 0.7906 0.1214 0.1567 0.1995

methods are more robust against small deviations from the model assumptions such
as measurement errors.

Further insight

6.1 (a) Influence of the choice of lags

In order to understand how the choice of lags in H influences computing times and
the quality of the estimates, we repeat simulation scenario (i) for different sets H�

where � = 1, . . . , 5. These are given by

H1 = {(0, 0, 1), (1, 0, 0), (0, 0, 2)},
H2 = H1 ∪ {(2, 0, 0), (2, 1, 0), (1, 2, 0), (1, 1, 1), (1, 3, 2)},
H3 = H2 ∪ {(0, 0, 3), (0, 0, 4), (3, 0, 0), (4, 0, 0), (4, 2, 0), (2, 4, 0), (2, 2, 2), (2, 6, 4)},
H4 = H3 ∪ {(0, 0, 5), (0, 0, 6), (5, 0, 0), (6, 0, 0), (8, 4, 0), (4, 8, 0), (3, 3, 3), (3, 9, 6)},
H5 = H4 ∪ {(0, 0, 7), (0, 0, 8), (7, 0, 0), (8, 0, 0), (10, 5, 0), (5, 10, 0), (4, 4, 4), (4, 12, 8)}.

From Table 4 we read off roughly stable results across all choices. As to the
computational burden inherent with the choice of lags we observe from Table 5
that computing times increase roughly linearly with |H |; more precisely, computing
times approximately double when |H | doubles. Hence, it is advisable to choose H
such that its cardinality is minimal across a selection of valid choices.

Table 3 True parameter values
(first column) and mean, MAE,
RMSE, and REL of the estimates
of the parameters of model (iii)

TRUE MEAN MAE RMSE REL

Ĉ1 0.4 0.4072 0.0690 0.0898 0.2244

Ĉ2 0.8 0.8482 0.1667 0.2187 0.2734

Ĉ3 0.5 0.5003 0.1085 0.1366 0.2733

α̂1 1.5 1.5144 0.0594 0.0781 0.0521

α̂2 1.5 1.5043 0.1054 0.1282 0.0855

α̂3 1 0.9694 0.1082 0.1415 0.1415

τ̂1 1 1.0459 0.0945 0.1250 0.1250

τ̂2 1 0.9916 0.0320 0.0420 0.0420
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Fig. 2 GLSEs of the parameters of model (i) for 100 simulated Brown-Resnick space-time processes
together with pointwise 95%-subsampling confidence intervals (dotted). First row: C1, α1, second row:
C2, α2. The middle solid line is the true parameter value and the middle dotted line represents the mean
over all estimates

6.2 (b) Effect of the sample size

We extend the simulation scenario (i) by repeating the procedure with an increased
sample size. Since the number of spatial points is considered as fixed, this involves
an increase of the number of time points. In a first run, the observation area is now
given by Dn = F × In with F = {1, . . . , 15}2 and In = {1, . . . , 500}; i.e., the
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Fig. 3 GLSEs of the parameters of model (ii) for 100 simulated Brown-Resnick space-time processes
together with pointwise 95%-subsampling confidence intervals (dotted). First row: C1, α1, middle row:
C2, α2, last row: ϕ and c. The middle solid line is the true value and the middle dotted line represents the
mean over all estimates
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Fig. 4 GLSEs of the parameters of model (iii) for 100 simulated Brown-Resnick space-time processes
together with pointwise 95%-subsampling confidence intervals (dotted). First row: C1, α1, second row:
C2, α2, third row: C3, α3, fourth row: τ1, τ2. The middle solid line is the true value and the middle dotted
line represents the mean over all estimates

Table 4 True parameter values (first column), means M1 − M5 and RMSEs R1 − R5 of the estimates of
the parameters of model (i) based on the different sets of lags H1 − H5

TRUE M1 M2 M3 M4 M5 R1 R2 R3 R4 R5

Ĉ1 0.8 0.776 0.789 0.798 0.804 0.810 0.140 0.179 0.182 0.184 0.185

Ĉ2 0.4 0.399 0.399 0.399 0.400 0.402 0.099 0.101 0.103 0.104 0.106

α̂1 1.5 1.490 1.462 1.436 1.418 1.403 0.074 0.119 0.114 0.130 0.145

α̂2 1 0.990 0.991 0.986 0.984 0.979 0.084 0.084 0.072 0.075 0.080

Table 5 Average computing
times for one realisation of the
Brown-Resnick model (I) based
on the sets of lags H� for
� = 1, . . . , 5

� 1 2 3 4 5

Computing time in seconds 3.2 8.0 15.3 21.9 28.1



Generalised least squares estimation of regularly varying space-time... 255

Table 6 True parameter values
(first column) and mean, MAE,
RMSE, and REL of the
estimates of the parameters of
model (i) based on an increased
number of 500 time points

TRUE MEAN MAE RMSE REL

Ĉ1 0.8 0.7819 0.1057 0.1410 0.1763

Ĉ2 0.4 0.3938 0.0628 0.0819 0.2048

α̂1 1.5 1.4549 0.0793 0.1011 0.0674

α̂2 1 1.0015 0.0464 0.0613 0.0613

process is observed at 500 time points (instead of 300 as before). In a second run, the
time points are extended to In = {1, . . . , 1000}. Compared to the original scenario,
everything else remains unchanged; in particular, as the large quantile q we choose
as before the 96%-quantile of {η(sss, t) : (s, t) ∈ Dn}.

With regard to the results summarised in Tables 6 and 7, we notice that there is no
significant change in mean; the confidence bounds (cf. Fig. 2) are too wide to sup-
port such a hypothesis. However, the RMSE and the MAE (and thus the empirical
standard deviation) of the estimates decrease considerably. This is not an unexpected
behaviour: since we do not change q, we increase the number of observed points used
for the estimation of the empirical extremogram and thus decrease its variance with-
out introducing additional bias. In theory, we expect from Theorem 4 and Remark
3 that an increase of the number of time points by a factor k leads to a decrease
of the standard deviation of the estimates by a factor fk(β1) = (1/k)(w−β1d)/2 =
(1/k)(1−3β1)/2 for β1 ∈ (w/(5d), w/(2d)) = (1/15, 1/6), possibly after a bias cor-
rection. The extensions from 300 to 500 and that from 300 to 1000 time points
correspond to k = 5/3 and k = 10/3, respectively. The theoretical factors fk(·) for
k = 5/3 and k = 10/3 therefore lie in the intervals (0.81, 0.88) and (0.62, 0.74),
respectively. This behaviour should be confirmed by the empirical standard deviation
and related measures. Indeed, dividing the RMSE of the individual estimates of the
four parameters based on 500 and 1000 time points by the RMSE based on 300 time
points, we obtain factors 0.80, 0.82, 0.89, 0.75 (mean value 0.82) and 0.70, 0.65,
0.70, 0.55 (mean value 0.65), which all lie in the corresponding theoretical intervals
or are close to them. Reasons for slight deviations from theory are of course sam-
pling variability and the fact that in practice, the sequence mn is, as explained above,
chosen as a large empirical quantile of the observations. Our findings are visualised
in Fig. 5.

Table 7 True parameter values
(first column) and mean, MAE,
RMSE, and REL of the
estimates of the parameters of
model (i) based on an increased
number of 1000 time points

TRUE MEAN MAE RMSE REL

Ĉ1 0.8 0.7584 0.0995 0.1241 0.1552

Ĉ2 0.4 0.3848 0.0522 0.0647 0.1618

α̂1 1.5 1.4504 0.0644 0.0788 0.0525

α̂2 1 0.9858 0.0348 0.0453 0.0453
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Fig. 5 Theoretical minimum and maximum factors fk(β
(1)
1 ) and fk(β

(2)
1 ) of decrease of the standard

deviation for β
(1)
1 = 1/6 and β

(2)
1 = 1/15 (solid curves). The + symbols correspond to the empirical

RMSE reduction factors of the four individual paramater estimates, when the number of time points is
increased by factors k = 5/3 and k = 10/3
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Appendix A

A.1 α-mixing with respect to the increasing dimensions

We need the concept of α-mixing for the process {X(s) : s ∈ R
d} with respect to

R
w. In a space-time setting with fixed spatial setting and increasing time series this

is called temporal α-mixing.

Definition 6 (α-mixing and α-mixing coefficients) Consider a strictly stationary
process

{
X(s) : s ∈ R

d
}
and let ‖ · ‖ be some norm on Rd . For �1, �2 ⊂ Z

w define

d(�1, �2) := inf {‖s1 − s2‖ : s1 ∈ F × �1, s2 ∈ F × �2} .
Further, for i = 1, 2 denote by σF×�i

= σ {X(s) : s ∈ F × �i} the σ -algebra
generated by {X(s) : s ∈ F × �i}.
(i) We define the α-mixing coefficients with respect to R

w for k1, k2 ∈ N and
z ≥ 0 as

αk1,k2 (z) := sup
{|P(A1 ∩ A2) − P(A1)P(A2)| : Ai ∈ σF×�i

, |�i | ≤ ki , d(�1,�2) ≥ z
}
.(A.1)

(ii) We call {X(s) : s ∈ R
d} α-mixing with respect to R

w, if αk1,k2(z) → 0 as
z → ∞ for all k1, k2 ∈ N.

We have to control the dependence between vector processes {Y (s) = XB(s,γ ) :
s ∈ �′

1} and {Y (s) = XB(s,γ ) : s ∈ �′
2} for subsets �′

i ⊂ Z
w with cardinal-

ities |�′
1| ≤ k1 and |�′

2| ≤ k2.. This entails dealing with unions of balls �i =
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∪s∈F×�′
i
B(s, γ ). Since γ > 0 is some predetermined finite constant independent

of n, we keep notation simple by redefining the α-mixing coefficients corresponding
to the vector processes for k1, k2 ∈ N and z ≥ 0 as

αk1,k2(z) := sup{|P(A1 ∩ A2) − P(A1)P(A2)| :
Ai ∈ σ�i

, �i = ∪s∈F×�′
i
B(s, γ ), |�′

i | ≤ ki, d(�′
1, �

′
2) ≥ z}.

(A.2)

A.2 Proof of Theorem 1

The proof of Theorem 1 is divided into two parts. In the first part we prove a LLN
and a CLT in Lemmas A.1 and A.2 for the estimators μ̂B(0,γ ),mn

in Eq. 3.4. In the
second part of the proof we derive the CLT for the empirical extremogram ρ̂AB,mn

in Eq. 3.2, and compute the asymptotic covariance matrix �. The proof generalizes
corresponding proofs in Buhl and Klüppelberg (2018) (where the observation area
increases in all dimensions) in a non-trivial way. We recall the separation of every
point and every lag in its components corresponding to the fixed domain, indicated by
the sub index F , and the remaining components, indicated by I , from Assumption
2. In particular, we decompose h(i) = (h

(i)

F , h
(i)

I ) ∈ H .
The separation of the observation space with its fixed domain has to be introduced

into the proofs given in Buhl and Klüppelberg (2018), which is even in the regular
grid situation highly non-trivial. We will give detailed references to those proofs,
whenever possible, to support the understanding. On the other hand, if arguments just
follow a previous proof line by line we avoid the details.

Part I: LLN and CLT for μ̂B(0,γ ),mn

As in Buhl and Klüppelberg (2018), Section 5, we make use of a large/small block
argument. For simplicity we assume that nw/md

n is an integer and subdivide Dn into
nw/md

n non-overlapping d-dimensional large blocks F ×Bi for i = 1, . . . , nw/md
n,

where the Bi are w-dimensional cubes with side lengths m
d/w
n . From those large

blocks we then cut off smaller blocks, which consist of the first rn elements in each
of the w increasing dimensions. The large blocks are then separated (by these small
blocks) with at least the distance rn in all w increasing dimensions and shown to be
asymptotically independent.

We divide the lags in Ln into different sets according to the large and small blocks.
Recall the notation of Eq. 3.5 and around. Observe that a lag (�F , �I ) with �I =
(�

(1)
I , . . . , �

(w)

I ) appears in L
(i,i)

F × Ln exactly N(i,i)

F (�F )
∏w

j=1(n − |�(j)

I |) times,

where N(i,i)

F (�F ) is defined in Eq. 3.6. This term will replace
∏d

j=1(n − |hj |) in the
proofs of Buhl and Klüppelberg (2018).

Lemma A.1 Let {X(s) : s ∈ R
d} be a strictly stationary regularly varying process

observed on Dn = F ×In as in Eq. 2.4. For i ∈ {1, . . . , p}, let h(i) = (h
(i)

F , h
(i)

I ) ∈
H ⊆ B(0, γ ) for some γ > 0 be a fixed lag vector and use as before the convention
that (h(p+1)

F , h
(p+1)
I ) = 0. Suppose that the following mixing conditions are satisfied.
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(1) {X(s) : s ∈ R
d} is α-mixing with respect to R

w with mixing coefficients
αk1,k2(·) defined in Eq. A.1.

(2) There exist sequences m := mn, r := rn→∞ with md
n/nw → 0 and rw

n /md
n → 0

as n→∞ such that (M3) and (M4i) hold.

Then for every fixed i = 1, . . . , p + 1, as n→∞,

E
[
μ̂B(0,γ ),mn

(Di)
] → μB(0,γ )(Di), (A.3)

ϕ
[
μ̂B(0,γ ),mn

(Di)
] ∼ md

n

nw
σ 2

B(0,γ )(Di), (A.4)

with σ 2
B(0,γ )

(Di) specified in Eq. 3.8. If μB(0,γ )(Di) = 0, then Eq. A.4 is interpreted
as
ϕ
[
μ̂B(0,γ ),mn

(Di)
] = o(md

n/nw). In particular,

μ̂B(0,γ ),mn
(Di)

P→ μB(0,γ )(Di), n→∞. (A.5)

Proof of Lemma A.1. We suppress the superscript (i) of h(i) (respectively h
(i)

F ) for
notational ease. Strict stationarity and relation (2.5) imply that

E
[
μ̂B(0,γ ),mn

(Di)
] = md

n

nw

∑
i∈In

|F (hF )|
|F (hF )|P

(
Y (0)
am

∈ Di

)

= md
nP

(
Y (0)
am

∈ Di

)
→ μB(0,γ )(Di).

As to the asymptotic variance, we start from Eq. 3.7, where it has been calculated that

ϕ
[
μ̂B(0,γ ),mn

(Di)
] = m2d

n

n2w|F (hF )|2
(

|F (hF )|nwϕ

[
1{ Y (0)

am
∈Di }

]

+
∑

f ,f ′∈F (hF )

∑
i,i′∈In

(f ,i)�=(f ′,i′)

Cov

[
1{ Y (f ,i)

am
∈Di },1{ Y (f ′,i′)

am
∈Di }

]
⎞
⎟⎟⎠

=: A1 + A2. (A.6)

By Eq. 2.5 and since P(Y (0)/am ∈ Di) → 0,

A1 = m2d
n

nw|F (hF )|P
(

Y (0)
am

∈ Di

)(
1 − P

(
Y (0)
am

∈ Di

))

∼ md
n

nw|F (hF )|μB(0,γ )(Di)→ 0, n→∞.
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Counting the lags as explained above this proof, for fixed k ∈ N we have by
stationarity the analogy of Eq. 5.6 in Buhl and Klüppelberg (2018)

nw

md
n

A2 = md
n

|F (hF )|2

⎛
⎜⎜⎝

∑
�I ∈Ln

0≤‖�I ‖≤k

+
∑

�I ∈Ln
k<‖�I ‖≤rn

+
∑

�I ∈Ln
‖�I ‖>rn

⎞
⎟⎟⎠

∑

�F ∈L
(i,i)
F

(�F ,�I )�=0

N(i,i)

F (�F )

w∏
j=1

(
1 − |�(j)

I |
n

)
Cov

[
1{ Y (0)

am
∈Di },1{ Y (�F ,�I )

am
∈Di }

]

=: A21 + A22 + A23. (A.7)

Concerning A21 we have,

A21 = md
n

|F (hF )|2
∑

�I ∈Ln
0≤‖�I ‖≤k

∑

�F ∈L
(i,i)
F

(�F ,�I )�=0

N(i,i)

F (�F )

w∏
j=1

(
1 − |�(j)

I |
n

)

[
P

(
Y (0)
am

∈ Di,
Y (�F , �I )

am

∈ Di

)
− P

(
Y (0)
am

∈ Di

)2
]
.

With Eqs. 2.5 and 2.6 we obtain by dominated convergence,

lim
k→∞ lim sup

n→∞
A21 = 1

|F (hF )|2
∑

�I ∈Zw

∑

�F ∈L
(i,i)
F

(�F ,�I )�=0

N(i,i)

F

×(�F )τB(0,γ )×B((�F ,�I ),γ )(Di × Di). (A.8)

As to A22, observe that for all n ≥ 0 we have
w∏

j=1
(1 − |�(j)

I |
n

) ≤ 1 for �I ∈ Ln.

Furthermore, since Di is bounded away from 0, there exists ε > 0 such that Di ⊂
{x ∈ R

|B(0,γ )| : ‖x‖ > ε}. Hence, we obtain

|A22| ≤ 1

|F (hF )|2
∑

�F ∈L
(i,i)
F

N(i,i)

F (�F )
∑

�I ∈Zw

k<‖�I ‖≤rn

×
{
md

nP (‖Y (0)‖ > εam, ‖Y (�F , �I )‖ > εam)

+ 1

md
n

(
md

nP

(
Y (0)
am

∈ Di

))2
}
.

which differs from the corresponding expression in Buhl and Klüppelberg (2018)
only by finite factors. Thus by an obvious modification of the arguments in that paper
it follows that, using rw

n /md
n → 0 and condition (M3),

lim
k→∞ lim sup

n→∞
A22 = 0.
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Using the definition (A.2) of α-mixing for A1 = {Y (0)/am ∈ Di} and A2 =
{Y (�F , �I )/am ∈ Di}, we obtain by (M4i),

|A23| ≤ 1

|F (hF )|2
∑

�F ∈L
(i,i)
F

N(i,i)
F (�F )md

n

∑
�I ∈Zw :‖�I ‖>rn

α1,1(‖�I ‖) → 0, n → ∞. (A.9)

Summarising these computations, we conclude from Eqs. A.7 and A.8 that for n →
∞,

A2 ∼ md
n

nw

∑
�I ∈Zw

1

|F (hF )|2
∑

�F ∈L
(i,i)
F

(�F ,�I )�=0

N(i,i)

F (�F )τB(0,γ )×B((�F ,�I ),γ )(Di × Di),

and, therefore, Eq. A.6 implies Eq. A.4. Since md
n/nw → 0 as n→∞, Eqs. A.3 and

A.4 imply Eq. A.5.

Lemma A.1 Let {X(s) : s ∈ R
d} be a strictly stationary regularly varying process

observed on Dn = F × In. For i ∈ {1, . . . , p}, let h(i) = (h
(i)

F , h
(i)

I ) ∈ H ⊆
B(0, γ ) for some γ > 0 be a fixed lag vector and take as before the convention that
(h

(p+1)
F , h

(p+1)
I ) = 0. Let the assumptions of Theorem 1 hold. Then for every fixed

i = 1, . . . , p + 1,

ŜB(0,γ ),mn
:=
√

md
n

nw

∑
i∈In

⎡
⎣ 1

|F (hF )|

⎛
⎝ ∑

f ∈F(hF )

1{ Y (f ,i)
am

∈Di }

⎞
⎠− P

(
Y (f , i)

am

∈ Di

)⎤
⎦

=
√

nw

md
n

[
μ̂B(0,γ ),mn

(Di)−μB(0,γ ),mn
(Di)

] D→ N (0, σ 2
B(0,γ )(Di)), n→∞, (A.10)

with μ̂B(0,γ ),mn
(Di) as in Eq. 3.4, μB(0,γ ),mn

(Di)) := md
nP(Y (0)/am ∈ Di) and

σ 2
B(0,γ )

(Di) given in Eq. 3.8.

Proof Again we suppress the superscript (i) of h(i) and h
(i)

F . As for the proof of con-
sistency above, we generalise the proof of the CLT in Buhl and Klüppelberg (2018)
(based on Bolthausen (1982)) to the new setting. We consider the process

⎧⎨
⎩

√
md

n

|F (hF )|

⎛
⎝ ∑

f ∈F (hF )

1{ Y (f ,i)
am

∈Di }

⎞
⎠ : i ∈ Z

w

⎫⎬
⎭ ,

observed on the w-dimensional regular grid In. In analogy to Eq. 5.11 in Buhl and
Klüppelberg (2018) define

I (i) := 1

|F (hF )|

⎛
⎝ ∑

f ∈F (hF )

1{ Y (f ,i)
am

∈Di }

⎞
⎠−P

(
Y (0)
am

∈Di

)
, i ∈In, (A.11)

and note that by stationarity,

ŜB(0,γ ),mn
=
√

md
n

nw

∑
i∈In

I (i). (A.12)
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The boundary condition required in Eq. (1) in Bolthausen (1982) is satisfied for the
regular grid In. By the same arguments as in Buhl and Klüppelberg (2018),

0 < σ 2
B(0,γ )(Di) ∼ ϕ[ŜB(0,γ ),mn

] ≤ md
n

nw

∑

i,i′∈Zw

|E[I (i)I (i′)]| < ∞, (A.13)

such that
∑

i,i′∈Zw Cov[I (i), I (i′)] > 0. Replacing Sn in Buhl and Klüppelberg
(2018) by In and nd by nw, we define

vn := md
n

nw

∑
i,i′∈In

‖i−i′‖≤rn

E
[
I (i)I (i ′)

]
. (A.14)

and obtain by the same arguments that

vn

ϕ[ŜB(0,γ ),mn
] = 1 − md

n

nw

1

σ 2
B(0,γ )

(Di)

∑
i,i′∈In

‖i−i′‖>rn

E[I (i)I (i′)](1 + o(1)).

Now note that

md
n

nw

∑
i,i′∈In

‖i−i′‖>rn

E[I (i)I (i ′)] ≤ 1

|F (hF )|2
∑

�F ∈L
(i,i)
F

N(i,i)

F (�F )md
n

∑
�I ∈Zq :‖�I ‖>rn

α1,1(‖�I ‖) → 0, n→∞,

as in Eq. A.9, with mixing coefficients defined in Eq. A.2. Therefore,

vn ∼ ϕ[ŜB(0,γ ),mn
] → σ 2

B(0,γ )(Di), n→∞. (A.15)

The standardized quantities are again as in Buhl and Klüppelberg (2018), with Sn

replaced by In and nd by nw, by

Sn := v
−1/2
n ŜB(0,γ ),mn

= v
−1/2
n

√
md

n

nw

∑
i∈In

I (i) and Si,n := v
−1/2
n

√
md

n

nw

∑
i′∈In

‖i−i′‖≤rn

I (i′).

The proof continues in Buhl and Klüppelberg (2018), with nd replaced by nw, by
estimating the quantities B1, B2 and B3. The estimation of B1 follows the same lines
of the proof, resulting in

E[|B1|2] = λ2v−2
n

(
md

n

nw

)2 ∑

‖i−i′‖≤rn

∑

‖j−j ′‖≤rn

Cov
[
I (i)I (i′), I (j)I (j ′)

]
.

We use definition (A.2) of the α-mixing coefficients for

�′
1 = {i, i′} and �′

2 = {j , j ′},
then |�′

1|, |�′
2| ≤ 2 and for d(�′

1, �
′
2) we consider the following two cases:
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(1) ‖i − j‖ ≥ 3rn. Then 2rn ≤ (2/3)‖i − j‖ and d(�′
1, �

′
2) ≥ ‖i − j‖ − 2rn.

Since indicator variables are bounded and α2,2 is a decreasing function,

|Cov
[
I (i)I (i′), I (j)I (j ′)

] | ≤ 4α2,2 (‖i − j‖ − 2rn) ≤ 4α2,2

(
1
3‖i − j‖

)
.

(2) ‖i − j‖< 3rn. Set z := min{‖i − j‖, ‖i − j ′‖, ‖i′ − j‖, ‖i′ − j ′‖}, then
d(�′

1, �
′
2) ≥ z and, hence,

Cov
[
I (i)I (i′), I (j)I (j ′)

] ≤ 4αk1,k2(z), 2 ≤ k1 + k2 ≤ 4.

Therefore,

E[|B1|2] ≤ 4λ2

v2n

(
md

n

nw

)2

⎡
⎢⎢⎣

∑
‖i−j‖≥3rn

∑
‖i−i′‖≤rn
‖j−j ′‖≤rn

α2,2

(
1

3
‖i−j‖

)
+

∑
‖i−j‖<3rn

∑
‖i−i′‖≤rn
‖j−j ′‖≤rn

αk1,k2 (z)

⎤
⎥⎥⎦

≤ 4λ2

v2n

(
md

n

nw

)2

nwr2wn

⎡
⎣ ∑

�I ∈Zw :‖�I ‖≥3rn

α2,2

(
1

3
‖�I ‖

)

+
∑

�I ∈Zw :‖�I ‖<3rn

αk1,k2 (‖�I ‖)
⎤
⎦ .

The analogous argument as in Buhl and Klüppelberg (2018) yields

E[|B1|2] = O

(
m2d

n r2wn

nw

)
→ 0.

Next, E[|B2|] → 0 as n → ∞ by the same arguments as in Buhl and Klüppelberg
(2018) replacing Sn by In and nd by nw. Then we find for B3 with the same
replacements

E[B3] = v
− 1

2
n m

d/2
n nw/2

E

⎡
⎣I (0) exp

⎧⎨
⎩iλv

− 1
2

n

√
md

n

nw

∑
‖i‖>rn

I (i)

⎫⎬
⎭

⎤
⎦ .

We use definition (A.2) of the α-mixing coefficients for

�′
1 = {0} and �′

2 = {i ∈ In : ‖i‖ > rn},
such that |�′

1| = 1, |�′
2| ≤ nw and d(�′

1, �
′
2) > rn. Abbreviate

η(rn) := exp

⎧⎨
⎩iλv

− 1
2

n

√
md

n

nw

∑
‖i‖>rn

I (i)

⎫⎬
⎭ ,

then I (0) and η(rn) are measurable with respect to σ�1 and σ�2 , respectively, where
�i = ∪s∈F×�′

i
B(s, γ ). Now we apply Theorem 17.2.1 of Ibragimov and Linnik to

obtain
|E[B3]| ≤ 4v−1/2

n m
d/2
n nw/2α1,nw (rn) → 0,

where convergence to 0 is guaranteed by condition (M4iii).

Part II: CLT for ρ̂AB,mn and limit covariance matrix
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Recall the definition of H = {h(1), . . . , h(p)}. For i ∈ {1, . . . , p}, write h(i) =
(h

(i)

F , h
(i)

I ) with respect to the fixed and increasing domains F and In. Write further

h
(i)

F = (h
(i,1)
F , . . . , h

(i,q)

F ) and h
(i)

I = (h
(i,1)
I , . . . , h

(i,w)

I ). Now we define the ratio

Rn(Di, Dp+1) := P(Y (0)/am ∈ Di)

P(Y (0)/am ∈ Dp+1)
= μB(0,γ ),mn

(Di)

μB(0,γ ),mn
(Dp+1)

and the corresponding empirical estimator

R̂n(Di, Dp+1) :=
|F |∑i∈In

∑
f ∈F (h

(i)
F )

1{Y (f ,i)/am∈Di }

|F (h
(i)

F )|∑i∈In

∑
f ∈F 1{Y (f ,i)/am∈Dp+1}

=
md

n

nw

∑
i∈In

1
|F (h

(i)
F )|
∑

f ∈F (h
(i)
F )

1{Y (f ,i)/am∈Di }
md

n

nw

∑
i∈In

1
|F (0)|

∑
f ∈F (0) 1{Y (f ,i)/am∈Dp+1}

= μ̂B(0,γ ),mn
(Di)

μ̂B(0,γ ),mn
(Dp+1)

,

using that F (0) = F . Observe that

|Dn(h
(i))| = |F (h

(i)

F )|
w∏

j=1

(n − |h(i,j)

I |) ∼ |F (h
(i)

F )|nw, n→∞.

Then the empirical extremogram as defined in Eq. 3.2 for μ-continuous Borel sets
A, B in R\{0} satisfies as n→∞,

ρ̂AB,mn(h
(i))

=
1

|Dn(h(i))|
∑

s∈Dn(h(i))

1{X(s)/am∈A,X(s+h(i))/am∈B}

1
|Dn|

∑
s∈Dn

1{X(s)/am ∈ A}

∼
1

|F (h
(i)
F )|nw

∑
i∈In(h

(i)
I )

∑
f ∈F (h

(i)
F )

1{X(f , i)/am ∈ A, X(f + h
(i)

F , i + h
(i)

I )/am ∈ B}
1

|F |nw

∑
i∈In

∑
f ∈F 1{X(f , i)/am ∈ Dp+1}

∼
|F |∑i∈In

∑
f ∈F (h

(i)
F )

1{Y (f , i)/am ∈ Di}
|F (h

(i)

F )|∑i∈In

∑
f ∈F 1{Y (f , i)/am ∈ Dp+1}

= R̂n(Di, Dp+1),

by definition (2.7) of the sets Di for i = 1, . . . , p. The remaining proof follows
exactly as that of Theorem 4.2 in Buhl and Klüppelberg (2018), where in the last part
the decomposition into a fixed and increasing grid has to be taken into account.

A.3 Proof of Theorem 3

Throughout this proof, we suppress the sub index mn of ρ̂AB,mn and ρ̂AB,mn for
notational ease. The case, where nw/m3d

n → 0 as n→∞, is covered by Theorem 2,
so we assume that nw/m3d

n �→ 0. Hence, by definition (3.16) we have to consider

ρ̃AB(h) = ρ̂AB(h) − A−1

2md
n

[
(ρ̂AB(h) − 2A/B)(ρ̂AB(h) − 1)

]
.
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Observe that for h ∈ H = {h(1), . . . , h(p)}, as n → ∞,

ρ̃AB(h) − ρAB(h)

= ρ̂AB(h) − ρAB,mn(h) + ρAB,mn(h) − A−1

2md
n

[
(ρ̂AB(h) − 2A/B)(ρ̂AB(h) − 1)

]− ρAB(h)

= (1 + o(1))

{
ρ̂AB(h) − ρAB,mn(h) + ρAB(h) + A−1

2md
n

[
(ρAB(h) − 2A/B)(ρAB(h) − 1)

]

−A−1

2md
n

[
(ρ̂AB(h) − 2A/B)(ρ̂AB(h) − 1)

]− ρAB(h)

}

Since the conditions of Theorem 1 are satisfied we have that√
nw

md
n

[
ρ̂AB(h(i)) − ρAB,mn(h

(i))
]
i=1,...,p

D→ N (0, �)

and thus, by the continuous mapping theorem, it remains to show that for h ∈ H ,

√
nw

4m3d
n

A−1 [(ρ̂AB(h) − 2A/B)(ρ̂AB(h) − 1) − (ρAB(h) − 2A/B)(ρAB(h) − 1)
] P→ 0.

We rewrite the latter as

√
nw

4m3d
n

A−1 [(ρ̂AB(h) − 2A/B)(ρ̂AB(h) − 1) − (ρAB,mn(h) − 2A/B)(ρAB,mn(h) − 1)

+(ρAB,mn(h) − 2A/B)(ρAB,mn(h) − 1) − (ρAB(h) − 2A/B)(ρAB(h) − 1)
]

=: A1 + A2.

As to A1, we calculate√
nw

4md
n

1

2ρAB(h) − (2A/B + 1)

[
(ρ̂AB(h) − 2A/B)(ρ̂AB(h) − 1)

−(ρAB,mn(h) − 2A/B)(ρAB,mn(h) − 1)
]

=
√

nw

4md
n

1

2ρAB(h) − (2A/B + 1)

[
ρ̂AB(h)2 − (2A/B + 1)ρ̂AB(h)

−
(
ρ2

AB,mn
(h) − (2A/B + 1)ρAB,mn(h)

)]

=
√

nw

4md
n

1

2ρAB(h) − (2A/B + 1)

[
(ρ̂AB(h) − ρAB,mn(h))(ρ̂AB(h) + ρAB,mn(h))

−(2A/B + 1)(ρ̂AB(h) − ρAB,mn(h))
]

=
√

nw

4md
n

(ρ̂AB(h) − ρAB,mn(h))
ρ̂AB(h) + ρAB,mn(h) − (2A/B + 1)

2ρAB(h) − (2A/B + 1)
.
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By Theorem 1, the first term converges weakly to a normal distribution. Since

ρ̂AB(h)
P→ ρAB(h) and ρAB,mn(h) → ρAB(h) as n→∞, the second term converges

to 1 in probability. Slutzky’s theorem hence yields that A1
P→ 0. As to A2, observe

that

−
√
4m3d

n

nw
AA2 = ρ2

AB(h) − ρ2
AB,mn

(h)) + (2A/B + 1)(ρAB,mn (h) − ρAB(h))

= (1 + o(1))

⎧⎨
⎩ρ2

AB(h) −
[
ρAB(h) + A−1

2md
n

[
(ρAB(h) − 2A/B)(ρAB(h) − 1)

]]2

+(2A/B + 1)

[
ρAB(h) + A−1

2md
n

[
(ρAB(h) − 2A/B)(ρAB(h) − 1)

]− ρAB(h)

]}

= (1 + o(1))

{
ρ2

AB(h) − ρ2
AB(h) − A−1ρAB(h)

md
n

[
(ρAB(h) − 2A/B)(ρAB(h) − 1)

]

− A−2

4m2d
n

[
(ρAB(h) − 2A/B)(ρAB(h) − 1)

]2

+(2A/B + 1)

[
ρAB(h) + A−1

2md
n

[
(ρAB(h) − 2A/B)(ρAB(h) − 1)

]− ρAB(h)

]}

= (1 + o(1))

{
A−1

md
n

[
(A/B + 1

2
− ρAB(h))

[
(ρAB(h) − 2A/B)(ρAB(h) − 1)

]

−A−1

4md
n

[
(ρAB(h) − 2A/B)(ρAB(h) − 1)

]2
]}

.

Therefore A2 converges to 0 if and only if
√

nw/m3d
n m−d

n = √
nw/m5d

n converges
to 0.

A.4 Proof of Theorem 4

We start with the proof of consistency and use a subsequence argument. Let n′ =
n′(n) be some arbitrary subsequence of n. We show that there exists a further sub-

sequence n′′ = n′′(n′) such that θ̂n′′,V
a.s.→ θ� as n → ∞, which in turn implies

Eq. 4.6.

By (G1) we have for i = 1, . . . , p that ρ̂AB,mn(h
(i))

P→ ρAB,θ� (h(i)) as n → ∞.
Hence, there exists a subsequence n′′ of n′ such that[

ρ̂AB,mn′′ (h
(i))
]
i=1,...,p

a.s.→
[
ρAB,θ� (h(i))

]
i=1,...,p

, (A.16)

as n → ∞. For θ ∈ �, we define the column vector and the quadratic forms

g(θ) :=
[
ρAB,θ� (h(i)) − ρAB,θ (h

(i)) : i = 1, . . . , p
] ᵀ

i=1,...,p,

Q(θ) := g(θ)T V (θ)g(θ) and Q̂n(θ) := ĝn(θ)
ᵀ
V (θ )̂gn(θ),

where we recall from Eq. 4.3 that ĝn(θ) =
[
ρ̂AB,mn(h

(i)) − ρAB,θ (h
(i))
] ᵀ

i=1,...,p.

Assumptions (G1) and (G3) imply that Q(θ) > 0 for θ� �= θ ∈ � and that Q(θ�) =
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0, so θ� is the unique minimizer of Q. Smoothness and continuity of the functions
ρAB,θ (h

(i)) and V (θ) (Assumptions (G4) and (G5) with z1 = z2 = 0) and Eq. A.16
yield

�̂n′′ := sup
θ∈�

{|Q̂n′′(θ) − Q(θ)|} a.s.→ 0, n → ∞. (A.17)

Now assume that there exists some ω ∈ � such that Eq. A.17 holds, but θ̂n′′,V (ω) �→
θ�. Then there exist ε > 0 and a subsequence n′′′ = n′′′(n′′) such that for all n ≥ 1,

‖̂θn′′′,V (ω) − θ�‖ > ε.

Thus,

Q̂n′′′ (̂θn′′′,V (ω)) − Q̂n′′′(θ�)

= −(Q(̂θn′′′,V (ω)) − Q̂n′′′ (̂θn′′′,V (ω))) + Q(̂θn′′′,V (ω)) − (Q̂n′′′(θ�) − Q(θ�)) − Q(θ�)

≥ Q(̂θn′′′,V (ω)) − Q(θ�) − 2�̂n′′′ = Q(̂θn′′′,V (ω)) − 2�̂n′′′

≥ inf{Q(θ) : ‖θ − θ�‖ > ε} − 2�̂n′′′ > 0

for all n ≥ n0 for some n0 ≥ 1. But this contradicts the definition of θ̂n′′′,V as the

minimizer of Q̂n′′′(θ), θ ∈ �. Hence θ̂n′′,V
a.s.→ θ� as n → ∞ and this shows Eq. 4.6.

To prove the CLT (4.7), we introduce the following notation:

• We set ρ(�)
AB,θ (h

(i)) := ∂
∂θ�

ρAB,θ (h
(i)) for 1 ≤ i ≤ p, 1 ≤ � ≤ k and

• ρ
(�)
AB(θ) := (ρ

(�)
AB,θ (h

(i)) : i = 1, . . . , p)
ᵀ
for 1 ≤ � ≤ k. The Jacobian matrix

PAB(θ) (4.5) can then be written as

PAB(θ) = (−ρ
(1)
AB(θ), . . . , −ρ

(k)
AB(θ)).

• We denote by e� ∈ R
k the �th unit vector.

• For 1 ≤ i, j ≤ p, let vij (θ) := (V (θ))ij be the entry in the ith row and j th
column of V (θ).

• Set v(�)
ij (θ) := ∂

∂θ�
vij (θ) and V (�)(θ) := (v

(�)
ij (θ))1≤i,j≤p, 1 ≤ � ≤ k.

As θ̂n,V minimizes ĝn(θ)
ᵀ
V (θ )̂gn(θ) w.r.t. θ , we obtain for 1 ≤ � ≤ k,

0 = ∂

∂θ�

(̂gn(θ)
ᵀ
V (θ )̂gn(θ))

∣∣∣
θ=θ̂n,V

= ĝn(̂θn,V )
ᵀ
V (�)(̂θn,V )̂gn(̂θn,V ) − ρ

(�)
AB (̂θn,V )

ᵀ [V (̂θn,V ) + V (̂θn,V )
ᵀ ]̂gn(̂θn,V ).

(A.18)

Now define the p × k-matrix P̂AB,n := ∫ 1
0 PAB(uθ� + (1 − u)̂θn,V ) du, where the

integral is taken componentwise. Assumptions (G4) and (G5) with z1 = z2 = 1
allow for a multivariate Taylor expansion of order 0 with integral remainder term of
ĝn(̂θn,V ) around the true parameter vector θ�, which yields

ĝn(̂θn,V ) = ĝn(θ
�) + P̂AB,n · (̂θn,V − θ�).
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Plugging this into Eq. A.18 and rearranging terms, we find

(
−ρ

(�)
AB (̂θn,V )

ᵀ [V (̂θn,V ) + V (̂θn,V )
ᵀ ]̂PAB,n + (̂θn,V − θ�)

ᵀ
P̂AB,n

ᵀ
V (�)(̂θn,V )̂PAB,n

)
(̂θn,V − θ�)

= ρ
(�)
AB (̂θn,V )

ᵀ [V (̂θn,V ) + V (̂θn,V )
ᵀ ]̂gn(θ

�) − ĝn(θ
�)

ᵀ
V (�)(̂θn,V )̂gn(θ

�)

− ĝn(θ
�)

ᵀ [V (�)(̂θn,V ) + V (�)(̂θn,V )
ᵀ ]̂PAB,n(̂θn,V − θ�) (A.19)

for 1 ≤ � ≤ k. Defining R̂n,V as the k × k-matrix whose �th row is given by

(̂θn,V − θ�)
ᵀ
P̂AB,n

ᵀ
V (�)(̂θn,V )̂PAB,n, 1 ≤ � ≤ k,

the system of Eq. A.19 can be written in compact matrix form as

(PAB(̂θn,V )
ᵀ [V (̂θn,V ) + V (̂θn,V )

ᵀ ]̂PAB,n + R̂n,V )(̂θn,V − θ�)

= −PAB(̂θn,V )
ᵀ [V (̂θn,V ) + V (̂θn,V )

ᵀ ]̂gn(θ
�) −

k∑
�=1

ĝn(θ
�)

ᵀ
V (�)(̂θn,V )̂gn(θ

�)e�

−
k∑

�=1

ĝn(θ
�)

ᵀ [V (�)(̂θn,V ) + V (�)(̂θn,V )
ᵀ ]̂PAB,n(̂θn,V − θ�)e�. (A.20)

Hence, multiplying Eq. A.20 by
√

nw/md
n and rearranging terms, we have,

√
nw

md
n

(̂θn,V − θ�)

= −{PAB (̂θn,V )
ᵀ [V (̂θn,V ) + V (̂θn,V )

ᵀ ]̂PAB,n + R̂n,V }−1

×PAB (̂θn,V )
ᵀ [V (̂θn,V ) + V (̂θn,V )

ᵀ ]
√

nw

md
n

ĝn(θ
�)

− {PAB (̂θn,V )
ᵀ [V (̂θn,V ) + V (̂θn,V )

ᵀ ]̂PAB,n + R̂n,V }−1
k∑

�=1

√
nw

md
n

ĝn(θ
�)

ᵀ
V (�)(̂θn,V )̂gn(θ

�)e�

− {PAB (̂θn,V )
ᵀ [V (̂θn,V ) + V (̂θn,V )

ᵀ ]̂PAB,n + R̂n,V }−1

×
k∑

�=1

√
nw

md
n

ĝn(θ
�)

ᵀ [V (�)(̂θn,V ) + V (�)(̂θn,V )
ᵀ ]̂PAB,n(̂θn,V − θ�)e�

=: −A − B − C.

Observe that the smoothness conditions (G4) and (G5) and the rank condition (G6)
ensure invertibility of the terms in curly brackets and boundedness of its inverse. For
the remainder of the proof, we can hence use Slutsky’s theorem; to this end note that,
as n → ∞:

– By conditions (G4) and (G5ii) with z1 = z2 = 1, the matrices V (θ) and PAB(θ)

are continuous in θ , hence V (̂θn,V )
P→ V (θ�) and PAB(̂θn,V )

P→ PAB(θ�) by
continuous mapping.

– Using Eq. 4.6, we find that (̂θn,V − θ�)
P→ 0, R̂n,V

P→ (0, . . . , 0) and P̂AB,n
P→

PAB(θ�).
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– The previous bullet point directly implies that C
P→ 0.

– As to A, condition (G2) directly yields
√

nw

md
n
ĝn(θ

�)
D→ N (0, �).

– Furthermore, ĝn(θ
�)

P→ 0 by (G1) and therefore B
P→ 0.

Finally, summarising those results, with B(θ�) = (PAB(θ�)
ᵀ [V (θ�) + V (θ�)

ᵀ ]PAB

(θ�))−1, we obtain Eq. 4.7.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

References

Asadi, P., Davison, A.C., Engelke, S.: Extremes on river networks. Ann. Appl Stat. 9(4), 2023–2050 (2015)
Beirlant, J., Goegebeur, Y., Segers, J., Teugels, J.: Statistics of extremes, theory and applications. Wiley,

Chichester (2004)
Blanchet, J., Davison, A.: Spatial modeling of extreme snow depth. Ann. Appl Stat. 5(3), 1699–1724

(2011)
Bolthausen, E.: On the central limit theorem for stationary mixing random fields. Ann. Probab. 10(4),

1047–1050 (1982)
Brown, B., Resnick, S.: Extreme values of independent stochastic processes. J. Appl. Probab. 14(4), 732–

739 (1977)
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