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Abstract In environmental applications of extreme value statistics, the underlying
stochastic process is often modeled either as a max-stable process in continuous
time/space or as a process in the domain of attraction of such a max-stable process.
In practice, however, the processes are typically only observed at discrete points
and one has to resort to interpolation to fill in the gaps. We discuss the influence
of such an interpolation on estimators of marginal parameters as well as estima-
tors of the exponent measure. In particular, natural conditions on the fineness of the
observational scheme are developed which ensure that asymptotically the interpo-
lated estimators behave in the same way as the estimators which use fully observed
continuous processes.
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1 Introduction

In recent years, it has become common in environmetrics to model extreme events
by stochastic processes and random fields. Often max-stable processes are used to
describe e.g. large amounts of precipitation (see e.g. Buhl and Klüppelberg 2016, and
Lehmann et al. 2016), high temperatures (cf. Fuentes et al. 2013, and Dombry et al.
2013) or high wind speeds (see Genton et al. 2015, or Oesting et al. 2017). If the
observations are not maxima, but exceedances over high thresholds, this approach is
not always appropriate.

Instead, one may merely assume that the underlying process belongs to the domain
of attraction of some max-stable process. Let X(i) = (X

(i)
t )t∈[0,1], 1 ≤ i ≤ n, denote

iid random processes with continuous sample paths. (The index set can easily be
generalized to arbitrary compact subsets of Rd .) We assume that there exist functions
(at (n))t∈[0,1], (bt (n))t∈[0,1], n ∈ N, such that

(
max
1≤i≤n

X
(i)
t − bt (n)

at (n)

)
t∈[0,1] −→ (Yt )t∈[0,1] =: Y (1.1)

weakly in C[0, 1] for some max-stable process Y with non-degenerate margins. In
particular, Yt has an extreme value distribution for each t ∈ [0, 1], and w.l.o.g. one
may assume that

P {Yt ≤ y} = exp
( − (1 + γty)−1/γt

) = Gγt (y)

for all y satisfying 1 + γty > 0 and some continuous function (γt )t∈[0,1]. Hence, the
cdf Ft of X

(1)
t belongs to the max domain of attraction of Gγt and one may choose

bt (n) = Ut(n) := F←
t (1 − n−1), with F← denoting the generalized inverse of a cdf

F . Indeed, convergence (1.1) is equivalent to Ft ∈ D(Gγt ) for all t ∈ [0, 1] and the
following marginally standardized version

(1
n

max
1≤i≤n

ξ
(i)
t

)
t∈[0,1] −→ (

(1 + γtYt )
1/γt

)
t∈[0,1] =: (Zt )t∈[0,1] =: Z (1.2)

weakly in C[0, 1], where

ξ
(i)
t := 1

1 − Ft(X
(i)
t )

, t ∈ [0, 1], i ∈ N (1.3)

see Theorem 9.2.1 of de Haan and Ferreira (2006).
The distribution of Z (and thus the dependence structure of Y ) is determined by

the so-called exponent measure ν via the relation

P {Z ∈ A} = exp(−ν(Ac)) (1.4)

for all Borel sets A ⊂ C[0, 1] of the type A = {
f ∈ C[0, 1] | f (t) ≤ xj , ∀ t ∈

Kj , 1 ≤ j ≤ m
}
for some m ∈ N, compact sets Kj ⊂ [0, 1] and xj ∈ (0, ∞),

1 ≤ j ≤ m, provided inf{‖f ‖∞ | f ∈ Ac} > 0. The extreme value behavior
of the process X(1) is thus described by the functions (γt )t∈[0,1], (at (·))t∈[0,1] and
(Ut (·))t∈[0,1], and the exponent measure ν. Estimators of these quantities have been
proposed by de Haan and Lin (2003), who also established their consistency. Einmahl
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Extreme value estimation for discretely sampled continuous...

and Lin (2006) proved the asymptotic normality of the marginal estimators under
suitable conditions; see de Haan and Ferreira (2006), Chapter 10 for details.

All these estimators require that the processes X(i) are observed everywhere. In
practice, however, measurements X

(i)
t , 1 ≤ i ≤ n, are often only made at certain dis-

crete points tn,j , 1 ≤ j ≤ jn, e.g. where weather stations are located. If one assumes
a fully parametric model for the extreme value behavior of the processes, one may
infer the parameters from the discretely sampled observations (for instance, using a
composite likelihood approach as in Buhl and Klüppelberg (2016), or a generalized
method of moments like de Haan and Pereira 2006, or Oesting et al. 2017, in the con-
text of max-stable models) and thus obtain estimators for the extreme value behavior
at any point t . If one refrains from making such restrictive assumptions, then one has
to rely on interpolation to infer the extreme value behavior of the process at points
outside the measurement grid. For particular classes of max-stable processes, such
statistical interpolation has been discussed e.g. by Falk et al. (2015). In contrast, in
Section 2 we give conditions under which consistency and asymptotic normality of
generic estimators of the marginal functions and the exponent measure carry over to
discretized versions of these estimators which only use observationsX

(i)
tn,j

, 1 ≤ i ≤ n,
1 ≤ j ≤ jn, in the general setting. In particular, we show that a simple interpola-
tion method works under a stochastic smoothness condition for large values of the
process. All proofs are deferred to Section 3.

Interpolation of max-stable process and of more general processes in extreme
regions has also been discussed in different contexts. For instance, Piterbarg (2004)
examined when the maxima of a stationary Gaussian process Z = Z(t)t∈[0,T ] on
the whole interval [0, T ] resp. on a discrete grid show the same asymptotic behav-
ior, while Turkman (2012) considered the same problem for more general stationary
processes. See also Albin (1990) for results in this spirit. Wang and Stoev (2011),
Dombry et al. (2013) and Oesting and Schlather (2014), among others, developed
algorithms to simulate a max-stable process Y given its values on a finite grid.
However, none of these papers dealt with fitting a model for discretely observed
processes.

2 Interpolation estimators

2.1 Estimating marginal parameters

Several estimators of the marginal tail behavior have been discussed in the literature.
We focus on estimators which use kn + 1 largest order statistics of X

(i)
t , 1 ≤ i ≤ n,

denoted by X
(n−kn:n)
t ≤ X

(n−kn+1:n)
t ≤ · · · ≤ X

(n:n)
t . Here (kn)n∈N is some inter-

mediate sequence, i.e. kn ∈ {1, . . . , n}, kn → ∞ and kn/n → 0 as n → ∞. These
estimators are motivated by the assumption that, above the quantile Ut(n/kn), the tail
of Ft is well approximated by a generalized Pareto distribution (GPD), that is

1 − Ft(x) ≈ kn

n

(
1 + γt

x − Ut(n/kn)

at (n/kn)

)−1/γt

, x ≥ Ut(n/kn),
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and

Ut(y) ≈ Ut(n/kn) + at (n/kn)
(kny/n)γt − 1

γt

, y ≥ n/kn.

To employ these approximations, for example for statistical inference on extreme
quantiles, one needs estimators of γt , at (n/kn) and Ut(n/kn), t ∈ [0, 1].

de Haan and Lin (2003) and Einmahl and Lin (2006) proved consistency and
asymptotic normality, respectively, uniformly for t ∈ [0, 1] for the following set of
estimators:

γ̂n,t := γ̂ +
n,t + γ̂ −

n,t , (2.1)

ân,t (n/kn) := X
(n−kn:n)
t γ̂ +

n,t (1 − γ̂ −
n,t ), (2.2)

Ûn,t (n/kn) := X
(n−kn:n)
t , (2.3)

where

M
(j)
n,t := 1

kn

kn∑
i=1

(
log

X
(n−i+1:n)
t

X
(n−kn:n)
t

)j

, j = 1, 2,

γ̂ +
n,t := M

(1)
n,t ,

γ̂ −
n,t := 1 − 1

2

(
1 − (M

(1)
n,t )

2

M
(2)
n,t

)−1

.

Because consistency and asymptotic normality of other estimators can be proved for
more general estimators using similar techniques, here we consider generic estima-
tors γ̂n,t , Ûn,t (n/kn) and ân,t (n/kn) that only depend on X

(i)
t , 1 ≤ i ≤ n, for each

t ∈ [0, 1], and satisfy the following condition for some positive bounded sequence
(λn)n∈N.

(E(λn)) There exists versions of the estimators (denoted by the same symbols) and
processes �, A and B with continuous sample paths such that

sup
t∈[0,1]

∣∣λ−1
n (γ̂n,t − γt ) − �t

∣∣ (P )−→ 0 (2.4)

sup
t∈[0,1]

∣∣∣∣λ−1
n

( ân,t (n/kn)

at (n/kn)
− 1

)
− At

∣∣∣∣
(P )−→ 0 (2.5)

sup
t∈[0,1]

∣∣∣∣λ−1
n

Ûn,t (n/kn) − Ut(n/kn)

at (n/kn)
− Bt

∣∣∣∣
(P )−→ 0 (2.6)

Note that (2.4)–(2.6) imply the joint convergence of the standardized estimation
errors for all three processes. We are mainly interested in two cases. Condition (E(1))
(i.e. λn = 1 for all n ∈ N) with � ≡ A ≡ B ≡ 0 means consistency of the estima-
tors, whereas (E(k−1/2

n )) with a Gaussian process (�, A, B)T states the uniform joint
asymptotic normality of the marginal estimators with the usual rate of convergence.

If the processes X(i), 1 ≤ i ≤ n, are only observed at points tn,1 < tn,2 < · · · <

tn,jn in [0, 1], then one has to interpolate the resulting estimators γ̂n,tn,j
, ân,tn,j

(n/kn)

and Ûn,tn,j
(n/kn) to obtain estimators of the marginal parameters at points t ∈ [0, 1]\
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{tn,j |1 ≤ j ≤ jn}. The simplest approach is to use the estimator at the closest point
of observation, but this results in estimators which (in contrast to the functions to
be estimated) are not continuous. Therefore, here we consider linearly interpolated
estimators. For any function z = (zt )t∈[0,1] and t ∈ [0, 1] let

〈z〉n,t :=

⎧⎪⎨
⎪⎩

ztn,1 t ≤ tn,1,
tn,j −t

tn,j −tn,j−1
ztn,j−1+ t−tn,j−1

tn,j −tn,j−1
ztn,j

if tn,j−1<t ≤ tn,j for some 2≤j ≤jn,

ztn,jn
t > tn,jn .

(2.7)
Then we define estimators

γ̂ ∗
n,t := 〈γ̂n〉n,t ,

â∗
n,t (n/kn) := 〈ân(n/kn)〉n,t ,

Û∗
n,t (n/kn) := 〈Ûn(n/kn)〉n,t .

We show in Theorem 2.1 that asymptotically these “interpolation estimators”
behave in the same way as the original ones if the functions to be estimated are
smooth and the points of observations are sufficiently dense.

Throughout the remainder of the paper, we assume that

δn := max
1≤j≤jn+1

(tn,j − tn,j−1) → 0

as n tends to 0 with tn,0 := 0 and tn,jn+1 := 1. Moreover, we use the notation
sup|s−t |≤δn

as a shorthand for sups,t∈[0,1],|s−t |≤δn
.

Theorem 2.1 If condition (E(λn)) holds and

sup
|s−t |≤δn

|γs − γt | = o(λn) (2.8)

sup
|s−t |≤δn

∣∣∣as(n/kn)

at (n/kn)
− 1

∣∣∣ = o(λn) (2.9)

sup
|s−t |≤δn

∣∣∣Us(n/kn) − Ut(n/kn)

at (n/kn)

∣∣∣ = o(λn) (2.10)

then

sup
t∈[0,1]

∣∣λ−1
n (γ̂ ∗

n,t − γt ) − �t

∣∣ (P )−→ 0 (2.11)

sup
t∈[0,1]

∣∣∣∣λ−1
n

( â∗
n,t (n/kn)

at (n/kn)
− 1

)
− At

∣∣∣∣
(P )−→ 0 (2.12)

sup
t∈[0,1]

∣∣∣∣λ−1
n

Û∗
n,t (n/kn) − Ut(n/kn)

at (n/kn)
− Bt

∣∣∣∣
(P )−→ 0. (2.13)

It is easily seen that this result carries over to more refined interpolation schemes,
e.g. using splines. A close inspection of its proof reveals that one can also generalize
the result to multivariate index sets if the following two conditions are fulfilled. First,
an estimator at an arbitrary point t should be a weighted average (with bounded
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weights) of the corresponding estimators at grid points in a certain neighborhood of
t . Second, similarly as in Eqs. 2.8–2.10, the local fluctuations of the functions γ·,
a·(n/kn) andU·(n/kn) over the neighborhoods used in the interpolation scheme must
be of smaller order than λn.

Note that, for λn ≡ 1, condition (2.8) is automatically fulfilled by the continuity of
(γt )t∈[0,1]. In contrast, Eqs. 2.9 and 2.10 need not be fulfilled and then the assertions
need not hold, as the following example shows.

Example 2.2 Let Vi , 1 ≤ i ≤ n, be iid standard Pareto random variables, i.e. P {Vi >

x} = x−1 for all x ≥ 1, and define X
(i)
t := V

γt

i for some continuous function
t �→ γt > 0. Then obviously Ft(x) = 1 − x−1/γt , x ≥ 1, belongs to the domain
of attraction of Gγt , and one may choose at (y) = γtUt (y) = γty

γt for all y > 0.

Moreover, ξ
(i)
t = 1/(1 − Ft(X

(i))) = Vi for all t ∈ [0, 1], and thus (1.2) trivially
holds with Zt = Z0 for a unit Fréchet random variable Z0.

Now
Us(n/kn) − Ut(n/kn)

at (n/kn)
= 1

γt

(
(n/kn)

γs−γt − 1
)

tends to 0 uniformly if and only if

sup
|s−t |≤δn

|γs − γt | = o
(
1/ log(n/kn)

)
. (2.14)

It is easily seen that also (2.9) is equivalent to (2.14).
Now to check consistency (in the sense of Eq. 2.13 with λn ≡ 1 and B ≡ 0) of the

estimator Û∗
n,t (n/kn) = X

(n−kn:n)
<t>n

(see Eq. 2.3) note that for tn,j−1 < t ≤ tn,j

Û∗
n,t (n/kn)−Ut(n/kn)

at (n/kn)
= 1

γt

[
tn,j −t

tn,j −tn,j−1

((kn

n
Vn−kn:n

)γtn,j−1
(kn

n

)γt−γtn,j−1 − 1

)

+ t−tn,j−1

tn,j −tn,j−1

((kn

n
Vn−kn:n

)γtn,j
(kn

n

)γt−γtn,j −1

)]
. (2.15)

Because (kn/n)Vn−kn:n → 1 in probability, Û∗
n,t (n/kn) is consistent if max

(|γt −
γtn,j

|, |γt − γtn,j−1 |
) = o(1/ log(n/kn)). In contrast, if e.g. for t = tn,j−1 + c(tn,j −

tn,j−1) (for some c ∈ (0, 1)) log(n/kn)(γt − γtn,j−1) → −∞, then the right-hand

side of Eq. 2.15 tends to ∞. In particular, in this case Û∗
n,·(n/kn) is not uniformly

consistent.
So, roughly speaking, one needs (2.8) to hold with λn = 1/ log(n/kn) to ensure

(2.13) with λn ≡ 1.

Example 2.3 Secondly, we consider a generalization of an example examined by
Einmahl and Lin (2006). Let Z = (Zt )t∈[0,1] be a centered Gaussian process such
that

E
(
(Zs − Zt)

2) ≤ C1|s − t |α1 , ∀s, t ∈ [0, 1], (2.16)
for some constants C1 > 0 and α1 > 0. Moreover, let t �→ γt be a positive function
such that |γs − γt | ≤ C2|s − t |α2 for some C2, α2 > 0. For a standard Pareto random
variable Y (i.e. P {Y > x} = x−1 for x > 1) independent of Z define Xt := Yγt eZt ,
t ∈ [0, 1].
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It is well known that, under the above conditions, Z has continuous sample paths
with P {supt∈[0,1] Zt/γt > x} ≤ exp(−cx2) for some c > 0 and sufficiently large x

(see, e.g., Adler 1990, Theorem 1.4 and (2.4)). In particular, E
(
supt∈[0,1] eZt/γt

)
<

∞. Hence, the example investigated by Einmahl and Lin (2006), pp. 477 f., shows
that for iid copies (Y (i), Z(i)) of (Y, Z)

(
max
1≤i≤n

Y (i) exp(Z(i)
t /γt )

E
(
exp(Z(i)

t /γt )
)
n

)

t∈[0,1]
→ η

for some simple max-stable limit process η (i.e., with unit Fréchet marginals). Now,
the continuous mapping theorem yields convergence (1.1) towards (η

γt
t )t∈[0,1].

Let σ 2
t := V ar(Zt ). Straightforward calculations show that, for all M > 0,

P {Xt > u} =
∫

P
{
Y > u1/γt e−z/γt

}
P Zt (dz)

= u−1/γt exp
(
σ 2

t /(2γ 2
t )

)
�

( log u

σt

− σt

γt

)
+ 1 − �

( logu

σt

)

= u−1/γt exp
(
σ 2

t /(2γ 2
t )

) + o(u−M)

uniformly for all t ∈ [0, 1] as u → ∞. It can easily be concluded that, for all κ > 0,
one has for sufficiently large x

sup
t∈[0,1]

∣∣Ut(x) − ctx
γt

∣∣ ≤ x−κ

with ct := exp(σ 2
t /(2γt )).

Since γt is assumed positive, we can thus choose at (n/kn) = γtct (n/kn)
γt . There-

fore, it can be shown in a similar way as in Einmahl and Lin (2006) that the estimators
(2.1)–(2.3) satisfy condition E(k

−1/2
n ) provided kn = o(n1−ε) for some ε > 0.

Note that |σ 2
t − σ 2

s | = ∣∣E(
(Zt − Zs)(Zt + Zs)

)| ≤ C3|t − s|α1/2 for some
C3 > 0 by Eq. 2.16 and the Cauchy-Schwarz inequality. Hence also t �→ ct is Hölder
continuous with exponent α := min(α1/2, α2).

Next we derive a condition on δn which ensures that (2.8)–(2.10) hold with λn =
k
−1/2
n . Check that for an arbitrarily large κ > 0 one has eventually

sup
|s−t |≤δn

∣∣∣Us(n/kn) − Ut (n/kn)

at (n/kn)

∣∣∣ ≤ sup|s−t |≤δn
cs

∣∣(n/kn)
γs−γt − 1

∣∣ + |cs − ct | + 2(n/kn)
−κ

inft∈[0,1] ct γt

.

Thus, by theHölder condition on γ·, the first term in the numerator is of smaller order than
k
−1/2
n if δ

α2
n log(n/kn) = o(k

−1/2
n ) or, equivalently, δn = o

(
k
−1/(2α2)
n (log n)−1/α2

)
.

By the Hölder continuity of c·, the second term is negligible if δn = o(k
−1/(2α)
n ).

Since nε = o(n/kn) and κ can be chosen larger than 1/ε, condition (2.10) thus holds
if

δn = o
(
min

(
k
−1/(2α2)
n (log n)−1/α2 , k

−1/α1
n

))
. (2.17)

Condition (2.9) reads as

sup
|s−t |≤δn

∣∣∣(n/kn)
γs−γt

csγs

ctγt

− 1
∣∣∣ = o(k

−1/2
n ).
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Again by the Hölder continuity of γ· and c·γ· with exponents α2 and α, respectively,
under condition (2.17) one has (n/kn)

γs−γt = 1 + o(k
−1/2
n ) and csγs/(ctγt ) = 1 +

o(k
−1/2
n ) uniformly for |s − t | ≤ δn, and thus (2.9) holds. Finally, in view of the

Hölder continuity of γ·, Eq. 2.17 obviously also implies (2.8).
Therefore, one may conclude that for sampling schemes such that (2.17) is ful-

filled the interpolated marginal estimators asymptotically behave in the same way as
the estimators considered by Einmahl and Lin (2006).

Theorem 2.1 gives sufficient conditions in terms of the smoothness of the marginal
functions γ·, a·(n/kn) and U·(n/kn) which ensure that the asymptotic behavior of
the marginal estimators carry over to their discretized versions. In what follows, we
replace these purely analytical conditions with two different assumptions which may
sometimes be easier to interpret. The first condition quantifies the accuracy of the
GPD approximation to the marginal tails, while the second is a smoothness condition
on the sample paths in extreme regions.

(M(λn)) For all 0 < y0 < y1 < ∞

sup
t∈[0,1]

sup
y∈[y0,y1]

∣∣∣Ut(yn/kn) − Ut(n/kn)

at (n/kn)
− yγt − 1

γt

∣∣∣ = o(λn).

In the case λn ≡ 1, condition M(1) follows from Eq. 1.1 and is thus automatically
fulfilled in our setting (see de Haan and Ferreira 2006, Section 9.2).

In what follows, X denotes a process with the same distribution as X(1).

(S(λn)) There exists a constant τ < τmax := inft∈[0,1] 1/γ −
t (i.e. τmax = ∞ if

γ ≥ 0 and τmax = 1/|γ | else) such that for all ε > 0

sup
|s−t |≤δn

P
{ |Xs − Xt |

at (n/kn)
> ελn, Xt > Ut(n/kn)+τat (n/kn)

}
= o(λnkn/n).

Note that P {Xt > Ut(n/kn)+τat (n/kn)} ∼ (kn/n)(1+γtτ )−1/γt . Hence, condition
(S(1)) states that the fluctuations of the process in a neighborhood (of the size of the
maximal grid width) of some point t where the process is large are of smaller order
than the random variability (represented by the scale function at ) at this point. If λn

tends to 0, condition (S(λn)) restricts the fluctuations further.

Theorem 2.4 Assume that n/kn = h(n) for some function h which is regu-
larly varying with an index κ ∈ (0, 1], and that kn−1/kn − 1 = o(λn) and
supc∈[c0,1] λ�cn�/λn = O(1) for all c0 > 0. Then, under the conditions (M(λn)) and
(S(λn)),

sup
|s−t |≤δn

sup
y∈[y,ȳ]

∣∣∣Us(yn/kn) − Ut(n/kn)

at (n/kn)
− yγt − 1

γt

∣∣∣ = o(λn) (2.18)

for all 0 < y < ȳ < ∞, and Eqs. 2.8–2.10 hold.
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If the condition on the regular variation of n/kn is fulfilled and λn = 1, then
the second condition on kn is automatically fulfilled. Likewise, the condition on λn

follows from the regular variation if λn = k
−1/2
n , and it is trivial if λn ≡ 1.

Remark 2.5 Usually, estimators of the functions γ·, a·(n/kn) and U·(n/kn) are not
of interest of their own, but they are instrumental in estimating parameters with an
operational meaning, like extreme quantiles. For example, assume that one wants to
determine the threshold at point t which is exceeded with a very small probability
pn = o(kn/n), that is, we want to estimate Ut(1/pn). (In environmetrics, such an
exceedance is often interpreted as a 1/(mpn)-year event if m observations X(i) are
made each year.)

If the full processes X(i) are observed, then a popular estimator is

x̂n,t := Ûn,t (n/kn) + ân,t (n/kn)
(npn/kn)

−γ̂n,t − 1

γ̂n,t

, t ∈ [0, 1].

Under condition E(k
−1/2
n ) with a Gaussian limiting process (�, A, B) and the

additional condition

sup
t∈[0,1]

∣∣∣Ut(1/pn) − Ut(n/kn)

at (n/kn)
− (npn/kn)

−γt − 1

γt

∣∣∣ = o(k
−1/2
n )

the uniform asymptotic normality of x̂n,t , t ∈ [0, 1], can be concluded by standard
methods; see e.g. Drees (2003), Theorem 6.2, for similar calculations for fixed t .

In contrast, if the processes X(i) are discretely observed as discussed before,
one may either define the quantile estimator analogously by replacing the marginal
estimators with the interpolated counterparts, i.e. define

x̂∗
n,t := Û∗

n,t (n/kn) + â∗
n,t (n/kn)

(npn/kn)
−γ̂ ∗

n,t − 1

γ̂ ∗
n,t

, t ∈ [0, 1],

or one interpolates the quantile estimators between the observed points, that is, one
considers 〈x̂n,·〉n,t , t ∈ [0, 1]. By lengthy, but simple calculations it can be con-
cluded from Theorem 2.4 that, under the conditions given there, both estimators
asymptotically behave as the original estimator x̂n,t , uniformly for t ∈ [0, 1].

2.2 Estimating the exponent measure

For u > 0 and Borel sets E ⊂ C[0, 1], let νu := uP {u−1ξ (1) ∈ E}. It is well
known that limu→∞ νu(E) = ν(E) < ∞ for all Borel sets E ⊂ C[0, 1] such that
infz∈E ‖z‖∞ > 0 and ν(∂E) = 0 with ν defined in Eq. 1.4. (Here ∂E denotes
the topological boundary of E.) If the processes ξ (i) are observable, then one may
estimate ν(E) by the following empirical counterpart of νn/kn(E):

ν̄n/kn(E) := 1

k

n∑
i=1

1{knξ
(i)/n ∈ E}.
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However, usually the marginal cdf’s Ft are unknown and must thus be replaced with
suitable estimators in the definition of ξ

(i)
t so that the resulting processes

ξ̂
(i)
t := 1

1 − F̂t (X
(i)
t )

, t ∈ [0, 1], i ∈ N,

are continuous. For example, if (γ̂n,t )t∈[0,1], (ân,t (n/kn))t∈[0,1] and
(Ûn,t (n/kn))t∈[0,1] are consistent estimators of (γt )t∈[0,1], (at (n/kn))t∈[0,1] and
(Ut (n/kn))t∈[0,1], respectively, with continuous sample paths then one may consider

F̂t (x) := n

kn

(
1 + γ̂n,t max

(x − Ûn,t (n/kn)

ân,t (n/kn)
, − 1

γ̂ +
n,t

))1/γ̂n,t

.

de Haan and Lin (2003) proved that the resulting estimator

ν̂n,kn(·) := 1

k

n∑
i=1

1{knξ̂
(i)/n ∈ ·} (2.19)

is consistent for ν if one uses the marginal estimators defined in Eqs. 2.1–2.3. By
consistency we mean that

ν̂n,kn(E)
(P )−→ ν(E)

for all Borel sets E ⊂ C[0, 1] such that infz∈E ‖z‖∞ > 0 and ν(∂E) = 0. Accord-
ing to Daley and Vere-Jones (2008), Theorem 11.1.VII, and Daley and Vere-Jones
(2003), Corollary A2.5.II, this is equivalent to

dc

(
ν̂n,kn |Dc, ν|Dc

) (P )−→ 0, ∀ c > 0,

where
Dc := {z ∈ C[0, 1] | ‖z‖∞ > c}

and the distance between two measures μ, μ̃ on the Borel sets of Dc is defined as

dc(μ, μ̃) := inf
{
ε > 0 | μ(F) ≤ μ̃(F ε) + ε, μ̃(F ) ≤ μ(F ε) + ε for all closed setsF ⊂ Dc

}

with
Fε := {z ∈ C[0, 1] | ‖z − z̃‖ ≤ ε for some z̃ ∈ F }.

If the processes X(i) are only observed in the points tn,j , 1 ≤ j ≤ jn, then again
one must apply some interpolation technique to estimate the exponent measure. As
in Section 2.1, we discuss linear interpolation for general estimators of the exponent
measure, but Theorem 2.6 can easily be extended to more refined methods of smooth
interpolation.

In what follows, we assume that a sequence of random measures ν̂n is given which
is consistent for ν. We then define

ν̂∗
n(E) := ν̂n{z ∈ C[0, 1] | 〈z〉n ∈ E}

with 〈z〉n given in Eq. 2.7. For example, for ν̂n,kn as in Eq. 2.19 we obtain

ν̂∗
n,kn

(·) = 1

k

n∑
i=1

1{kn〈ξ̂ (i)〉n/n ∈ ·}.
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If the marginal estimators γ̂n,t , ân,t (n/kn) and Ûn,t (n/kn) only depend on X
(i)
t , 1 ≤

i ≤ n, then this estimator ν̂∗
n,kn

depends on the discrete observations only.
Without any further assumptions, consistency carries over from ν̂n to ν̂∗

n .

Theorem 2.6 If ν̂n(E)
(P )−→ ν(E) for all Borel sets E ⊂ C[0, 1] such that

inf{‖z‖∞|z ∈ E} > 0 and ν(∂E) = 0, then this convergence also holds for ν̂∗
n .

To the best of our knowledge, no result on the asymptotic normality of an esti-
mator of the exponent measure is known. Indeed, since here estimators are random
measures, for such a result one has to consider a family G ⊂ C[0, 1] of test func-
tions and prove that

(
λ−1

n (
∫

g dν̂n − ∫
g dν)

)
g∈G converges to a Gaussian process

uniformly on G. However, no family G suggests itself, and it seems likely that the
choice of a suitable family depends on the applications one has in mind. We thus
refrain from investigating the asymptotic normality of ν̂∗

n .

3 Proofs

Proof of Theorem 2.1 We only verify (2.13) as the other assertions can be proved by
similar arguments.

For t ∈ [0, tn,1], one has

λ−1
n

〈Ûn〉n,t(n/kn)−Ut(n/kn)

at (n/kn)
−Bt = Ûn,tn,1(n/kn)−Utn,1(n/kn)

atn,1(n/kn)
·λ−1

n

(atn,1(n/kn)

at (n/kn)
−1

)

+λ−1
n

Ûn,tn,1(n/kn) − Utn,1(n/kn)

atn,1(n/kn)
− Btn,1

+λ−1
n

Utn,1(n/kn) − Ut(n/kn)

at (n/kn)

+Btn,1 − Bt .

Condition (2.6) shows that the second term on the right-hand side tends to 0 in prob-
ability uniformly for all t ∈ [0, tn,1]. In particular, the first factor of the first term
is stochastically bounded. Hence the first term tends to 0 by condition (2.9). The
last two summands vanish uniformly by Eq. 2.10 and the pathwise continuity of B.
Likewise, one can prove

sup
t∈[tn,jn ,1]

∣∣∣∣λ−1
n

〈Ûn〉n,t (n/kn) − Ut(n/kn)

at (n/kn)
− Bt

∣∣∣∣
(P )−→ 0.
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Similarly, for 2 ≤ j ≤ jn and i ∈ {j − 1, j}, one has uniformly for all t ∈
(tn,j−1 − tn,j ]

λ−1
n

Ûn,tn,i
(n/kn)−Ut(n/kn)

at (n/kn)
−Bt = Ûn,tn,i

(n/kn)−Utn,i
(n/kn)

atn,i
(n/kn)

·λ−1
n

(atn,i
(n/kn)

at (n/kn)
−1

)

+λ−1
n

Ûn,tn,i
(n/kn) − Utn,i

(n/kn)

atn,i
(n/kn)

− Btn,i

+λ−1
n

Utn,i
(n/kn) − Ut(n/kn)

at (n/kn)

+Btn,i
− Bt

= oP (1)

by Eqs.2.6, 2.9, 2.10 and the continuity of B. Hence, with cn,t := (tn,j − t)/(tn,j −
tn,j−1) ∈ [0, 1] one may conclude that

λ−1
n

〈Ûn〉n,t(n/kn)−Ut(n/kn)

at (n/kn)
−Bt

= cn,t

(
λ−1

n

Ûn,tn,j−1(n/kn)−Ut (n/kn)

at (n/kn)
−Bt

)
+(1−cn,t )

(
λ−1

n

Ûn,tn,j
(n/kn)−Ut (n/kn)

at (n/kn)
−Bt

)

=oP (1)

uniformly for all t ∈ (tn,j−1, tn,j ] and 2 ≤ j ≤ jn, which proves assertion (2.13).

The next lemma states some consequences of the conditions (M(λn)) and (S(λn))
that will be useful for the proof of Theorem 2.4.

Lemma 3.1 If the conditions (M(λn)) and (S(λn)) hold, then for all τ̃ > τ there
exists nτ̃ such that for all n > nτ̃

Us(n/kn)+ τ̃ as(n/kn) ≥ Ut(n/kn)+τat (n/kn) ∀s, t ∈ [0, 1], |s− t | ≤ δn. (3.1)

Moreover,

sup
|s−t |≤δn

at (n/kn)

as(n/kn)
= O(1). (3.2)

In particular, for all τ̃ > τ and ε > 0

sup
|s−t |≤δn

P
{ |Xs − Xt |

at (n/kn)
> ελn, Xs > Ut(n/kn) + τ̃ at (n/kn)

}
= o(λnkn/n). (3.3)

Proof Suppose assertion (3.1) were wrong. Then there exist sequences sn, tn ∈ [0, 1],
n ∈ N, such that |sn − tn| ≤ δn for all n ∈ N and

Usn(n/kn) + τ̃ asn(n/kn) < Utn(n/kn) + τatn(n/kn).

Because [0, 1] is compact, we may assume w.l.o.g. that both sequences (sn)n∈N and
(tn)n∈N converge to some limit t ∈ [0, 1]. For any τ ′ ∈ (τ, τ̃ ) and ζ > 0, let y′

n :=
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(1 + γsnτ
′)1/γsn and yn := (

1 + γtn(τ + 2ζλn)
)1/γtn . In view of condition (M(λn)),

one has eventually

Usn(y
′
nn/kn) < Usn(n/kn) + asn(n/kn)(τ

′ + ζλn) < Utn(n/kn) + τatn(n/kn)

and
Utn(ynn/kn) > Utn(n/kn) + atn(n/kn)(τ + ζλn).

Note that by the definition of Utn one has P {Xtn > x} > kn/(ynn) for all x <

Utn(ynn/kn). Thus, using condition (S(λn)), we may conclude

1

yn

<
n

kn

P
{
Xtn > Utn(n/kn) + atn(n/kn)(τ + ζλn)

}

≤ n

kn

P
{
Xsn > Utn(n/kn) + atn(n/kn)τ

}
+ o(λn)

≤ n

kn

P
{
Xsn > Usn(ny

′
n/kn)

}
+ o(λn)

≤ 1

y′
n

+ o(λn). (3.4)

On the other hand, the continuity of the function (γt )t∈[0,1] implies y′
n − yn → (1 +

γtτ
′)1/γt − (1 + γtτ )1/γt > 0, in contradiction to Eq. 3.4. Hence assertion (3.1) is

proved.
Using this inequality and interchanging the roles of s and t in condition (S(λn))

yields

sup
|s−t |≤δn

P
{ |Xs − Xt |

as(n/kn)
> ελn, Xs > Ut(n/kn) + τ̃ at (n/kn)

}
= o(λnkn/n) (3.5)

for all τ̃ > τ and ε > 0. Now suppose assertion (3.2) were wrong, i.e. there exist
sn, tn ∈ [0, 1] such that |sn − tn| ≤ δn and atn(n/kn)/asn(n/kn) → ∞. Obviously,
condition (S(λn)) for a specific τ implies (S(λn)) for all τ ′ ∈ (max(τ, 0), τmax).
Choose some τ ′′ ∈ (max(τ, 0), τ ′) and τ ′′′ ∈ (τ ′, τmax). Then, by condition (M(λn))
and (3.1) (applied with (τ ′′′, τ ′) instead of (τ̃ , τ )), one has eventually

Usn(n/(2kn)) > Usn(n/kn) + asn(n/kn)
(2−γsn − 1

γsn

− λn

)

≥ Utn(n/kn) + τ ′atn(n/kn) + asn(n/kn)
(2−γsn − 1

γsn

− λn − τ ′′′)

≥ Utn(n/kn) + τ ′′atn(n/kn).

Hence, Eq. 3.5 implies that for sufficiently large n

2 ≤ n

kn

P
{
Xsn > Utn(n/kn) + τ ′′atn(n/kn)

}

≤ n

kn

P
{
Xtn > Utn(n/kn) + τ ′′atn(n/kn) − λnasn(n/kn)

} + o(λn)

≤ n

kn

P
{
Xtn > Utn(n/kn)

} + o(λn)

≤ 1 + o(λn).
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As this is obviously a contradiction, assertion (3.2) is proved. Now (3.3) follows
readily from Eq. 3.5.

Proof of Theorem 2.4 We first establish (2.18) in the case y > yτ ′ := supt∈[0,1](1 +
γtτ

′)γt for some fixed τ ′ ∈ (τ, τmax). Suppose this assertion were wrong. Then there
exist sequences sn, tn ∈ [0, 1], yn ∈ [y, ȳ] and some ε > 0 such that |sn − tn| ≤ δn

and

Usn(ynn/kn) − Utn(n/kn)

atn(n/kn)
− y

γtn
n − 1

γtn

�∈ [−ελn, ελn], ∀ n ∈ N. (3.6)

We may also assume that tn → t ∈ [0, 1] and yn → y ∈ [y, ȳ], and that the left hand
side of Eq. 3.6 always exceeds ελn or that it is always less than −ελn, as this holds
for a suitable subsequence. We will only consider the former case, because the latter
can be treated analogously.

By the choice of y, the expression (y
γtn
n − 1)/γtn + ελn exceeds τ ′ for sufficiently

large n. Hence

Usn(ynn/kn) > Utn(n/kn) + atn(n/kn)
(y

γtn
n − 1

γtn

+ ελn

)

implies

1

yn

<
n

kn

P
{
Xsn > Utn(n/kn) + atn(n/kn)

(y
γtn
n − 1

γtn

+ ελn

)}

≤ n

kn

P
{
Xtn > Utn(n/kn) + atn(n/kn)

(y
γtn
n − 1

γtn

+ ε

2
λn

)}
+ o(λn),

where in the last step we have applied (3.3). Let ỹn := (
y

γtn
n + ελnγtn/4

)1/γtn . In
view of condition (M(λn)), one has for sufficiently large n

Utn (ỹnn/kn)<Utn (n/kn)+atn (n/kn)
( ỹ

γtn
n − 1

γtn

+ ε

4
λn

)
=Utn (n/kn)+atn (n/kn)

(y
γtn
n − 1

γtn

+ ε

2
λn

)
.

Therefore,

1

yn

<
n

kn

P
{
Xtn > Utn(nỹn/kn)

} + o(λn)

≤ 1

ỹn

+ o(λn)

= 1

yn

(
1 + ε

4
λnγtny

−γtn
n

)−1/γtn + o(λn),

which implies

1 −
(
1 + ε

4
λnγtny

−γtn
n

)−1/γtn = o(λn).

This, however, contradicts the fact that
(
1 + ε

4
λnγtny

−γtn
n

)−1/γtn = 1 − ε

4
λny

−γtn
n + O(λ2n) = 1 − ε

4
λny

−γt + O(λ2n).
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Next we prove (2.18) for arbitrary y > 0. Let c := y/(2yτ ′) so that y/c ∈
[2yτ ′, 2yτ ′ ȳ/y] for y ∈ [y, ȳ]. Furthermore, define

mn := inf
{
l ∈ N | cn/kn = ch(n) ≤ h(l) = l/kl

}
,

so that h(mn − 1) < ch(n) ≤ h(mn). The regular variation of the function h implies
mn ∼ c1/κn. Moreover, by our assumptions on kn and λn,

h(mn − 1)

h(mn)
= mn − 1

mn

· kmn

kmn−1
= (1 − m−1

n )(1 + o(λmn)) = 1 + o(λn). (3.7)

An application of Eq. 2.18 in the special case considered above and of (M(λn)) shows
that

Us(yn/kn) − Ut(n/kn)

at (n/kn)

= Us(ch(n)y/c) − Ut(h(n))

at (h(n))

≤ Us(h(mn)y/c) − Ut(h(mn))

at (h(mn))
· at (h(mn))

at (h(n))
+ Ut(h(mn)) − Ut(h(n))

at (h(n))

≤
( (y/c)γt − 1

γt

+ o(λmn)
)
· at (h(mn))

at (h(n))
+ (h(mn)/h(n))γt − 1

γt

+ o(λn) (3.8)

uniformly for y ∈ [y, ȳ] and s, t ∈ [0, 1] such that |s − t | ≤ δn. Note that by (M(λn))

Ut(h(mn)y) − Ut(h(mn))

at (h(mn))
− yγt − 1

γt

= o(λmn)

and

Ut(h(mn)y) − Ut(h(n))

at (h(n))
−

(
h(mn)/h(n)y

)γt − 1

γt

= o(λn)

uniformly for y ∈ [y, ȳ] and t ∈ [0, 1]. Thus
at (h(mn))

at (h(n))

(yγt − 1

γt

+ o(λmn)
)
= at (h(mn))

at (h(n))
· Ut(h(mn)y) − Ut(h(mn))

at (h(mn))

= Ut(h(mn)y) − Ut(h(n))

at (h(n))
− Ut(h(mn))−Ut(h(n))

at (h(n))

=
(h(mn)

h(n)

)γt yγt − 1

γt

+ o(λn).

Since h(mn)/h(n) = c+o(λn) by Eq. 3.7 and the definition ofmn, and λmn = O(λn)

by assumption, we may conclude

at (h(mn))

at (h(n))
= cγt + o(λn)
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uniformly for t ∈ [0, 1]. Therefore, the right hand side of Eq. 3.8 equals (yγt −
1)/γt + o(λn). Likewise, one can show that

Us(yn/kn) − Ut(n/kn)

at (n/kn)

≥
( (y/c)γt − 1

γt

+ o(λmn−1)
)
· at (h(mn − 1))

at (h(n))
+ (h(mn − 1)/h(n))γt − 1

γt

+ o(λn)

≥
(
yh(mn − 1)/(ch(n))

)γt − 1

γt

+ o(λn)

= yγt − 1

γt

+ o(λn).

Combining these bounds, we obtain (2.18) in the general case.
Equation 2.10 is an obvious consequence for y = 1.
Combining condition (M(λn)) with Eq. 2.10 yields

Us(yn/kn)−Ut(n/kn)

as(n/kn)
= Us(n/kn)−Ut(n/kn)

as(n/kn)
+ yγs −1

γs

+o(λn)= yγs −1

γs

+o(λn).

On the other hand, by Eq. 2.18

Us(yn/kn) − Ut(n/kn)

at (n/kn)
= yγt − 1

γt

+ o(λn),

so that

at (n/kn)

as(n/kn)
= (yγs − 1)/γs + o(λn)

(yγt − 1)/γt + o(λn)
= (yγs − 1)/γs

(yγt − 1)/γt

(1 + o(λn)) (3.9)

for all y > 1 uniformly for |s − t | ≤ δn. In particular

2γt + 1

2γs + 1
= 4γt − 1

4γs − 1
· 2

γs − 1

2γt − 1
= 1 + o(λn),

which implies
2γs

2γs + 1

(
2γt−γs − 1

) = 2γt + 1

2γs + 1
− 1 = o(λn)

uniformly for |s − t | ≤ δn, and hence (2.8).
Finally, it follows that the right hand side of Eq. 3.9 equals 1 + o(λn) uniformly

for |s − t | ≤ δn, because γ �→ (yγ − 1)/γ is differentiable, which proves (2.9).

Proof of Theorem 2.6 Denote the modulus of continuity of a function z ∈ C[0, 1] by
ωz(δ) := sup{|z(x) − z(y)| | x, y ∈ [0, 1], |x − y| ≤ δ}.

Since ν(Dc) < ∞ and the closed sets E
(δ,ζ )
c := {z ∈ Dc | ωz(δ) ≥ ζ } converge to

the empty set as δ ↓ 0 for all c, ζ > 0, to each ζ, ι > 0 there exists δ = δ(ζ, ι) > 0
such that ν(E

(δ,ζ )
c ) < ι holds. Moreover, ωz(δ) ≥ 3ζ and ‖z − z̃‖∞ ≤ ζ imply

ωz̃(δ) ≥ ζ . Therefore, on the event {dc(ν̂n|Dc, ν|Dc) < ζ }, one has
ν̂n(E

(δ,3ζ )
c ) ≤ ν

(
(E(δ,3ζ )

c )ζ
) + ζ ≤ ν(E(δ,ζ )

c ) + ζ < ι + ζ.

548



Extreme value estimation for discretely sampled continuous...

Next, fix some ε ∈ (0, c) and let ζ := ε/12 and ι = ε/4. Because ‖z − 〈z〉n‖∞ ≤
2ωz(δn), from 〈z〉n ∈ F and ωz(δn) < ε/4 one may conclude z ∈ Fε/2. Hence, on
the event {dc−ε(ν̂n|Dc−ε , ν|Dc−ε ) ≤ ε/2}, one has for sufficiently large n (such that
δn ≤ δ(ε/12, ε/4)) and all closed sets F ⊂ Dc

ν̂∗
n(F ) ≤ ν̂n

{
z ∈ C[0, 1] | 〈z〉n ∈ F,ωz(δn) < ε/4

} + ν̂n

{
z ∈ Dc | ωz(δn) ≥ ε/4

}

≤ ν̂n(F
ε/2) + ν̂n(E

(δ,3ζ )
c )

≤ ν(F ε) + ε/2 + ι + ζ

≤ ν(F ε) + ε. (3.10)

Likewise, on {dc−ε(ν̂n|Dc−ε , ν|Dc−ε ) < ε/2}
ν(F )≤ ν̂n(F

ε/2) + ε/2

≤ ν̂n

{
z ∈ C[0, 1] | 〈z〉n ∈Fε, ωz(δn)<ε/4

}+ν̂n{z ∈ Dc−ε |ωz(δn)≥ε/4}+ε/2

≤ ν̂∗
n(F ε) + ε. (3.11)

A combination of Eqs. 3.10 and 3.11 shows that
{
dc−ε(ν̂n|Dc−ε , ν|Dc−ε ) ≤ ε/2

} ⊂{
dc(ν̂

∗
n |Dc, ν|Dc) ≤ ε

}
for all c > ε > 0. Hence, the consistency of ν̂n implies that

of ν̂∗
n .
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