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Abstract
Selecting the number of upper order statistics to use in extremal inference or selecting
the threshold above which we perform the extremal inference is a common step in
applications of extreme value theory. Not only is the selection itself difficult, but the
large part of the sample below the threshold may potentially carry useful information.
We propose an approach that takes an extremal parameter estimator and modifies it
to allow for using multiple thresholds instead of a single one. We apply this approach
to the problem of estimating the extremal index and demonstrate its power both on
simulated and real data.

Keywords Extremal inference · Regular variation · Threshold selection · Extremal
index · Bias

AMS 2000 Subject Classifications Primary 62G32; Secondary 60G70

1 Introduction

Many statistical procedures in extreme value theory depend on a choice of a threshold
such that only the observations above that threshold are used for the inference. In
the classical Hill estimator of the exponent of regular variation, this corresponds to
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choosing the number of the upper statistics used to construct the estimator, and in
the standard “peaks over threshold” procedures, the term “threshold” even appears
in the name; see e.g. de Haan and Ferreira (2006) and Resnick (2007). The inference
results often depend on the threshold in a significant way, so a major effort has been
invested in choosing the threshold “in the right way”; see e.g. Resnick and Stărică
(1997), Drees and Kaufmann (1998), Dupuis (1998), Nguyen and Samorodnitsky
(2012). A threshold-based extremal inference procedure discards the observations
below the threshold, which in most cases amounts to discarding a larger part of the
sample. This counterintuitive step reflects the underlying belief that the observations
above the threshold carry information about the “tail” of the distribution, while those
below the threshold carry information about the “center” of the distribution.

It is reasonable to assume that such a binary rule by necessity neglects a part of
the information stored in the original sample that is relevant for extremal inference.
An alternative to using a binary rule would be acknowledging that larger observa-
tions carry more information about the “extremes” than smaller observations do, but
instead of discarding the latter completely, using them in the extremal inference, with
a smaller weight. This idea can be implemented in a number of ways, the most nat-
ural of which is to use multiple “thresholds” instead of trying to select the “right”
threshold. In this case it is more appropriate to talk about “levels” of observations that
are weighted differently, rather than “thresholds”. In this paper we apply this idea to
estimating the extremal index (defined below), but the approach is more general than
its application to the estimation of the extremal index. It can, in principle, be used
in any extremal estimation problem, though the actual implementation may depend
significantly on the problem.

A number of specific statistical algorithms for extremes have been proposed that
avoid the problem of threshold selection entirely (such as Northrop 2015), or have
the threshold be determined by something else (e.g. the block size, see Robert 2009).
Multiple thresholds in extremal inference have been used as well. In Laurini and
Tawn (2003) a two-threshold procedure, also for estimating the extremal index, is
suggested. The role of the second, lower, threshold is to help separating between
different exceedance clusters. In Drees (2011), on the other hand, estimates of the
extremal index based on multiple thresholds were combined together in order to
reduce the bias of the estimation.

Our idea is different. Since performing extremal inference based on a small num-
ber of observations tends to result in a high variance of the estimator, we view using
multiple levels as a means to incorporate more observations into an estimator and to
reduce the variance by doing so. However, incorporating smaller observations into
extremal inference is likely to increase the bias of the resulting estimator, so one
needs to find a way to cope with this problem. This approach can be applied to differ-
ent extremal estimation problems. As mentioned earlier, in this paper we implement
this idea in estimating the extremal index, a quantity designed to measure the amount
of clustering of the extremes in a stationary sequence. Suppose that X1, X2, . . . is a
stationary sequence of random variables with a marginal distribution function F , and
let Mn = max(X1, . . . , Xn), n = 1, 2, . . .. Suppose there exists θ ≥ 0 with the fol-
lowing property: for every τ > 0, there is a sequence (vn) such that nF̄ (vn) → τ and
P(Mn ≤ vn) → e−θτ as n → ∞, where F̄ = 1 − F . Then θ is called the extremal
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index of the sequence X1, X2, . . . ; it is automatically in the range 0 ≤ θ ≤ 1; see
Leadbetter et al. (1983) or Embrechts et al. (1997). The relation of the extremal index
to extremal clustering is best observed by considering the exceedances of the station-
ary sequence over high thresholds. Let (vn) be a sequence such that nF̄ (vn) → τ as
n → ∞ for some τ > 0. Then under certain mixing conditions, the point processes
of exceedances converge weakly in the space of finite point processes on [0, 1] to a
compound Poisson process:

Nn =
n∑

i=1

δi/n1(Xi > vn)
d−→ N =

∞∑

i=1

ξiδ�i
, (1.1)

where δx is a point mass at x, the points 0 < �1 < �2 < . . . constitute a
homogeneous Poisson process with intensity τθ on [0, 1] which is independent of an
independent and identically distributed (i.i.d.) positive integer-valued sequence {ξi};
see e.g. Hsing et al. (1988). The latter sequence is interpreted as the sequence of the
extremal cluster sizes, and the extremal index θ is, under mild conditions, equal to the
reciprocal of the expected cluster size Eξ . We will assume that the latter expectation
is finite, and the extremal index is positive.

The problem of estimating the extremal index parameter is well-known in the lit-
erature; references include Hsing (1993), Smith and Weissman (1994), Ferro and
Segers (2003), Northrop (2015), and Berghaus and Bücher (2017). The most com-
mon methods of estimation include the blocks method, the runs method, and the
inter-exceedance method. In this paper we choose the blocks method in order to
demonstrate an application of our idea for variance reduction using multiple levels.

The blocks method is based on the interpretation of the extremal index as the
reciprocal of the expected cluster size of extremes. It is based on choosing a block
size rn much smaller than n and a level (or threshold) un. Split the n observations
X1, X2, . . . , Xn into kn = �n/rn� contiguous blocks of equal length rn. The blocks
estimator is then defined as the reciprocal of average number of exceedances of
the level un per block among blocks with at least one exceedance. If Mi,j denotes
max{Xi+1, . . . , Xj } for i < j and Mj = M0,j , then the blocks estimator has the
form

θ̂n =
∑kn

i=1 1
(
M(i−1)rn,irn > un

)
∑knrn

i=1 1
(
Xi > un

) . (1.2)

Assuming that rnF̄ (un) → 0 but nF̄ (un) → ∞ as n → ∞, and certain mixing
conditions, this estimator has been shown to be consistent and asymptotically nor-
mal; see Hsing (1991) and Weissman and Novak (1998). In Section 2 we introduce a
version of the blocks estimator using multiple thresholds (levels) and list the assump-
tions used in the paper. Section 3 considers the asymptotic behaviour of the various
ingredients in our estimator. In Section 4 we prove a central limit theorem for the esti-
mator. In Section 5 we both propose a procedure to reduce the bias of the estimator
as well as present a simulation study and a case study.
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2 The estimator

Let X1, . . . , Xn be a stationary sequence of random variables with marginal distri-
bution F , and an extremal index θ ∈ (0, 1]. We now present a version of the blocks
estimator (1.2) based on multiple levels. With a block size rn and the number of
blocks kn = �n/rn� as before, we select now m levels u1

n < · · · < um
n := un, and

we view the highest level um
n as corresponding to the single level un in Eq. 1.2. The

lower levels us
n, s = 1, . . . , m − 1 are used to reduce the variance of the estimator.

The levels are chosen in an “asymptotically balanced” way. Specifically, it will be
assumed that, as n → ∞,

F̄ (us
n)

F̄ (um
n )

→ τs

τm

, s = 1, . . . , m (2.1)

for some τ1 > · · · > τm > 0.
Let f : R+ → R+ be a continuously differentiable positive decreasing function.

We will use f as a weight function, and we would like to weigh the exceedances
over the level us

n by f (τs/τm). The fact that f is decreasing reflects our belief that
higher exceedances provide more reliable information about the extremes. We will
not assume that the numbers τ1, . . . , τm are known ahead of time, so we will use, in
practice, an estimator of the ratio τs/τm. Specifically, we will use

τ̂s/τm =
∑knrn

i=1 1(Xi > us
n)∑knrn

i=1 1(Xi > um
n )

, s = 1, . . . , m . (2.2)

Then our version of the blocks estimator (1.2) based on multiple levels is

θ̂n(f ) =
∑m

s=1

[
f
(
τ̂s/τm

) − f
(
̂τs−1/τm

)]∑kn

i=1 1
(
M(i−1)rn,irn > us

n

)
∑m

s=1

[
f
(
τ̂s/τm

) − f
(
̂τs−1/τm

)]∑knrn
i=1 1

(
Xi > us

n

) , (2.3)

with the convention that f
(
τ̂0/τm

) = 0. Note that when m = 1, Eq. 2.3 reduces to
Eq. 1.2.

Consistency and asymptotic normality of this estimator depend, as they do for all
other related estimators, on certain mixing-type assumptions. Different sets of such
conditions are available in literature. We explain next the conditions that we will use
in this paper. These are based on the setup in Hsing et al. (1988). For 1 ≤ i ≤ j ≤ n,
and levels wn, w

′
n, let B

j
i (wn, w

′
n) denote the σ -field generated by the events {Xd ≤

wn} and {Xd ≤ w′
n} for i ≤ d ≤ j . For n ≥ 1 and 1 ≤ l ≤ n − 1 define

αn,l(wn, w
′
n) = max(|P(A ∩ B) − P(A)P (B)|

: A ∈ Bk
1(wn, w

′
n), B ∈ Bn

k+l(wn, w
′
n), 1 ≤ k ≤ n − l)

and write αn,l(wn) = αn,l(wn, wn). Similarly, one uses the maximal correlation
coefficient

ρn,l(wn, w
′
n) = max(corr(X, Y ) : X ∈ L2(Bk

1(wn, w
′
n)),

Y ∈ L2(Bn
k+l (wn, w

′
n)), 1 ≤ k ≤ n − l) ,
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where L2(F ) denotes the space of F -measurable square-integrable random
variables. Again, we write ρn,l(wn) = ρn,l(wn, wn). Trivially,

ρn,l(wn, w
′
n) ≥ 4αn,l(wn, w

′
n).

The sequence {Xi} is said to satisfy the condition 
({wn}) if αn,ln(wn) → 0 as
n → ∞ for some sequence {ln} with ln = o(n). If {pn} is a sequence of integers and
αpn,ln(wn) → 0 as n → ∞ for some sequence {ln} with ln = o(pn), then we will
say that {Xi} satisfies the condition 
{pn}({wn}).

As mentioned earlier, the condition that rnF̄ (un) → 0 but nF̄ (un) → ∞ as n →
∞ is usually required for asymptotic consistency results. This implicitly uses the
traditional assumption that rn = o(n) as n → ∞. It will be convenient to introduce
a specific sequence of the integers {pn}, which is an intermediate growth sequence
between the sequence of the block size {rn} and the sequence of the sample sizes {n}.
Specifically, let

pnF̄ (us
n) → τs, s = 1, . . . , m. (2.4)

According to Eq. 2.1 one such sequence is pn = �τm(F̄ (un))
−1�, n = 1, 2, . . ..

The following assumptions on the stationary sequence {Xi} will used through-
out this paper, not necessarily all in the same place. Some of the assumptions form
stronger versions of other assumptions.

Assumption 
′ There is a sequence ln = o(rn) such that pnr
−1
n αn,ln(u

s
n) → 0 as

n → ∞ for each s = 1, . . . , m.

Assumption C1 For each s = 1, . . . , m,

n∑

l=1

ρn,l(u
s
n) = o(rn)

as n → ∞, and there is a sequence ln = o(rn) such that pnr
−1
n ρn,ln(u

s
n) → 0 as

n → ∞ for each s = 1, . . . , m.

Assumption C′
1 For each s = 1, . . . , m,

n∑

l=1

ρn,l(u
s
n) = o(r

1/2
n )

as n → ∞, and there is a sequence ln = o(rn) such that pnr
−1
n ρn,ln(u

s
n) → 0 as

n → ∞ for each s = 1, . . . , m.

Assumption C2 For each s, t = 1, . . . , m,

n∑

l=1

ρn,l(u
s
n, u

t
n) = o(rn)

as n → ∞, and there is a sequence ln = o(rn) such that pnr
−1
n ρn,ln(u

s
n, u

t
n) → 0 as

n → ∞ for each s, t = 1, . . . , m.
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Assumption C′
2 For each s, t = 1, . . . , m,

n∑

l=1

ρn,l(u
s
n, u

t
n) = o(r

1/2
n )

as n → ∞, and there is a sequence ln = o(rn) such that pnr
−1
n ρn,ln(u

s
n, u

t
n) → 0

as n → ∞ for each s, t = 1, . . . , m. The next group of assumptions deals with
convergence of certain counting processes. Let N

(u)
pn

be the point process on [0, 1]
with points (j/pn : 1 ≤ j ≤ pn, Xj > un). Furthermore, for w > 0 we write
Nk(w) = ∑k

i=1 1(Xi > w).

Assumption P N
(u)
pn

converges weakly in the space of finite point processes on
[0, 1].

Assumption D1 There exists a probability distribution (πj )j≥1 on the positive
integers such that for all 1 ≤ s ≤ m,

P(Nrn(u
s
n) = j |Mrn > us

n) → πj , j ≥ 1,

E[N2
rn

(us
n)|Mrn > us

n] →
∞∑

j=1

j2πj < ∞.

Assumption D2 There exist probability distributions (�s,t (i, j))i≥1,j≥0 on Z+ ×
Z≥0 such that for all 1 ≤ s < t ≤ m,

P(Nrn(u
s
n) = i, Nrn(u

t
n) = j |Mrn > us

n) → �s,t (i, j), i ≥ j ≥ 0, i ≥ 1,

E
[
Nrn(u

s
n)Nrn(u

t
n)|Mrn > us

n

] →
∞∑

i=1

i∑

j=0

ij�s,t (i, j) < ∞.

Remark 2.1 It is clear that Assumption 
′ is implied by Assumption C1 which is, in
turn, implied both by Assumption C ′

1 and by Assumption C2. Further, it follows by
Theorem 4.1 of Hsing et al. (1988) that the first part of Assumption D1 is implied by
Assumptions 
′ and P . Note that Assumptions C1, C2 and D1 are identical to those
posed (Robert et al. 2009).

Remark 2.2 The mixing conditions 
′, C1, C′
1, C2, C′

2 are conditions relating the rate
of decay of mixing and correlation coefficients and the size of the blocks rn, which
must be “large enough”. In many models the mixing and correlation coefficients
decay very fast (e.g. m-dependent sequences, or geometrically mixing sequences),
and so there is a great latitude in choosing the block sizes.

If Assumption 
′ holds, then it follows from Theorem 5.1 and Lemma 2.3 of
Hsing et al. (1988) that

P(Mrn > us
n) ∼ τsθrn/pn (2.5)
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as n → ∞ for s = 1, . . . , m. If we denote

θn(f ) = θn(τ1, . . . , τm, f ) = pn

rn
·
∑m

s=1(f (τs/τm) − f (τs−1/τm))P (Mrn > us
n)∑m

s=1(f (τs/τm) − f (τs−1/τm))τs

,

(2.6)
then θn(f ) → θ as n → ∞.
Another immediate conclusion from Eq. 2.5 is that if Assumptions 
′, D1 and D2

hold, then for 1 ≤ s < t ≤ m,

P(Nrn(u
s
n) = i|Mrn > ut

n) → τs

τt

(
πi − �s,t (i, 0)

)
, i ≥ 1,

E
[
Nrn(u

s
n)|Mrn > ut

n

] → ψs,t := τs

τt

∞∑

i=1

i
(
πi − �s,t (i, 0)

)
. (2.7)

3 Preliminary results

The estimator (2.3) is composed of several extremal statistics. In this section we will
take a close look at these and related statistics and derive their asymptotic variances
and covariances. The derivations are similar to those in Robert et al. (2009). Let
mn → ∞ be a sequence of positive integers such that mnrn ≤ n for all n. For each
level us

n, s = 1, . . . , m

M̂n,mn(u
s
n) =

mn∑

i=1

1(M(i−1)rn,irn > us
n) (3.1)

and

τ̂n,mn(u
s
n) =

mnrn∑

i=1

1(Xi > us
n) . (3.2)

Note that the estimator (2.3) uses these statistics with mn = kn.
We first consider the asymptotic variance of M̂n,mn(u

s
n).

Proposition 3.1 Let {Xi} be a stationary sequence with extremal index θ . Let (pn)

be as in Eq. 2.4, and suppose that Assumption C1 holds. Then for 1 ≤ s ≤ m, as
n → ∞,

pn

mnrn
var(M̂n,mn(u

s
n)) → τsθ . (3.3)
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Proof Fix 1 ≤ s ≤ m and write out the variance:

var(M̂n,mn(u
s
n)) =

mn∑

i=1

var(1(M(i−1)rn,irn > us
n))

+2
∑

1≤i<j≤mn

cov(1(M(i−1)rn,irn > us
n),1(M(j−1)rn,jrn > us

n))

= mnP (Mrn > us
n)(1 − P(Mrn > us

n))

+2(mn − 1)
(
P(Mrn > us

n, Mrn,2rn > us
n) − (P (Mrn > us

n))
2)

+2
mn−1∑

v=2

(mn − v)cov(1(Mrn > us
n),1(Mvrn,(v+1)rn > us

n))

:= I1,n + I2,n + I3,n .

It follows from Eq. 2.5 that

pn

mnrn
I1,n → τsθ

as n → ∞. Furthermore,

pn

mnrn
I3,n ≤ 2

pn

rn
var(1(Mrn > us

n))

mn−1∑

v=2

ρn,(v−1)rn(u
s
n)

≤ 2
pn

rn
var(1(Mrn > us

n))
1

rn

n∑

l=1

ρn,l(u
s
n) → 0

by Eq. 2.5 and Assumption C1, so it remains to consider I2,n. By Eq. 2.5 we only
need to show that

pnr
−1
n P (Mrn > us

n, Mrn,2rn > us
n) → 0.

Note that

P(Mrn > us
n, Mrn,2rn > us

n) ≤ P(Mrn−ln > us
n, Mrn,2rn > us

n) + P(Mln > us
n)

≤ P(Mrn−ln > us
n)P (Mrn > us

n) + αn,ln (u
s
n) + P(Mln > us

n)

≤ P(Mrn > us
n)

2 + αn,ln (u
s
n) + P(Mln > us

n).

Since ln = o(rn), and pnr
−1
n αn,ln(u

s
n) → 0, there is an intermediate sequence l′n with

ln = o(l′n) and l′n = o(rn), such that pn(l
′
n)

−1αn,ln(u
s
n) → 0. Then as in Eq. 2.5,

pn(l
′
n)

−1P(Ml′n > us
n) → τsθ,

so we have both

pnr
−1
n P (Mln > us

n) ≤ pn(l
′
n)

−1(l′nr−1
n )P (Ml′n > us

n) → 0
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and
pnr

−1
n αn,ln(u

s
n) → 0 .

Therefore, the result follows.

The asymptotic covariance of M̂n,mn(u
s
n) and M̂n,mn(u

t
n) for s �= t can be obtained

in an identical way (with a slightly different assumption). The proof is omitted.

Proposition 3.2 Let {Xi} be a stationary sequence with extremal index θ . Let (pn)

be as in Eq. 2.4, and suppose that Assumption C2 holds. Then for 1 ≤ s < t ≤ m, as
n → ∞,

pn

mnrn
cov(M̂n,mn(u

s
n), M̂n,mn(u

t
n)) → τt θ . (3.4)

Now we find the variance and covariance of τ̂n,mn(u
s
n) and τ̂n,mn(u

t
n) for 1 ≤ s <

t ≤ m. We start with the variance.

Proposition 3.3 Let {Xi} be a stationary sequence with extremal index θ . Suppose
that Assumptions C1 and D1 hold. Then as n → ∞, for 1 ≤ s ≤ m,

pn

mnrn
var(̂τn,mn(u

s
n)) → τsθ

∞∑

j=1

j2πj . (3.5)

Proof We proceed as in Proposition 3.1. Using the notation Na,b(w) =∑
a<i≤b 1(Xi > w) for integers 0 ≤ a < b, we obtain for a fixed 1 ≤ s ≤ m,

var(̂τn,mn(u
s
n)) = var(Nmnrn(u

s
n))

=
mn∑

i=1

var
(
N(i−1)rn,irn(u

s
n)
)

+2
∑

1≤i<j≤mn

cov
(
N(i−1)rn,irn , N(j−1)rn,jrn

)

= mnvar(Nrn) + 2(mn − 1)cov
(
Nrn, Nrn,2rn

)

+2
mn−1∑

v=2

(mn − v)cov
(
NrnNvrn,(v+1)rn

)

:= I1,n + I2,n + I3,n .

It follows from Eq. 2.5 and Assumption D1 that

pn

mnrn
I1,n ∼ pn

rn
P (Mrn > us

n)E[N2
rn

(us
n)|Mrn > us

n]

− pn

rn

(
P(Mrn > us

n)
)2(

E[Nrn(u
s
n)|Mrn > us

n]
)2

→ τsθ

∞∑

j=1

j2πj
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as n → ∞. Furthermore,

pn

mnrn
I3,n ≤ 2

pn

rn
var(Nrn)

mn−1∑

v=2

ρn,(v−1)rn(u
s
n)

≤ 2
pn

rn
P (Mrn > us

n)E[N2
rn

(us
n)|Mrn > us

n]
1

rn

n∑

l=1

ρn,l(u
s
n) → 0

by Assumptions C1 and D1. As far as I2,n is concerned, we only need to show that

pnr
−1
n E

(
NrnNrn,2rn

) → 0.

However,

E
(
NrnNrn,2rn

) = E
(
Nrn−lnNrn,2rn

) + E
(
Nrn−ln,rnNrn,2rn

)

≤ (ENrn)
2 + E(Nrn)

2ρn,ln(u
s
n) + E

(
Nrn−ln,rnNrn,2rn

)
.

By Assumptions C1 and D1 and the above calculation, both kn(ENrn)
2 → 0 and

knE(Nrn)
2ρn,ln(u

s
n) → 0 as n → ∞. Furthermore, by stationarity it is clear that

E(Nrn)
2

E(Nln)
2

≥ �rn/ ln� → ∞

as n → ∞. Therefore,

knE
(
Nrn−ln,rnNrn,2rn

) ≤ kn

(
E(Nln)

2
)1/2 (

E(Nrn)
2
)1/2

≤ knE(Nrn)
2
(

E(Nln)
2

E(Nrn)
2

)1/2

→ 0

as n → ∞. This completes the proof.

The asymptotic covariance between τ̂n,mn(u
s
n) and τ̂n,mn(u

t
n) for 1 ≤ s < t ≤ m

can be found in the same way. Once again, we omit the proof.

Proposition 3.4 Let {Xi} be a stationary sequence with extremal index θ . Suppose
that Assumptions C2 and D2 hold. Then as n → ∞, for 1 ≤ s < t ≤ m,

pn

mnrn
cov(̂τn,mn(u

s
n), τ̂n,mn(u

t
n)) → τsθ

∞∑

i=1

i∑

j=0

ij�s,t (i, j). (3.6)

We now address the asymptotic covariances between τ̂ and M̂ . We start with the
“diagonal” case.

Proposition 3.5 Let {Xi} be a stationary sequence with extremal index θ . Suppose
that Assumption C′

1 holds. Then as n → ∞, for 1 ≤ s ≤ m,

pn

mnrn
cov(M̂n,mn(u

s
n), τ̂n,mn(u

s
n)) → τs . (3.7)
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Proof Fix 1 ≤ s ≤ m, we have

cov(M̂n,mn(u
s
n), τ̂n,mn(u

s
n)) =

mn∑

i=1

mnrn∑

j=1

cov(1(M(i−1)rn,irn ≤ us
n),1(Xj ≤ us

n)).

We split the sum into two pieces, I1,n + I2,n, depending on whether (i − 1)rn <

j ≤ irn or not. By stationarity,

pn

mnrn
I1,n ∼ pn

rn

rn∑

i=1

cov(1(Mrn ≤ us
n),1(Xi ≤ us

n))

∼ pnP (X1 > us
n)P (Mrn ≤ us

n) → τs

by Eqs. 2.4 and 2.5.
Furthermore, we can bound I2,n as follows:

|I2,n| ≤ 2mn

√
var(1(Mrn ≤ us

n))var(1(X1 ≤ us
n))

n∑

l=1

ρn,l(u
s
n),

and the fact that (pn/(mnrn))I2,n → 0 as n → ∞ follows from Eqs. 2.4, 2.5 and
Assumption C′

1.

The asymptotic behaviour of cov(M̂n,mn(u
s
n), τ̂n,mn(u

t
n)) with 1 ≤ s < t ≤ m

is similar to the “diagonal” case. The proof of the next proposition is similar to the
argument in Proposition 3.5 (once we use the appropriate assumption), and is omitted.

Proposition 3.6 Let {Xi} be a stationary sequence with extremal index θ . Suppose
that Assumption C′

2 holds. Then as n → ∞, for 1 ≤ s < t ≤ m,

pn

mnrn
cov(M̂n,mn(u

s
n), τ̂n,mn(u

t
n)) → τt . (3.8)

Finally, we consider the asymptotic behaviour of cov(M̂n,mn(u
t
n), τ̂n,mn(u

s
n)) with

1 ≤ s < t ≤ m.

Proposition 3.7 Let {Xi} be a stationary sequence with extremal index θ . Suppose
that Assumptions 
′, D1 and D2 hold. Then as n → ∞, for 1 ≤ s < t ≤ m,

pn

mnrn
cov(M̂n,mn(u

t
n), τ̂n,mn(u

s
n)) → τt θψs,t , (3.9)

where ψs,t is defined in Eq. 2.7.

Proof As before,

cov(M̂n,mn(u
t
n), τ̂n,mn(u

s
n)) =

mn∑

i=1

mnrn∑

j=1

cov
(
1(M(i−1)rn,irn > ut

n),1(Xj > us
n)
)
.
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Once again we split the sum into two pieces, I1,n + I2,n , depending on whether (i −
1)rn < j ≤ irn or not. By stationarity,

pn

mnrn
I1,n ∼ pn

rn

rn∑

i=1

cov(1(Mrn > ut
n),1(Xi > us

n))

= pn

rn

rn∑

i=1

P(Mrn > ut
n, Xi > us

n) − pnP (Mrn > ut
n)P (X1 > us

n)

= pn

rn
E[Nrn(u

s
n)|Mrn > ut

n]P(Mrn > ut
n)−pnP (Mrn >ut

n)P (X1 >us
n)

→ τt θψs,t

as n → ∞ by Eqs. 2.4, 2.5 and 2.7. Since I2,n → 0 as before, the proof of the
proposition is complete.

4 A central limit theorem for themultilevel estimator

In this section we establish the asymptotic normality of our multilevel estimator (2.3).
We start by checking the consistency of the estimator. For notational convenience we
restate definitions (3.1) and (3.2), with mn = kn:

M̂n(u
s
n) = M̂n,kn(u

s
n) =

kn∑

i=1

1(M(i−1)rn,irn > us
n) (4.1)

and

τ̂n(u
s
n) = τ̂n,kn(u

s
n) =

knrn∑

i=1

1(Xi > us
n) . (4.2)

Proposition 4.1 Let {Xi} be a stationary sequence with extremal index θ . Suppose
that Assumptions C1 and D1 hold. Then as n → ∞,

θ̂n(f ) →P θ . (4.3)

Proof Note that for 1 ≤ s ≤ m, by Eq. 2.5,

E
(pn

n
M̂n(u

s
n)
)

= knpn

n
P (Mrn > us

n) → τsθ

as n → ∞. Since var
(
(pn/n)M̂n(u

s
n)
) → 0 by Proposition 3.1, it follows that

(pn/n)M̂n(u
s
n) →P τsθ as n → ∞.

Similarly, by Eq. 2.4 and Proposition 3.3 we have (pn/n)̂τn(u
s
n) →P τs as n →

∞ for 1 ≤ s ≤ m. In particular,

τ̂s/τm →P τs/τm for 1 ≤ s ≤ m,

and the result follows.
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The next theorem is the main result of this section. It establishes asymptotic nor-
mality of the estimator (2.3). It requires an assumption on the rate of convergence in
Eq. 2.5. We assume that, as n → ∞,

√
n/pn

[
(pn/rn)P (Mrn > us

n) − τsθ
] → 0, 1 ≤ s ≤ m . (4.4)

Such an assumption is sometimes associated with a sufficiently large block size rn;
see e.g. Robert et al. (2009).

Under the notation of Assumptions D1 and D2 we denote

μ2 :=
∞∑

j=1

j2πj ,

μs,t :=
∞∑

i=1

i∑

j=0

ij�s,t (i, j), 1 ≤ s < t ≤ m.

Theorem 4.2 Let {Xi} be a stationary sequence with extremal index θ . Assume that
Assumptions C ′

1, C2, C′
2, D1 and D2 hold. Assume further (4.4). Then as n → ∞,
√

n/pn

(
θ̂n(f ) − θ

) →d N (0, σ 2), (4.5)

where σ 2 = hT ���h, with a (2m) × (2m) covariance matrix��� and a 2m-dimensional
vector h defined as follows: for 1 ≤ s ≤ t ≤ m,

σs,t = τt θ,

σm+s,m+t = τsθμs,t ,

σs,m+t = τt ,

σt,m+s = τt θψs,t ,

where μs,s is taken to be μ2 for each s, while ψs,t is defined by Eq. 2.7 for s < t and
taken to be 1/θ if s = t . Furthermore,

hs = f
(
τs/τm

) − f
(
τs−1/τm

)
∑m

t=1

(
f
(
τt /τm

) − f
(
τt−1/τm

))
τt

, 1 ≤ s ≤ m,

hm+s = −
(
f
(
τs/τm

) − f
(
τs−1/τm

))
θ

∑m
t=1

(
f
(
τt/τm

) − f
(
τt−1/τm

))
τt

, 1 ≤ s ≤ m,

where we set τ0 = ∞ and f (∞) = 0.

Proof The argument is similar to that used in Theorem 4.2 of Robert et al. (2009).
Notice that

θ̂n(f ) = h
(
(pn/n)M̂n(u

1
n), . . . , (pn/n)M̂n(u

m
n ), (pn/n)̂τn(u

1
n), . . . , (pn/n)̂τn(u

m
n )
)
,

θ = h
(
τ1θ, . . . , τmθ, τ1, . . . , τm

)
,

where h : [0, ∞)m × (0, ∞)m → [0, ∞) is defined by

h(x1, . . . , xm, y1, . . . , ym) =
∑m

s=1

(
f (ys/ym) − f (ys−1/ym)

)
xs∑m

s=1

(
f (ys/ym) − f (ys−1/ym)

)
ys

.
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Here and for the remainder of the proof we use the convention y0 = ∞ and f (∞) =
0. Since

∇h
(
τ1θ, . . . , τmθ, τ1, . . . , τm

) = h ,

by the delta method we only need to prove that

√
n/pn

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

(pn/n)M̂n(u
1
n) − τ1θ

...
(pn/n)M̂n(u

m
n ) − τmθ

(pn/n)̂τn(u
1
n) − τ1

...
(pn/n)̂τn(u

m
n ) − τm

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

→d N (0,���) . (4.6)

We will, actually, prove the statement

√
n/pn

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

(pn/n)
[
M̂n(u

1
n) − knP (Mrn > u1

n)
]

...
(pn/n)

[
M̂n(u

m
n ) − knP (Mrn > um

n )
]

(pn/n)̂τn(u
1
n) − τ1

...
(pn/n)̂τn(u

m
n ) − τm

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

→d N (0,���) . (4.7)

By Eq. 4.4 this will imply (4.6).
We present an argument for the case m = 2. The argument for larger values of

m is only notationally different. Denote by Zn,i, i = 1, 2, 3, 4 the 4 entries in the
vector in the left hand side of Eq. 4.7. By the Cramér-Wold device it suffices to show
that for any a = (a1, a2, a3, a4)

T ∈ R
4, as n → ∞,

a1Zn,1 + a2Zn,2 + a3Zn,3 + a4Zn,4 →d N (0, aT ���a). (4.8)

Denote mn = �n/pn� and let hn = �kn/mn� and write

Zn,1 =
√

pn

n

hn∑

i=1

Īi (u
1
n) + op(1), Zn,2 =

√
pn

n

hn∑

i=1

Īi (u
2
n) + op(1)

Zn,3 =
√

pn

n

hn∑

i=1

J̄i (u
1
n) + op(1), Zn,4 =

√
pn

n

hn∑

i=1

J̄i (u
2
n) + op(1),
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where

Īi (u
1
n) =

imn−1∑

j=(i−1)mn

(
1(M(j−1)rn,jrn > u1

n) − P(Mrn > u1
n)
)
, Īi (u

2
n)

=
imn−1∑

j=(i−1)mn

(
1(M(j−1)rn,jrn > u2

n) − P(Mrn > u2
n)
)
, J̄i(u

1
n)

=
imnrn−1∑

j=(i−1)mnrn

(
1(Xj > u1

n) − τ1/pn

)
, J̄i(u

2
n)

=
imnrn−1∑

j=(i−1)mnrn

(
1(Xj > u2

n) − τ2/pn

)
.

Let h∗
n → ∞ be a sequence of integers with (h∗

n)
2 = o(hn), hn = o

(
(h∗

n)
3
)
. Partition

the set {1, . . . , hn} into subsets of length h∗
n of consecutive integers, with two adjacent

such subsets separated by a singleton. The number of subsets of length h∗
n is then

qn = �(hn + 1)/(h∗
n + 1)�. We have

√
pn

n

hn∑

i=1

Īi (u
1
n) =

√
pn

n

qn∑

j=1

j (h∗
n+1)−1∑

i=(j−1)(h∗
n+1)+1

Īi (u
1
n) (4.9)

+
√

pn

n

qn−1∑

j=1

Īj (h∗
n+1)(u

1
n) +

√
pn

n

hn∑

i=qn(h∗
n+1)

Īi (u
1
n).

The variance of the second term is bounded by

pnqn

n
var(Ī1(u

1
n)) + pnq

2
n

n
ρn,h∗

nrn(u
1
n)var(Ī1(u

1
n)) .

By Proposition 3.1 the first entry above does not exceed a constant multiple of

pnqn

n

mnrn

pn

∼ 1

h∗
n

→ 0

since h∗
n → ∞. Since Assumption C1 is in force,

ρn,h∗
nrn(u

1
n) = 1

h∗
nrn

h∗
nrnρn,h∗

nrn(u
1
n) ≤ 1

h∗
nrn

n∑

l=1

ρn,l(u
1
n) = o

(
1

h∗
n

)
.

Therefore, the second entry above does not exceed a constant multiple of

pnq
2
n

n

1

h∗
n

mnrn

pn

∼ hn

(h∗
n)

3
→ 0
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by the choice of h∗
n. Hence it follows that the variance of the second term in Eq. 4.9

converges to zero. Further, the variance of the third term in Eq. 4.9 is, apart from a
multiplicative constant, bounded by

pn(h
∗
n)

2

n
var(Ī1(u

1
n)) ∼ pn(h

∗
n)

2

n

mnrn

pn

∼ (h∗
n)

2

hn

→ 0,

once again by the choice of h∗
n. Therefore, we can write

Zn,1 = 1√
qn

qn∑

j=1

⎛

⎝
√

pnqn

n

j (h∗
n+1)−1∑

i=(j−1)(h∗
n+1)+1

Īi (u
1
n)

⎞

⎠+op(1)=: 1√
qn

qn∑

j=1

ξn,j,1+op(1).

Similarly,

Zn,2 = 1√
qn

qn∑

j=1

⎛

⎝
√

pnqn

n

j (h∗
n+1)−1∑

i=(j−1)(h∗
n+1)+1

Īi (u
2
n)

⎞

⎠ + op(1) =: 1√
qn

qn∑

j=1

ξn,j,2 + op(1),

Zn,3 = 1√
qn

qn∑

j=1

⎛

⎝
√

qn

hn

j (h∗
n+1)−1∑

i=(j−1)(h∗
n+1)+1

J̄i (u
1
n)

⎞

⎠ + op(1) =: 1√
qn

qn∑

j=1

ξn,j,3 + op(1),

Zn,4 = 1√
qn

qn∑

j=1

⎛

⎝
√

qn

hn

j (h∗
n+1)−1∑

i=(j−1)(h∗
n+1)+1

J̄i (u
2
n)

⎞

⎠ + op(1) =: 1√
qn

qn∑

j=1

ξn,j,4 + op(1).

Writing ξn,j = a1ξn,j,1 + a2ξn,j,2 + a3ξn,j,3 + a4ξn,j,4, we conclude that

a1Zn,1 + a2Zn,2 + a3Zn,3 + a4Zn,4 = 1√
qn

qn∑

j=1

ξn,j + op(1).

Notice that for fixed n the elements of the stationary sequence defining each pair
of ξn,i and ξn,j , i �= j , are separated by at least h∗

nrn entries. Furthermore, by
Assumptions C1 and C2,

ρn,h∗
nrn(u

1
n, u

2
n) = o(1/hn) = o(1/qn) .

Since for any real θ

∣∣∣∣∣∣
E exp

⎧
⎨

⎩iθ
1√
qn

qn∑

j=1

ξn,j

⎫
⎬

⎭ −
qn∏

j=1

E exp

{
iθ

1√
qn

ξn,j

}∣∣∣∣∣∣

≤
qn∑

k=1

∣∣∣∣∣∣
E exp

⎧
⎨

⎩iθ
1√
qn

qn−k+1∑

j=1

ξn,j

⎫
⎬

⎭ − E exp

⎧
⎨

⎩iθ
1√
qn

qn−k∑

j=1

ξn,j

⎫
⎬

⎭

E exp

{
iθ

1√
qn

ξn,qn−k+1

}∣∣∣∣ ≤ qnρn,h∗
nrn(u

1
n, u

2
n)
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up to a multiplicative constant, the statement (4.8) will follow once we prove that

1√
qn

qn∑

j=1

Yn,j →d N (0, aT ���a) , (4.10)

where for each n, Yn,j , j = 1, . . . , qn are i.i.d. random variables with the same law
as ξn,1. Since Propositions 3.1 – 3.7 tell us that var(ξn,1) → aT ���a as n → ∞, by the
Lindeberg-Feller central limit theorem the convergence in Eq. 4.10 will follow once
we check that for any ε > 0,

E
(
ξ2
n,11(|ξn,1| > εq

1/2
n )

) → 0

as n → ∞, which reduces to showing that

E
(
ξ2
n,1,i1(|ξn,1,j | > εq

1/2
n )

) → 0 (4.11)

for each ε > 0 and each pair i, j = 1, 2, 3, 4. We will check (4.11) for i = j = 1.
All other combinations of i, j can be treated in a similar way. If M̂∗

n(u1
n) is defined

by Eq. 3.1 with mn replaced by mnh
∗
n, then we have to check that

pnqn

n
E
(
(M̂∗

n(u1
n))

21
(|M̂∗

n(u1
n)| > ε

√
n/pn

)) → 0 .

While proving Proposition 3.1 we decomposed the variance of M̂∗
n(u1

n) into a sum of
two terms, the second of which is of a smaller order than the first one. Therefore, we
only need to prove that

pnqn

n

mnh∗
n∑

i=1

E

[(
1(M(i−1)rn,irn > u1

n) − P(Mrn > u1
n)
)2

1

⎛

⎝

∣∣∣∣∣∣

mnh∗
n∑

j=1

(
1(M(i−1)rn,irn > u1

n) − P(Mrn > u1
n)
)
∣∣∣∣∣∣
> ε

√
n/pn

⎞

⎠
]

→ 0

and, since n/pn → ∞, by changing ε > 0 to a smaller positive number, we only
need to show that

pnqn

n

mnh∗
n∑

i=1

P

⎛

⎝M(i−1)rn,irn > u1
n,

∣∣∣∣∣∣

∑

|j−i|≥2

(
1(M(i−1)rn,irn > u1

n) − P(Mrn > u1
n)
)
∣∣∣∣∣∣
> ε

√
n/pn

⎞

⎠ → 0 .

Note that the expression in the left hand side above can be bounded by

pnqn

n

mnh∗
n∑

i=1

P
(
M(i−1)rn,irn > u1

n

)
P

⎛

⎝

∣∣∣∣∣∣

∑

|j−i|≥2

(
1(M(i−1)rn,irn > u1

n) − P(Mrn > u1
n)
)
∣∣∣∣∣∣
> ε

√
n/pn

⎞

⎠

+pnqn

n
mnh

∗
nαn,rn (u

1
n) .

The first term above converges to zero as n → ∞ by Proposition 1, while
the second term converges to zero as n → ∞ by Assumption C1. Therefore, the
convergence in Eq. 4.10 has been established.
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Remark 4.3 Note that without the assumption (4.4) what Theorem 4.2 proves is that
√

n/pn

(
θ̂n(f ) − θn(f )

) →d N (0, σ 2).

The difference θn(f ) − θ is then responsible for the bias of our estimator.

5 Testing the estimator

This section is devoted to testing the effect of using multiple thresholds in the blocks
estimator as in Eq. 2.3, both on simulated data and real data. As in many cases of
extremal inference, we should address the question of the bias of the estimator; see,
in particular, Remark 4.3. One approach of tackling the bias is to build a simple
model for it and then estimate it from the data. Following (Drees 2011), and to further
account for the effect of block size rn, we assume that the main terms in the bias
of M̂n(u

s
n)/τ̂n(u

s
n) as an estimator of θ are linear in τs/kn and 1/rn, s = 1, . . . , m.

Since we estimate τs by a scaled version of the statistics τ̂n(u
s
n), it is natural to use

the following bias-corrected version of the multilevel estimator:

θ̂ b
n (f ) =

∑m
s=1

[
f
(
τ̂s/τm

) − f
(
̂τs−1/τm

)]
(M̂n(u

s
n) − β̂1

τ̂n(us
n)2

kn
− β̂2

τ̂n(us
n)

rn
)

∑m
s=1

[
f
(
τ̂s/τm

) − f
(
̂τs−1/τm

)]
τ̂n(us

n)
,

(5.1)
where β̂1, β̂2 are coefficients estimated from the data. We simply use linear regression
as follows.

Use the m levels u1
n, . . . , u

m
n and l values of block sizes r1

n, . . . , rl
n to compute

the values of M̂n(u
s
n, r

i
n), τ̂n(u

s
n, r

i
n) and θ̂n(u

s
n, r

i
n) = M̂n(u

s
n, r

i
n)/τ̂n(u

s
n, r

i
n) for s =

1, . . . , m, i = 1, . . . , l, where M̂n(u
s
n, r

i
n), τ̂n(u

s
n, r

i
n) respectively denote the quanti-

ties M̂n(u
s
n) and τ̂n(u

s
n) evaluated using block size ri

n. Now fit a regression plane to
the response variables θ̂n(u

s
n, r

i
n) using the predictor variables

(
τ̂n(u

s
n, r

i
n)/k

i
n , 1/ri

n

)
,

s = 1, . . . , m, i = 1, . . . , l, where ki
n = � n

ri
n
�. Specifically, we use the least squares

coefficients (
β̂0, β̂1, β̂2

)T = (XT X)−1XT θ̂θθn , (5.2)

where

θ̂θθn =
(
θ̂n(u

1
n, r

1
n) . . . θ̂n(u

m
n , rl

n)
)T

,

and

X =
⎛

⎝
1 1 . . . 1
τ̂n(u

1
n, r

1
n)/k1

n τ̂n(u
2
n, r

1
n)/k1

n . . . τ̂n(u
m
n , rl

n)/k
l
n

1/r1
n 1/r1

n . . . 1/rl
n

⎞

⎠
T

,

where θ̂θθn is a vector of length ml and X is a matrix of dimension ml × 3. We use
β̂1, β̂2 in Eq. 5.2 as desired coefficients in Eq. 5.1. Alternatively, one could estimate
the coefficients using levels different from the collection u1

n, . . . , u
m
n .

Remark 5.1 A limiting theory for the bias-corrected estimator θ̂ b
n (f ) can be devel-

oped, but it requires a number of additional assumptions and a fairly long argument.
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The main idea is similar to that in Drees (2011), and it relies on concentrating on the
“leading terms” in the bias. In order to keep the paper readable we have chosen not
to include this theory here. It can be found in Sun (2018).

Remark 5.2 Note that β̂0 in Eq. 5.2 is itself an estimator for θ . We have not studied
its statistical properties, but it performs well on simulated data.

In the sequel we test the blocks estimator with multiple thresholds (2.3) and its
bias-corrected version (5.1) on simulated data and on S&P 500 Daily Log Returns.
As it is invariably done in practice, we use random thresholds given by different
order statistics of the observations. In a similar situation, it was shown in Corollary
2.4 of Drees (2011) that, under certain continuity assumptions, this has no effect on
the asymptotic distribution of the estimator.

5.1 Simulation Study

We have drawn samples from ARMAX processes. Specifically, we use the
ARMAX(1) process (Xi) is defined as follows. Let Z1, Z2, . . . be a sequence of i.i.d.
unit Fréchet random variables with shape 1. For 0 < θ ≤ 1 a stationary sequence is
obtained by letting X1 = Z1/θ , and

Xi = max((1 − θ)Xi−1, Zi), i ≥ 2 . (5.3)

It can be shown that the extremal index of such a sequence is θ ; see e.g. Chapter 10
of Beirlant et al. (2006).

We first test the performance of the estimators (2.3) and Eq. 5.1 on the ARMAX
model using values of θ = 0.25, 0.5, 0.75, and a sample of length n = 10000. For
the estimator, we have chosen a block size of rn = 200, and a weight function of
f (x) = e−x . We run the experiments for m = 1, . . . , 20, and for each fixed m we
choose us

n to be equal to the (101+2(m−s))-th largest order statistic of the sequence,
1 ≤ s ≤ m. That is, each level incorporates 2 more observations above it than the
level immediately above it does. When computing coefficients for the bias-reduced
estimator (5.1), we use m′ = 12, with ūs

n being the (91 + 5(m′ − s))-th largest order
statistic of the sequence, 1 ≤ s ≤ m′, and l = 25, with ri

n = 10i, 1 ≤ i ≤ l.
We compare the estimators θ̂ (f ), θ̂ b(f ) and the plain blocks estimator on the basis

of their bias, standard error, and root mean squared error. The results computed from
5000 simulated sequences are displayed in Fig. 1. Looking from the top row to the
bottom row along the varying values of θ = 0.25, 0.5, 0.75, we see that the plots tell
a similar story. As expected for the multilevel estimator θ̂ (f ), the magnitude of the
bias increases while the standard error decreases as more levels of observations are
incorporated into the estimator. The bias of the bias-corrected version of the estima-
tor, θ̂ b(f ), seems to be largely insensitive to the choice of m, with a decreasing trend
both in the standard error and in the root mean squared error. Overall, θ̂ b(f ) achieves
a much better root mean squared error compared to θ̂ (f ), for all levels m considered.
It also outperforms the plain blocks estimator in the sense of an improved root mean
squared error.
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Fig. 1 Bias (left column), standard error (center column), and root mean squared error (right column)
for the blocks estimator (1.2) (dot-dash line), the multilevel estimator θ̂ (f ) (dotted line) and the bias-
corrected multilevel estimator θ̂ b(f ) (solid line) plotted against the choice of m, number of levels used in
the estimators. Data are simulated from ARMAX models with θ = 0.25, 0.5, 0.75 (top to bottom)

We have performed the same analysis for other models, for different values of
the highest threshold and for different block sizes. We have also analyzed the non-
clustering case θ = 1. Invariably, the qualitative structure seen on Fig. 1 remained
the same. In the remaining experiments in this section we will, therefore, focus on
the best performing bias-corrected estimator θ̂ b(f ) that uses the largest amount of
data (m = 20 levels).

Our next experiment addresses the effect of the choice of block size rn on the
performance of the estimator θ̂ b(f ). We again use the ARMAX model with θ =
0.25, 0.5, 0.75 as before. We test the performance of θ̂ b(f ) using block sizes of rn =
40, 50, . . . , 200. The root mean squared errors from 5000 simulated sequences are
displayed in Fig. 2. We see that the choice of the block size does not have a major
effect on the root mean squared error. We have also looked at the effect of the block
size on the bias and standard error separately (not shown). Once again, the standard
error is largely insensitive to the choice of the block size. The bias does vary with
the block size, but remains invariably small in the absolute value, leading to the root
mean squared errors displayed in Fig. 2.

In the next experiment we fix the the block size to rn = 200 and study the effect
of the choice of the weight function. In the setting of the previous experiments we
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Fig. 2 Root mean squared error for the estimator θ̂ b(f ) for true values of θ being 0.25 (dotted line), 0.5
(dot-dash line), and 0.75 (dash line) plotted against the choice of rn, the size of the blocks used in the
estimator. Data are simulated from ARMAX models with θ = 0.25, 0.5, 0.75

use a second weight function, f1(x) = 1/x20 along with the original weight function
f . In the relevant range f1 decreases at a much faster rate than f . We compare the
performance of the estimators θ̂ b(f ) and θ̂ b(f1). The results are presented in Fig. 3.

As in Fig. 1 the magnitude of the bias, the standard error, and the root mean
squared error of the estimators are all decreasing when m, the number of levels used
in the estimator, increases. The phenomenon displayed in Fig. 3 demonstrates that the
faster decay of the weight function f1 compared to f leads to smaller contributions
from additional levels to the efficiency of the estimator. However, the exact overall
effect of the weight function on the estimator is a topic not studied in detail in this
paper. It warrants further investigation.

In the previous experiments we have used samples of size n = 10000. Sometimes
extremal inference has to be performed on data sets of a smaller size, so we have

Fig. 3 Bias (left), standard error (center) and root mean squared error (right) for the bias corrected mul-
tilevel estimators θ̂ b(f ) (solid line) and θ̂ b(f1) (dotted line) plotted against the choice of m, number of
levels used in the estimators. Data are simulated from an ARMAX model with θ = 0.5
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Fig. 4 Bias (left), standard error (center), and root mean squared error (right) for the naive blocks esti-
mator (1.2) (dot-dash line), the multilevel estimator θ̂ (f ) (dotted line) and the bias-corrected multilevel
estimator θ̂ b(f ) (solid line) plotted against the choice of m, number of levels used in the estimators. Data
are simulated from an ARMAX model with θ = 0.5

repeated our experiment leading to Fig. 1 for samples of size n = 5000. We only
display the results for the ARMAX model with θ = 0.5. We use rn = 100, and
f (x) = e−x . Once again, we experiment with m = 1, . . . , 20 levels, and for each
fixed m we choose us

n to be equal to the (51 + m − s)-th largest order statistic of the

Fig. 5 Bias (left column), standard error (center column), and root mean squared error (right column)
for the sliding blocks estimator (dot-dash line), the multilevel sliding blocks estimator (solid line) plotted
against the choice of m, number of levels used in the estimators. Data are simulated from ARMAX models
with θ = 0.25, 0.5, 0.75 (top to bottom)
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Fig. 6 Daily Log Returns for S&P 500 from 1980 - 1999

sequence, 1 ≤ s ≤ m. When computing coefficients for the bias-reduced estimator,
we use m′ = 12, with ūs

n being the (41 + 3(m′ − s))-th largest order statistic of the
sequence, 1 ≤ s ≤ m′, and l = 15, with ri

n = 10i, 1 ≤ i ≤ l. The results from 5000
simulated sequences are displayed, in Fig. 4. As expected, the smaller sample size
leads to some deterioration in the quality of the estimation in comparison with the
large sample size used in Fig. 1, but the comparison of the estimators and the lessons
derived from both figures remain the same.

Finally, we experiment with constructing a multiple threshold version of an
estimator different from the plain blocks estimator. We have chosen the slid-
ing blocks estimator of Robert et al. (2009). We use the ARMAX models
with θ = 0.25, 0.5, 0.75. For each simulated sequence, we first compute the
optimal threshold as described in Robert et al. (2009), then choose m =
1, . . . , 20, where um

n corresponds to the level of the optimal threshold, and
for each 1 ≤ s ≤ m, the level corresponding to us

n incorporates 10 more
observations than the level immediately above it. The results from 5000 sim-
ulated sequences are displayed in Fig. 5. Once again we see that the root
mean squared error is almost invariably decreasing with increasing number of
levels m.

Fig. 7 The values of the multilevel estimator θ̂ (f ) (‘x’ marker) and the bias-corrected multilevel estimator
θ̂ b(f ) (diamond marker) plotted against the choice of m, number of levels used in the estimators, for the
negative daily log returns of S&P 500
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5.2 S&P 500 Daily Log Returns

We now use the estimators developed in this paper to estimate the extremal index
of the losses among the daily log returns for S&P 500 during the ten-year period
between 1 January 1990 and 31 December 1999. The log returns themselves are
plotted in Fig. 6.

There are n = 5055 returns in this data set, and the negative of their values form
our sample. We choose m = 1, . . . , 20 and us

n to be the 51 + (m− s)-th largest order
statistic, 1 ≤ s ≤ m. We choose the block size rn = 40, resulting in kn = 126 blocks.
For the weight function we use f (x) = e−x . When computing the bias-corrected
estimator we use Eq. 5.2 with m′ = 12 levels, ūs

n being the 41 + 3(m′ − s)-th largest
order statistic in the sample, 1 ≤ s ≤ m′, and set l = 15, with ri

n = 10i, 1 ≤ i ≤ l.
The plots of the two estimators are shown above as a function of the number

of levels m. We have also evaluated the variability of the estimators by performing
a block-level bootstrap. We have not presented the resulting pointwise 1-standard
error confidence intervals on Fig. 7 since this makes the structure of the pointwise
estimators harder to see, but the order of magnitude of these intervals is [0.5, 0.8].
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