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Abstract For integers n ≥ r , we treat the rth largest of a sample of size n as an R∞-
valued stochastic process in r which we denote as M(r). We show that the sequence
regarded in this way satisfies the Markov property. We go on to study the asymptotic
behavior of M(r) as r → ∞, and, borrowing from classical extreme value theory,
show that left-tail domain of attraction conditions on the underlying distribution of
the sample guarantee weak limits for both the range of M(r) and M(r) itself, after
norming and centering. In continuous time, an analogous process Y (r) based on a
two-dimensional Poisson process on R+ × R is treated similarly, but we note that
the continuous time problems have a distinctive additional feature: there are always
infinitely many points below the rth highest point up to time t for any t > 0. This
necessitates a different approach to the asymptotics in this case.
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1 Introduction

In this paper we consider Markovian and other properties of the order statistics of
independent identically distributed (iid) random variables (rvs) in discrete time, and
of extremal processes in continuous time. Although venerable these are important
issues and research continues to throw up significant new aspects. As a starting
point let M

(r)
n be the rth largest among iid random variables X1, . . . , Xn with cdf

F . (Precise specifications of the order statistics will be given later.) It is known
(Arnold et al. 1984) that for fixed n, the finite sequence (M

(r)
n )r=1,2,...,n is Markov

if and only if F is continuous on (�F , uF ), where �F and uF are the left and right
extremes of F . We investigate the infinitely many order statistics (M

(r)
n , n ≥ r)

for sample sizes beyond r , and further, derive properties of the whole collection
{M(r) = (M

(r)
n , n ≥ r); r ≥ 1}, considered as an R

∞-valued stochastic process.
Apart from their intrinsic interest, our results relate a number of areas and techniques.

We begin in Section 2 by setting up the notation required for, then proving, the
Markov property, that the conditional distribution of the infinite sequence

M(r+1) = (M
(r+1)
r+1 , M

(r+1)
r+2 , . . .),

knowing all values

M(1) =(M
(1)
1 , M

(1)
2 , . . .), M(2) =(M

(2)
2 , M

(2)
3 , . . .), . . . , M(r) = (M(r)

r , M
(r)
r+1, . . .),

is the same as the conditional distribution knowing only M(r). No continuity
assumptions on F are required for this.

In Section 3 we turn to an investigation of asymptotic properties of the collection
M(r), for large values of r . The weak convergence of M(r), after norming and cen-
tering, is related to domain of attraction theory for the minimum of an iid sequence
of rvs. A key tool in these proofs is Ignatov’s (Ignatov 1986) theorem showing that
the r-records of an iid sequence are points of a Poisson random measure.

This study is continued in Section 4 for continuous time rth-order extremal pro-
cesses. Some notable differences between the discrete and continuous time situations
emerge here. In particular, unlike in the discrete case, in the continuous time case
there are always infinitely many points below the currently considered order statistic,
and thus the convergence criterion has to be modified. Section 5 concludes the paper
with some modest final thoughts and open problems.

We conclude the present section by mentioning previous and related work. For
alternative proofs and other background on Ignatov’s (1977) theorem see Igna-
tov (1986), Stam (1985), Goldie and Rogers (1984), Engelen et al. (1988), and
Resnick (2008). Other treatments of the Markov structure of the finite sequence
(M

(r)
n )r=1,2,...,n are in (Goldie and Maller 1999; Rüschendorf 1985; Cramer and Tran
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2009) and (Rüschendorf 1985; Cramer and Tran 2009) show that (M
(r)
n )r=1,2,...,n is

Markov if information on tied values is incorporated into the sequence. For back-
ground on continuous time extremal processes we refer to (Resnick 1974, 1975,
2008; Resnick and Rubinovitch 1973). Additional references are given throughout
the text.

2 Markov property of higher order extremal processes with discrete
indexing

2.1 Notation and indexing

The statement and proof of the Markov property requires precise and detailed nota-
tion so that we keep track of infinite sequences indexed by r where the first members
are being moved further out as r increases. To cope with this we use the idea of
shifted sequences, with first members replaced by −∞.

To see how this works, set N = {1, 2, 3, . . . }, R−∞ := R ∪ {−∞} = [−∞, ∞),
and conventions

∑
∅ = 0,

∏
∅ := 1, ±∞ × 0 = 0. Sequence space is RN−∞ :=

{x = (xn) : xn ∈ R−∞ , n ∈ N} endowed with the Borel field associated with the
product topology and R

N,↑
−∞ = {x = (xn) ∈ R

N−∞ : xn ≤ xn+1 , n ∈ N} is the subset
of nondecreasing sequences. The partial maxima operator

∨ : RN−∞ 
→ R
N,↑
−∞ maps

a given sequence x = (xn)n ∈ R
N−∞ to its associated sequence of partial maxima

∨
x := (∨{x1, . . . , xn})n. For n ∈ N, y

(1)
n ≥ y

(2)
n ≥ · · · ≥ y

(n)
n denotes the order

statistics associated with (possibly extended) real numbers y1, . . . , yn ∈ R−∞.
For a given sequence x ∈ R

N−∞ and r ∈ N, n ≥ r , let m
(r)
n be the rth largest of

x1, . . . , xn, arranged in lexicographical order in case of ties. Then set

x(r)
n =

{−∞, if n < r;
m

(r)
n , if n ≥ r.

The extremal sequence of order r associated with x is the sequence x(r) ∈ R
N,↑∞ ,

with finite elements x
(r)
n augmented with −∞ as follows:

x(r) = (−∞, . . . , −∞,
︸ ︷︷ ︸

r−1 entries

m(r)
n , n ≥ r

)
. (2.1)

Write x(0) := x for the extremal sequence of zero order. The extremal sequence of
unit order equals the partial maximum sequence: x(1) = ∨

x.
For a sequence x = (xn)n ∈ R

N−∞ the shifted sequence xR is xR = (−∞, x) ∈
R
N−∞, so that we append −∞ in front of x. For two sequences x = (xn)n, y =

(yn)n ∈ R
N−∞, let

xR∧ y := {(−∞)1n=1 + (xn−1 ∧ yn)1n>1}n ∈ R
N−∞

be the componentwise minimum of x and y, taken after shifting x to the right with
proper augmentation with −∞. Thus, componentwise, when x = (x1, x2, . . .) and
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y = (y1, y2, . . .), we have

xR = (−∞, x1, x2, . . .) and xR∧ y = (−∞, x1 ∧ y2, x2 ∧ y3, . . .).

In Theorem 2.1, we will show a Markov property for the rth largest of an iid
sequence, and since recursions are an effective tool for proving a sequence of random
elements is Markovian, we first prove a preliminary result focussing on properties of
the shifted sequences.

Proposition 2.1 For r ∈ N, we have the identity,

x(r+1) =
∨

(x(r)
R∧ x) (2.2)

or in component form,

x(r+1)
n =

n∨

j=r+1

(
x

(r)
j−1 ∧ xj

)
, r ∈ N, n ≥ r + 1, (2.3)

with both sides taken as −∞ for 1 ≤ n ≤ r .

Proof Fix an integer r and we prove (2.3) by induction on n. The base of the induc-
tion is n = r + 1 and the left side of Eq. 2.3 is x

(r+1)
r+1 = ∧r+1

i=1xi . The right side is

x
(r)
r ∧ xr+1 = ∧r+1

i=1xi . So Eq. 2.3 is proved for n = r + 1.
As an induction hypothesis, assume (2.3) is true for n = r + p for p ≥ 1 and we

verify (2.3) to be true for n = r + p + 1. The left side of Eq. 2.3 for n = r + p + 1
is x

(r+1)
r+p+1 =: LHS. The right side is

RHS :=
r+p+1∨

j=r+1

(
x

(r)
j−1 ∧ xj

) =
r+p∨

j=r+1

(
x

(r)
j−1 ∧ xj

)∨(
x

(r)
r+p ∧ xr+p+1

)

and from the induction hypothesis this is equal to

x
(r+1)
r+p

∨(
x

(r)
r+p ∧ xr+p+1

)
. (2.4)

Now consider cases:

Case (a) xr+p+1 > x
(r)
r+p Then x

(r)
r+p = x

(r+1)
r+p+1, so RHS = x

(r+1)
r+p

∨
x

(r)
r+p =

x
(r)
r+p = LHS.

Case (b) x
(r+1)
r+p ≤ xr+p+1 ≤ x

(r)
r+p The term in parentheses on the right side of

Eq. 2.4 then is

x
(r)
r+p ∧ xr+p+1 = xr+p+1 = x

(r+1)
r+p+1

and thus

RHS = x
(r+1)
r+p ∨ x

(r+1)
r+p+1 = x

(r+1)
r+p+1 = LHS.
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Case (c) xr+p+1 < x
(r+1)
r+p In this case we have

RHS = x
(r+1)
r+p ∨ (

x
(r)
r+p ∧ xr+p+1

) = x
(r+1)
r+p ∨ xr+p+1 = x

(r+1)
r+p

because xr+p+1 < x
(r+1)
r+p . It follows that x(r+1)

r+p+1 = LHS.

The three cases exhaust the possibilities and this completes the induction argument.

2.2 The iid setting

Now we add the randomness. Let X = (Xn)n ∈ R
N be an iid sequence of rvs in

R with cdf F and set X(0) = X. Then for r ∈ N the r-th order extremal process
is the augmented sequence X(r) = (X

(r)
n )n∈N in R

N−∞ constructed as in Eq. 2.1;
specifically,

X(r) = (−∞, . . . , −∞,
︸ ︷︷ ︸

r−1 entries

M(r)
n , n ≥ r

)
, (2.5)

where the M
(r)
n are the order statistics of X1, X2, . . . , Xn defined lexicographically

as for the m
(r)
n in Eq. 2.1. Note that X(1) = ∨

X(0) = ∨
X is the sequence of partial

maxima associated with X.
To think about the Markov property for (X(r), r ≥ 1), we imagine conditioning

on the monotone sequence X(r) = x(r). For indices where the sequence x(r) is a
constant, say x, the structure of X(r+1) should be as if we construct the maximum
sequence from repeated observations from the conditional distribution of (X1|X1 ≤
x). See Fig. 1. The following construction makes this precise.

Let U = (Ur,n)n,r∈N be an iid array of uniform r.v.’s in (0, 1). Assume X =
X(0) and U are independent random elements. For m ∈ R with F(m) > 0 the left-
continuous inverse u 
→ F←(u|m) of the conditional cdf x 
→ F(x|m) := P(X1 ≤

Fig. 1 Blue dotted lines track height of current maximum process M(1) generated by vertical lines. The
red dotted line tracks the second maximum processM(2). Note that a jump inM(1) can affectM(2) as seen
at n = 6 where X4 becomes the new value ofM(2). During intervals where the blue dotted line is constant,
M(2) is obtained by sampling from the distribution conditional on the sampled value being less than the
blue height. The range ofM(1) consists of blue tick-marks on y-axis and the range ofM(2) is the red ticks
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x|X1 ≤ m) is well-defined; otherwise, if F(m) = 0 set F←(u|m) = 1m>0 with
F←(u| − ∞) ≡ 0.

For r ∈ N = {1, 2, . . . } introduce two sequences X̂(r+1) = (X̂(r+1),n)n and

X̃(r+1) = (X̃(r+1),n)n. For the first, we have for n = 1 that X̂(r+1),1 := X
(1)
1 = X1

and, for n ≥ 2,

X̂(r+1),n :=
⎧
⎨

⎩

F←(Ur,n|X(r)
n )

∏
1≤k≤r 1X

(k)
n =X

(k)
n−1

, if X
(r)
n = X

(r)
n−1,

∑r
k=1 X

(k)
n 1

X
(k)
n >X

(k)
n−1

∏
1≤l<k 1X

(l)
n =X

(l)
n−1

, if X
(r)
n > X

(r)
n−1,

(2.6)

so if there is no jump in the rth order maximum process we sample from the condi-
tional distribution and if there is a jump, we note the new value that caused the jump.
For the second sequence we have X̃(r+1),n := −∞ if n ≤ r and if n > r

X̃(r+1),n :=
{

F←(Ur,n|X(r)
n ) if X

(r)
n = X

(r)
n−1,

X
(r)
n−1 if X

(r)
n > X

(r)
n−1,

(2.7)

so if there is no jump in the rth order maximum at n, we sample from the conditional
distribution and if there is a jump at index n we note the smaller value at n − 1 that
the process jumps from. The sequence X̃r+1 depends on X, X(1), . . . , X(r) only via
X(r), but X̂(r+1) depends on all X(1), X(2), . . . , X(r).

2.3 Identities in law and the Markov property

Next we provide some identities in law which will show that the sequenceX(r), r ≥ 1
of extremal processes is a sequence-valued Markov chain.

Theorem 2.1 For r ∈ N the following random variables are equal in distribution as
random elements in (RN−∞)(r+1),

(X(0), X(1), . . . , X(r))
d= (X̂(r+1), X

(1), . . . , X(r)) , (2.8)

and (
X(1), . . . , X(r+1)

)
d=

(
X(1), . . . , X(r),

∨
X̃(r+1)

)
. (2.9)

In particular, X(1), X(2) . . . is a Markov chain with state space R
N,↑
−∞, with its

conditional distributions satisfying
(
X(r+1)

∣
∣
∣X(r), . . . , X(1)

)
d=

(∨
X̃(r+1)

∣
∣
∣X(r)

)
, r ∈ N . (2.10)

Proof Indeed, Eq. 2.9 follows from Eq. 2.8 because
(
X(1), . . . , X(r+1)) = (

X(1), . . . , X(r)
∨

(X(r)
R∧ X(0))

)
(by Proposition 2.1),

d= (
X(1), . . . , X(r),

∨
(X(r)

R∧ X̂(r+1))
)

(from (2.8))

= (
X(1), . . . , X(r),

∨
X̃(r+1)

)
.
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The last equality holds because
∨

(X(r)R∧ X̂(r+1)) has (for its finite components,

when n ≥ r + 1) the terms
∨n

j=r+1

(
X

(r)
j−1 ∧ X̂(r+1),j

)
(compare with Eq. 2.2), and

in this, by Eq. 2.6, we take X̂(r+1),j = F←(Ur,j |X(r)
j ) if X

(k)
j = X

(k)
j−1, 1 ≤ k ≤

r; otherwise, there is a k, 1 ≤ k ≤ r , with X
(k)
j > X

(k)
j−1 and X

(l)
j = X

(l)
j−1 for

1 ≤ � < k, in which case, by Eq. 2.6, we take X̂(r+1),j = X
(r)
j . In the first case,

X
(r)
j−1∧X̂(r+1),j = X

(1)
j−1∧X̂(r+1),j = X̂(r+1),j = F←(Ur,j |X(r)

j ), and in the second

case, X
(r)
j−1 ∧ X̂(r+1),j = X

(r)
j−1 ∧ X

(r)
j = X

(r)
j−1. On taking

∨n
j=r+1, this replicates

the corresponding component for
∨

X̃(r+1) (see Eq. 2.7).
Thus indeed (2.9) holds, and on the righthand side X̃r+1 depends on X(1), . . . ,

X(r) only through X(r), r ∈ N. In particular, Eq. 2.10 holds, and X(1), X(2), . . . must
be a Markov chain.

It remains to show (2.8). For r ∈ N let

R
r,↓
−∞ := {m = (m1, . . . , mr) ∈ R

r−∞ : m1 ≥ · · · ≥ mr}
be the space of r-tuples with nonincreasing R−∞-valued components, and introduce
a continuous truncation mapping μr = (μr,1, . . . , μr,r ) : Rr,↓

−∞ × R 
→ R
r,↓
−∞, by

setting

μr,1(m, x) = x ∨ m1,

and

μr,k(m, x) = mk−11x>mk−1 + mk1x≤mk
+ x1mk<x≤mk−1, 2 ≤ k ≤ r, (2.11)

when x ∈ R and m = (m1, . . . , mr) ∈ R
r,↓
−∞. Note that μr,k(m, x) interpolates

continuously between components mk and mk−1, mk ≤ mk−1, of m, and satisfies

μr,k(m, x) ≥ mk for m ∈ R
r,↓
−∞, x ∈ R, 1 ≤ k ≤ r. (2.12)

Having constructed μr , define two further mappings

μ̃r = (μ̃r,0, . . . , μ̃r,r ) : Rr,↓
−∞ × R 
→ R × R

r,↓
−∞

and

μ̂r = (μ̂r,0, . . . , μ̂r,r ) : Rr,↓
−∞ × R × (0, 1) 
→ R × R

r,↓
−∞,

as follows. Take m = (m1, . . . , mr) ∈ R
r,↓
−∞, x ∈ R and u ∈ (0, 1). When k = 0, set

μ̃r,0(m, x) = x and μ̂r,0(m, x, u) =
{

F←(u|mr), if x ≤ mr,

x, if x > mr.
(2.13)

When 1 ≤ k ≤ r , set

μ̃r,k(m, x) = μr,k(m, x) and also μ̂r,k(m, x, u) = μr,k(m, x). (2.14)

With these mappings the component form of the lefthand side of Eq. 2.8 can be
written as

(
(Xn, X

(1)
n , . . . , X(r)

n ), n ≥ 2
)

=
(
μ̃r (X

(1)
n−1, . . . , X

(r)
n−1, Xn), n ≥ 2

)
(2.15)
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and the component form of the righthand side of Eq. 2.8 can be written as
(
(X̂(r+1),n, X

(1)
n , . . . , X(r)

n ), n ≥ 2
)

=
(
μ̂r (X

(1)
n−1, . . . , X

(r)
n−1, Xn, Ur,n), n ≥ 2

)
.

(2.16)

We check that these are verified, as follows. Apply the formulae Eqs. 2.13 and 2.14,
substituting m = (X

(1)
n , . . . , X

(r)
n ), x = Xn and u = Ur,n. Consider the righthand

side of Eq. 2.15. With those substitutions, the k = 0 component equals μ̃r,0(m, x) =
x = Xn, matching the lefthand side of Eq. 2.15. The kth component, for 1 ≤ k ≤ r ,
with the substitutions, equals, by Eq. 2.11,

μ̃r,k(m, x) = μr,k(m, x) = X
(k−1)
n−1 1

Xn>X
(k−1)
n−1

+ X
(k)
n−11Xn≤X

(k)
n−1

+Xn1X
(k)
n−1<Xn≤X

(k−1)
n−1

= X(k)
n , (2.17)

again matching the kth component on the lefthand side of Eq. 2.15. Next consider
the righthand side of Eq. 2.16. With the above substitutions, the k = 0 component
equals, by Eq. 2.13,

μ̂r,0(m, x, u) =
{

F←(Ur,n|X(r)
n−1), if Xn ≤ X

(r)
n−1,

Xn, if Xn > X
(r)
n−1,

agreeing with X̂(r+1),n from Eq. 2.6. So the righthand side of Eq. 2.16 matches the
lefthand side of Eq. 2.16 for the k = 0 component. The kth component, for 1 ≤ k ≤
r , with the substitutions, equals, by Eq. 2.14, the righthand side of Eq. 2.17. So the
righthand side of Eq. 2.16 matches the lefthand side of Eq. 2.16 for the components
1 ≤ k ≤ r . With these checkings we have verified Eqs. 2.15 and 2.16.

In Eqs. 2.15 and 2.16, Xn ⊥⊥ (X
(1)
n−1, . . . , X

(r)
n−1) and Ur,n ⊥⊥ (X

(1)
n−1, . . . , X

(r)
n−1,

Xn, ) since we assumed that X and U are independent arrays of iid rv’s. The right
sides of Eqs. 2.15 and 2.16 are Markov chains with stationary transition probabilities
in the index n (new value is a function of the previous value and an independent
quantity) and for n = 1, the left sides of Eqs. 2.15 and 2.16 have common initial value
(X1, X1, −∞, . . . , −∞) ∈ R×R

r,↓
−∞. Therefore, to prove equality in distribution in

Eq. 2.8, it suffices to prove both chains have a common transition kernel.

To see this, let X′ d= X1 ∼ F and U ′ d= U1,1 ∈ (0, 1) be independent rv’s. For
x, y ∈ R with F(y) > 0 note

P(X′ ≤y, F←(U ′|y) ≤ x) = P(X′ ≤y)P (X′ ≤x|X′ ≤y) = F(x ∧ y). (2.18)

Take m = (m1,. . .,mr), m′ = (m′
1,. . .,m

′
r ) ∈ R

r,↓
−∞ with F(m′

k)>0 for 1≤k≤r , and
m′

0 := ∞. By Eq. 2.16 we have for the transition probability,

P
((

X̂(r+1),n+1, X
(1)
n+1, . . . , X

(r)
n+1

) ∈ (−∞, x] ×
r∏

k=1

[−∞, mk]
∣
∣
∣X̂(r+1),n = y, (X(1)

n , . . . , X(r)
n ) = m′)

= P
(
μ̂r (m

′, X′, U ′) ∈ (−∞, x] ×
r∏

k=1

[−∞, mk]
)
.
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Decompose the last expression as

P
(
μ̂r (m

′, X′, U ′) ∈ (−∞, x] ×
r∏

k=1

[−∞, mk], X′ ≤ m′
r

)

+
r∑

k=1

P
(
μ̂r (m

′, X′, U ′) ∈ (−∞, x] ×
r∏

l=1

[−∞, ml], X′ ∈ (m′
k, m

′
k−1]

)

=: A + B.

First consider the probability A. It equals

P
(
F←(U ′|m′

r ) ≤ x, μrk(m
′, X′, U ′) ≤ mk, 1 ≤ k ≤ r; X′ ≤ m′

r

)

= P
(
X′ ≤ x, μrk(m

′, X′, U ′) ≤ mk, 1 ≤ k ≤ r; X′ ≤ m′
r

)
. (2.19)

Next consider the probability B. For this we use Eq. 2.13 and get

B =
r∑

k=1

P(X′ ≤ x, μrl(m
′, X′) ≤ ml, 1 ≤ l ≤ r, X′ ∈ (m′

k, m
′
k−1]), (2.20)

in which μrl(m
′, X′) ≥ m′

l , 1 ≤ l ≤ r , by Eq. 2.12.
On the other hand, from the left sides of Eqs. 2.8 and 2.15,

P
((

Xn+1, X
(1)
n+1, . . . , X

(r)
n+1

) ∈ (−∞, x] ×
r∏

k=1

[−∞, mk]
∣
∣
∣Xn = y, (Xn, X

(1)
n , . . . , X(r)

n ) = m′)

= P
(
μ̃r (m

′, X′) ∈ (−∞, x] ×
r∏

k=1

[−∞, mk

]
)

= P
((

X′, μrl(m
′, X′), l = 1, . . . , r

) ∈ (−∞, x] ×
r∏

k=1

[−∞, mk]
)
.

Again decompose the last as

P
(
X′ ≤ x, μrl(m

′, X′) ≤ ml, l = 1, . . . , r, X′ ≤ m′
r

)

+
r∑

k=1

P
(
X′ ≤ x, μrl(m

′, X′) ≤ ml, l = 1, . . . , r, X′ ∈ (mk, mk−1]
)

= A + B (by Eqs. 2.19 and 2.20).

This completes the proof of Eq. 2.8 and of Theorem 2.1.

Remark Probabilities A and B can be calculated explicitly as follows.
For A, take m′

k > mk for some k = 1, . . . , r . Then because of Eq. 2.12, the
probability A is 0. So assume that m′

k ≤ mk for 1 ≤ k ≤ r . Then the condition X′ ≤
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m′
r in A implies X′ ≤ m′

k ≤ mk , hence μr,k(m
′, X′, U ′) ≤ mk for k = 1, . . . , r , by

Eq. 2.11. So, using (2.18), A reduces to

A = P(F←(U ′|m′
r ) ≤ x, X′ ≤ m′

r ) = F(x ∧ m′
r )

∏

1≤k≤r

1m′
k≤mk

. (2.21)

For B, fix k and suppose l > k. Then the interval (m′
l , m

′
l−1] is to the left of

(m′
k, m

′
k−1] where X′ is located, and μrl(m

′, X′) = m′
l−1. The probability is then 0

unless ml ≥ m′
l−1. If l < k, the order of the intervals is reversed, μrl(m

′, X′) = m′
l ,

and the probability is 0 unless m′
l ≤ ml . Thus, B becomes

B =
r∑

k=1

P(m′
k < X′ ≤ x ∧ mk ∧ m′

k−1)
∏

1≤l<k

1m′
l≤ml

∏

k<l≤r

1m′
l−1≤ml

. (2.22)

3 Asymptotic behavior of the discrete time process M(r) for large r

In this section we consider the asymptotic behavior as r → ∞ of the R
∞-valued

stochastic process {M(r) := (M
(r)
n , n ≥ r), r ≥ 1}. As r increases the sequence

moves further and further from its largest values, so limit behavior for both the range
of M(r) and M(r) itself, depend critically on left tail behavior of the distribution
of X1. Appropriate left-tail conditions related to minimal domains of attraction in
classical extreme value theory make the range and the sequence of rth order maxima
converge weakly.

Throughout Section 3, the underlying distribution F of the iid sequence {Xn} is
continuous, so the records are Poisson with atomless mean measure R(·) which has
distribution R(x) = − log(1 − F(x)) (Resnick 2008, page 166). The assumption
of continuity could be relaxed as in (Engelen et al. 1988; Shorrock 1974; 1975)
but results are most striking and elegant when F is continuous and we proceed in
this setting. We assume F(x) has left endpoint �F and right endpoint uF so that the
measure F has support [�F , uF ] ⊂ [−∞, ∞].

3.1 rth maximum and r-records

Assume F(x) < 1 and define

Rn =
n∑

j=1

1[Xj ≥Xn] = relative rank of Xn among X1, . . . , Xn

= rank of Xn at “birth”.

The {Rn} are independent random variables and Rn is uniformly distributed (Rényi
1962) on {1, . . . , n}; that is,

P(Rn = i) = 1/n, i = 1, . . . , n.

Considering {M(r), r ≥ 1} as an R
∞-valued stochastic process, we ask for the

asymptotic behavior of M(r) and its range as a function of r as r → ∞.
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Define the r-record times of {Xn} by
L

(r)
0 = 0, L

(r)
n+1 = inf{j > L(r)

n : Rj = r}.
The r-records are {X

L
(r)
n

, n ≥ 1}. Ignatov’s theorem (Ignatov 1986; Goldie and
Rogers 1984; Engelen et al. 1988; Resnick 2008) says that

{{X
L

(r)
n

, n ≥ 1}, r ≥ 1
}

are iid Poisson processes, each with mean measure R(·) on R. A Poisson process
with mean measure R is denoted PRM(R).

We list some initial facts about M(r) and its range.

• For fixed r , M(r) = {M(r)
n , n ≥ r} jumps at time k ≥ r iff

Rk ∈ {1, . . . , r}.
So the events

{M(r) jumps at time k, k ≥ r}
are independent events over k and

P(M(r) jumps at k) = r

k
.

Remark 3.1 This has the implication that if we re-index and set k = r + l for l ≥ 0,
then for any fixed l, as r → ∞,

P(M(r) jumps at r + l) = r

r + l
→ 1.

So for large r , M(r) jumps at almost every integer. Define the jump indices

{τ (r)
l , l ≥ 0} = {j ≥ 1 : M

(r)
r+j > M

(r)
r+j−1} ∪ {0}.

Then in R
∞+ ,

{τ (r)
l , l ≥ 0} ⇒ {0, 1, 2, . . . }.

• For fixed r , let Rr be the range of M(r); that is, the distinct points without
repetition in the sequence {M(r)

n , n ≥ r}. See Fig. 1. Then,

Rr :=
r⋃

p=1

{
X

L
(p)
n

, n ≥ 1
}
, (3.1)

By Ignatov’s theorem (Ignatov 1986; Stam 1985; Goldie and Rogers 1984; Enge-
len et al. 1988; Resnick 2008), this is a sum of r independent PRM(R) processes
and therefore the range of M(r) is PRM(rR).

To prove (3.1), suppose M
(r)
n = x for some n ≥ r. Suppose the rth largest of

X1, . . . , Xn occurs at Xi = x for i ≤ n. If the rank of Xi were > r , it could not
be the case that M(r)

n = x. This shows that

range of M(r) ⊂
r⋃

p=1

{
X

L
(p)
n

, n ≥ 1
}
.
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Conversely, suppose X
L

(p)
n

= x, so at time L
(p)
n , the rank of X

L
(p)
n

is p. Wait until
r − p additional X’s have been observed that exceed x and then the rth largest
will equal x.

3.2 Limits for the rangeRr of M(r)

Although our primary interest is in the behavior of {M(r), r ≥ 1} as an R
∞-valued

random sequence, it is instructive and helpful to discuss the behavior of the rangeRr

of M(r).
As a basic result we derive a deterministic limit for Rr . Let R be the support of

the measure R(·) which is also the support of F .

Proposition 3.2 As r → ∞, Rr , the range of M(r), converges as a random closed
set in the Fell topology (Molchanov 2005; Matheron 1975; Vervaat and Holwerda
1997) on [�F , uF ] to the non-random limit R:

Rr ⇒ R. (3.2)

Proof SinceRr ⊂ R, it suffices to show for any open G with R ∩ G �= ∅, that
P(Rr ∩ G �= ∅) → 1.

However,R ∩ G �= ∅ implies R(G) > 0 and therefore,

P(Rr ∩ G �= ∅) = 1 − P(PRM(rR(G)) = 0)

= 1 − e−rR(G) → 1, (r → ∞)

since R(G) > 0.

The set convergence in Eq. 3.2 is to a deterministic limit. Since Rr is a PRM(rR)
point process, we can get a random limit if we center and scale the {Xn} so that the
mean measure rR converges to a Radon measure. Recall R(x) = − log F̄ (x).

Assume there exist ar > 0 and br ∈ R and a non-decreasing limit function g(x)

with more than one point of increase such that

rR(arx − br) → g(x), (r → ∞). (3.3)

For x such that g(x) > 0, we must have R(arx − br) → 0 and thus arx − br

converging to the left endpoint of F (and R) to counteract r → ∞. We now explain
why e−g is related to an extreme value distribution. Remembering that e−R = F̄ ,
Eq. 3.3 is equivalent to

(F̄ (arx − br))
r = exp{−rR(arx − br)} → e−g(x)

or

P
(∧r

i=1Xi + br

ar

> x
)

→ e−g(x). (3.4)
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So we recognize e−g as the survivor function of an extreme value distribution
of minima of iid random variables. Expressing this in terms of maxima by setting
Yi = −Xi we get Eq. 3.4 equivalent to

P
(∨r

i=1Yi − br

ar

≤ −x
)

→ e−g(x) = Gγ (−x), (3.5)

for some γ ∈ R, where Gγ (x) = exp{−(1 + γ x)−1/γ }, 1 + γ x > 0 is the shape
parameter family of extreme value distributions for maxima (Resnick 2008; de Haan
and Ferreira 2006). So in Eq. 3.3, g(x) = gγ (x) = − logGγ (−x). The equivalent
way to write (3.5) is

rP
(
Y1 > ar(−x) + br

) → g(x), ∀x s.t. g(x) > 0,

and Eq. 3.3 is equivalent to

rF (arx − br) → g(x), ∀x s.t. g(x) > 0. (3.6)

In particular, apart from centering, we have the cases:

(1) Gumbel case: γ = 0. Then

g0(x) = ex, x ∈ R.

(2) Reverse Weibull case: γ < 0: Then 1 + γ (−x) > 0 iff x > −1/|γ | and
gγ (x) = (1 + |γ |x)1/|γ |, x > −1/|γ |.

Adjusting the centering and scaling by taking br = 0, we find R is regularly
varying at 0 and

rR(arx) → x1/|γ |, x > 0.

(3) Frechét case: γ > 0. Then 1 + γ (−x) > 0 iff x < 1/γ and

gγ (x) = (1 − γ x)−1/γ , x < 1/γ.

Adjusting the centering and scaling so the support is (−∞, 0), we get

rR(arx) → |x|−1/γ , x < 0,

which implies regular variation at 0 from the left.

We can apply this analysis to get convergence of Rr after centering and scaling.
RecallRr is PRM(rR). A family of Poisson point measures converges weakly iff the
mean measures converge (eg. Resnick (2007)). So replacing

Xi 
→ Xi + br

ar

rescales the points of the range to be Poisson with mean measure given by the left
side of Eq. 3.3. Let

suppγ = {x : 1 − γ x > 0} (3.7)

and mγ (·) be the measure with density g′
γ (x), x ∈ suppγ . Let M+(suppγ ) be the

space of Radon measures on suppγ , topologized by vague convergence. Then Eq. 3.3
implies the vague convergence

rR
(
ar(·) − br

) v→ mγ (·)
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in M+(suppγ ), and thus on M+(suppγ ) we have

(Rr + br)/ar ⇒ PRM(mγ ). (3.8)

We may realize PRM(mγ ) as follows: Let �i = ∑i
j=1 Ej be a sum of iid standard

exponential random variables. The {�i} are points of a homogeneous Poisson process
rate 1 on [0, ∞). The measure mγ has distribution

gγ : suppγ 
→ (0, ∞),

with inverse
g←

γ : (0, ∞) 
→ suppγ .

The transformation theory for Poisson processes (Resnick 2007, Section 5.1)) means
that if we map homogeneous Poisson points {�i, i ≥ 1} to {g←

γ (�i), i ≥ 1}, these
become the points of PRM(mγ ) on suppγ . For instance, if γ = 0, supp0 = R,
g0(x) = ex, x ∈ R, and g←

0 (y) = log y, y > 0, then PRM(m0) has points
{log�i, i ≥ 1}.

3.3 Weak convergence of the rth maxima sequence M(r)

Having understood how to get the range Rr of M(r) to converge, we turn to con-
vergence of M(r) itself. We continue to suppose the minimum domain of attraction
condition, so that R satisfies (3.3), and recall M+(suppγ ) is the space of Radon mea-
sures on suppγ , topologized by vague convergence. Point measures in M+(suppγ )

are denoted by
∑

i εxi
(·) where εx(·) is the Dirac measure placing mass 1 at x.

We start with a preliminary result on the empirical measures generated by {Xi}
that will be needed to study the weak convergence of {M(r)}.

Proposition 3.3 Assume (3.3). If N is a random element of M+(suppγ ) which is
PRM(mγ ), then for any j ≥ 0,

r+j∑

i=1

ε(Xi+br )/ar
⇒ N =

∞∑

i=1

εg←
γ (�i ) = PRM(mγ ), (3.9)

in M+(suppγ ) and, in fact, jointly for any k ≥ 0,

(r+j∑

i=1

ε(Xi+br )/ar
; 0 ≤ j ≤ k

)
⇒ (N, . . . , N) (3.10)

in M+(suppγ ) × · · · × M+(suppγ ).

Proof We have Eq. 3.10 following from Eq. 3.9 since with respect to the vague
distance d(·, ·) on M+(suppγ ) (see, eg. (Resnick 2007, page 51))

d
( r∑

i=1

ε(Xi+br )/ar
,

r+j∑

i=1

ε(Xi+br )/ar

)
⇒ 0

498



Processes of rth largest

for any j > 0. To verify this, let f be positive and continuous with compact support
on suppγ and from Eq. (3.14) of (Resnick 2007, p.51), it suffices to show

E

∣
∣
∣

r∑

i=1

f
(
(Xi + br)/ar

) −
r+j∑

i=1

f
(
(Xi + br)/ar

)∣∣
∣ → 0.

The difference is

E

r+j∑

i=r+1

f
(
(Xi + br)/ar

) = E

j∑

i=1

f
(
(Xi + br)/ar

)

and assuming the support of f is a compact set K in suppγ , this is bounded above by

sup
x≥0

f (x)jP [X1 ∈ arK − br ] → 0,

since for x ∈ K , arx − br converges to the left endpoint of F , and, under (3.3), there
cannot be an atom at this left endpoint.

The result in Eq. 3.9 follows by a small modification of the proof of Theorem 5.3
in (Resnick 2007, p.138) since (3.3) is equivalent to Eq. 3.6.

Now we turn to R∞-convergence of the rth maximum sequence. Continue to sup-
pose (3.3). Without normalization, the sequence M(r) converges to a sequence all of
whose entries are the left endpoint of F . In order to get M(r) to converge, we must
have M

(r)
r = ∧r

i=1Xi converge and this helps explain why a domain of attraction
condition for minima is relevant. The condition (3.3) produces a non-trivial limit.

Proposition 3.4 Suppose the domain of attraction condition (3.3) holds. Then inR∞,

M(r) + br

ar

=
(M

(r)
r+j + br

ar

, j ≥ 0
)

⇒
(
g←

γ (�l), l ≥ 1
)

(r → ∞), (3.11)

where {�l, l ≥ 1} are the points of a homogeneous Poisson process on R+.

Proof Fix j ≥ 0 and observe for x ∈ suppγ ,

{M
(r)
r+j + br

ar

>x
}
=
{r+j∑

i=1

ε(Xi+br )/ar
(x, ∞) ≥ r

}
=
{r+j∑

i=1

ε(Xi+br )/ar
((−∞, x])≤j

}

and therefore

{M
(r)
r+j + br

ar

≤ x
}

=
{r+j∑

i=1

ε(Xi+br )/ar
((−∞, x]) > j

}
.

For a non-decreasing sequence {xj } of real numbers in suppγ ,

P
( k⋂

j=0

[M
(r)
r+j + br

ar

≤ xj

])
= P

( k⋂

j=0

[r+j∑

i=1

ε(Xi+br )/ar
([−∞, xj ]) > j

])
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and applying (3.10) yields that the RHS converges to

P
( k⋂

j=0

[N((−∞, xj ]) > j ]
)

= P
( ∞∑

i=1

εg←
γ (�i )(−∞, xj ] > j ; j = 0, . . . , k

)

= P
(
g←

γ (�j+1) ≤ xj ; j = 0, . . . , k
)
.

This yields the announced result (3.11).

To summarize: Without normalization, the random set consisting of the range of
M(r) converges to the deterministic limit consisting of the support of F . To get a ran-
dom limit requires the minimum domain of attraction condition and then the centered
and scaled range converges to a limit Poisson process. Likewise, convergence in dis-
tribution of the R∞-valued random elements M(r) as r → ∞ requires the minimal
domain of attraction condition.

4 Continuous time rth-order extremal processes

This section transitions to continuous time problems. The treatment is parallel to
what we gave for discretely indexed processes but here the processes are generated by
two-dimensional Poisson processes on R+ ×R and correspond to rth order extremal
processes. One example of an rth order extremal process is obtained by taking the
rth largest jump of a Lévy process up to time t > 0.

The continuous time case differs from the discrete index case, in that there are
always infinitely many values below your present position. This necessitates differ-
ences in treatment. In continuous time we obtain modifications of Brownian motion
limits whereas in discrete time we obtain Poisson limits for the rth order extremes.

The setup is as follows. Given a infinite measure �(·) on an interval (��, u�)

satisfying −∞ ≤ �� < u� ≤ ∞, �(��, u�) = ∞ and Q(x) := �(x, u�) < ∞
for �� < x < u�. Let

N =
∑

k

ε(tk,jk), (4.1)

be Poisson random measure on R+ × (��, u�), with mean measure Leb× �, where
Leb(·) is Lebesgue measure on R+. Recall ε(t,x)(·) is a Dirac measure with mass
1 at the point (t, x). Sometimes we write (tk, jk) ∈ supp(N) to indicate the point
(tk, jk) is charged by N . We assume �� and u� are not atoms of � and in fact, to
make results most elegant we assume �(·) is atomless. (Otherwise, results would be
stated in terms of simplifications of point processes; see Engelen et al. (1988).) Our
assumptions mean that

(1) The function Q(x) satisfies Q(u�) = 0 and Q(��) = ∞ so Q : (��, u�) 
→
(0, ∞) and Q(x) is non-increasing.

(2) For any t > 0 and u� ≥ x > �� : N
([0, t] × (x, u�)

)
< ∞ almost surely.

(3) For any t > 0 and u� ≥ x > �� : N
([0, t] × (��, x]) = ∞ almost surely.

Traditionally, the (first-order) extremal process is defined by Resnick (2008),
Deheuvels (1983), Deheuvels (1982), Dwass (1974), Dwass (1966), Dwass (1964),
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Resnick (1975), Resnick and Rubinovitch (1973), Resnick (1974), Shorrock (1975),
and Weissman (1975),

Y (t) = Y (1)(t) =
∨

tk≤t

jk, 0 < t < ∞,

the largest jk whose tk coordinate is at or before time t . Alternatively we may write

Y (t) = inf{x > �� : N
([0, t]×(x, u�)

) = 0} = inf{x > �� : N
([0, t]×(x, u�)

)
< 1}.

We develop the analogs of Propositions 3.2 and 3.4 as r → ∞ for the continuous
time rth order extremal process Y (r) := {Y (r)(t), 0 < t < ∞} defined as,

Y (r)(t) := inf{x > �� : N
([0, t] × (x, u�)

)
< r}, t > 0. (4.2)

This means for t > 0, u� ≥ x > ��,

{Y (r)(t) > x} = {N([0, t] × (x, u�)
) ≥ r},

and therefore,
{Y (r)(t) ≤ x} = {N([0, t] × (x, u�)

)
< r}. (4.3)

Alternative ways of considering Y (r) are in (Engelen et al. 1988).
What is the behavior of {Y (r), r ≥ 1}, considered as a sequence of random ele-

ments of càdlàg space D(��, u�), as r → ∞? Unlike in Section 3.3, here there are
always infinitely many points below your current position and thus the left tail con-
dition (3.6) used for M(r) must be different when considering Y (r). We analyze the
range of Y (r) and for the weak limit behavior of Y (r), instead of relying on Poisson
behavior, we rely on asymptotic normality.

4.1 The rangeRr of Y (r)

Let Rr be the unique values in the set {Y (r)(t), t > 0}. As in the discrete time case
(3.1), we have

Rr =
r⋃

p=1

{
jk : (tk, jk) ∈ supp(N), N([0, tk] × [jk, u�)) = p

}
. (4.4)

To verify (4.4) suppose x ∈ Rr . There exists t > 0 such that Y (r)(t) = x, and
therefore there exists (tk, x) ∈ supp(N) such that tk ≤ t . If N([0, tk] × [x, u�)) > r ,
then Y (r)(t) > x, giving a contradiction. Thus x is in the right side of Eq. 4.4.
Conversely, suppose jk satisfies that there exists tk such that (tk, jk) ∈ supp(N) and
N([0, tk] × [jk, u�)) = p for some p ≤ r . Then there exists t > tk such that
N
(
(tk, t] × [jk, u�)

) = r − p and thus Y (r)(t) = jk . Therefore, jk belongs to the
left side of Eq. 4.4. Note that the sets (s, t] × [j, u�) are all continuity sets of the
intensity and therefore t 
→ N((tk, t] × [jk, u�)) jumps by 1 with probability one.

When � is atomless, the range of Y (t) = Y (1)(t) is known to be a Poisson process
with mean measure determined by the monotone function S(x) := − logQ(x) =
− log�(x, u�), x > ��. This is discussed, for example, in (Resnick 2008, page
183). In fact, from (Engelen et al. 1988, Theorem 6.2, page 234), the p-records of
N are iid in p, and each sequence of p-records forms PRM(S). (A p-record of N
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is a point jk such that there exists tk making (tk, jk) ∈ supp(N) and N([0, tk] ×
[jk, u�)) = p.) This and Eq. 4.4 allow us to conclude that Rr is a Poisson process
with mean measure rS(·). This achieves the continuous time analog of the discrete
time discussion at the beginning of Section 3.2, and without any normalization we
have

Rr ⇒ supp(S), (r → ∞),

in the Fell topology of closed subsets of (��, u�).
Paralleling the discrete time analysis, we proceed to obtain a non-degenerate limit

for Rr . We have to be more careful in the continuous case. The reason is that Rr

is PRM with mean measure rS(·) and S is Radon on (��, u�), and it may allocate
infinite mass to a neighborhood of both �� and u�. Recall S(x) satisfies S(��) =
−∞ and S(u�) = ∞.

Assume without loss of generality that �� < 0 < u�. (If this is not the case,
choose an arbitrary point between �� and u�.) We make a treatment parallel to the
discrete one by splitting the Poisson points ofRr into those above 0 and those below.
So write

Rr = R+
r

⋃
R−

r

whereR+
r are the positive Poisson points ofRr andR−

r are the negative points ofRr .
The two Poisson processes R±

r are independent because their points are in disjoint
regions. Define the two non-decreasing functions on R+,

S+(x) = S(0, x] = S(x) − S(0), 0 < x ≤ u� (4.5)

S−(x) = S[−x, 0) = S(0) − S(−x), 0 < x ≤ −��. (4.6)

Assume there exist a±(t) > 0, b±(t) ∈ R and infinite Radon measures S±∞ on R+
such that as t → ∞,

tS+(a+(t)x − b+(t)) → S+∞(x), (4.7)

tS−(a−(t)x − b−(t)) → S−∞(x). (4.8)

The form of S±∞ is determined by defining probability distribution tails H̄±(x) by

H̄+(x) = e−S+(x), 0 < x < u�, (4.9)

H̄−(x) = e−S−(x), 0 < x < −��. (4.10)

Note H̄±(0) = e−S±(0) = e−0 = 1 and H̄+(u�) = e−S+(u�) = e−∞ = 0 and
H̄−(−��) = 0, similarly. Then, as in the discussion following (3.3), we find for
γ ± ∈ R that

e−S±(x) = Gγ ±(−x),

where Gγ (x) has a form given after (3.5). Note, if we want

a+(t) = a−(t) and b+(t) = b−(t)

up to convergence of types, we would need (Resnick 1971), −�� = u� and

H̄+(x) ∼ H̄−(x) (x → u�).

We now summarize.
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Theorem 4.1 The two Poisson processesR±
r are independent withRr = R+

r ∪R−
r

whereR+
r has mean measure rS+ onR+ and−R−

r has mean measure rS− onR+ so
thatR−

r are points on (−∞, 0). As r → ∞, the range centered and scaled converges
to a limiting Poisson process,

(R+
r + b+(r)

a+(r)
,
−R−

r + b−(r)

a−(r)

)
⇒

(
R+∞, −R−∞

)
,

where the limits are independent Poisson processes on R+ with mean measures S±∞.
So if Eqs. 4.7 and 4.8 hold, centering positive and negative range points appropri-
ately leads to a limiting Poisson process such that positive points have mean measure
S+∞(·) and negative range points made positive by taking absolute values have mean
measure S−∞(·).

4.2 Finite dimensional convergence of Y (r) as random elements of D(��, u�)

In this subsection, we give a left-tail condition on �(·) guaranteeing finite dimen-
sional convergence of Y (r) to a transformed Brownian motion.

Suppose there exist normalizing functions a(r) > 0, b(r) ∈ R, and a non-
decreasing limit function h(x) ∈ R with at least two points of increase such that for
a(r)x + b(r) ∈ (��, u�),

lim
r→∞

r − Q
(
a(r)x + b(r)

)

√
r

= h(x). (4.11)

Implications:

(1) If we divide in Eq. 4.11 by r instead of
√

r , the limit will be 0 and therefore,

Q
(
a(r)x + b(r)

) ∼ r, (r → ∞). (4.12)

Therefore, since r → ∞, we must have that Q
(
a(r)x + b(r)

) → ∞ and
(��, u�) � a(r)x + b(r) → ��.

(2) For any t > 0,

r − tQ
(
a(r/t)x + b(r/t)

)

√
r

= t
( r/t − Q

(
a(r/t)x + b(r/t)

)

√
r/t

√
t

)

→ √
th(x), (r → ∞). (4.13)

(3) If we write r − Q = (
√

r − √
Q)(

√
r + √

Q) and use Eq. 4.12, we get

√
r − √

Q(a(r)x + b(r)) → 1

2
h(x). (4.14)

Remember that Q is non-increasing and define a probability distribution func-
tion G(x) by G(x) := exp{−√

Q(x)}, so that G concentrates on (��, u�).
Then exponentiate in Eq. 4.14 to get

e
√

r e−√
Q(a(r)x+b(r)) → e

1
2h(x), (r → ∞)
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or, after a change of variables s = e
√

r ,

sG
(
a((log s)2)x + b((log s)2)

) = se−
√

Q(a((log s)2)x+b((log s)2)) → e
1
2h(x),

(4.15)
as s → ∞. So we conclude that G(x) := e−√

Q(x) is in a domain of attraction
of an extreme value distribution for minima. This technique is essentially the
same as the one used to study limit laws for record values in Resnick (1973) or
Resnick (2008).

(4) Form of h(x): As we saw following (3.6), if exp{ 12h(x)} plays the role of g(x)

then h(x) must be of the form

e
1
2h(x) = − logGγ (−x),

where Gγ is an extreme value distribution for maxima of the form

Gγ (x) = exp{−(1 + γ x)−1/γ }, γ ∈ R, 1 + γ x > 0.

So

1

2
h(x) =

{− 1
γ
log(1 − γ x), if γ �= 0, 1 − γ x > 0,

x, if γ = 0, x ∈ R.
(4.16)

Observe that h : suppγ 
→ R and h← : R 
→ suppγ . Recalling the definition of
suppγ from Eq. 3.7, we have

suppγ = {x ∈ R : 1 − γ x > 0} =

⎧
⎪⎨

⎪⎩

(− 1
|γ | , ∞), if γ < 0,

(−∞, 1
|γ | ), if γ > 0,

R, if γ = 0.

We apply these findings to obtain a marginal limit distribution for Y (r)(t) under
the left tail condition. Assume (4.11). We show that, for fixed t , Y (r)(t) has a limit
distribution as r → ∞, after centering and norming. This relies on an elementary
fact: if {Nn} is a family of Poisson random variables with E(Nn) → ∞ then

Nn − E(Nn)√
Var(Nn)

⇒ N(0, 1), (n → ∞). (4.17)

From Eq. 4.3, we have

P
(Y (r)(t) − b(r/t)

a(r/t)
≤ x

)
= P(N([0, t] × (a(r/t)x + b(r/t), ∞)) < r)

= P
(N([0, t] × (a(r/t)x + b(r/t), ∞)) − tQ(a(r/t)x + b(r/t))√

r

<
r − tQ(a(r/t)x + b(r/t))√

r

)
.

From Eq. 4.12,
√

r is asymptotic to the standard deviation of the Poisson random
variable and so the left side random variable converges to a N(0, 1) random variable.
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Using (4.13), the right side converges to
√

th(x). We therefore conclude that under
the left tail condition (4.11), for any fixed t > 0,

lim
r→∞ P

(Y (r)(t) − b(r/t)

a(r/t)
≤ x

)
= �

(√
th(x)

)
, x ∈ suppγ , (4.18)

where �(x) is the standard normal cdf.
Now we can prove the following finite dimensional convergence.

Proposition 4.2 Assume (4.11) holds with h(x) given in Eq. 4.16. Let {B(t), t ≥ 0}
be standard Brownian motion. Then as r → ∞,

Y (r)(t) − b(r/t)

a(r/t)
⇒ h←(B(t)

t

)
, (4.19)

in the sense of convergence of finite dimensional distributions for t > 0.

Proof We illustrate the proof by showing bivariate pairs converge for two values of
t . So suppose 0 < t1 < t2 and x1 < x2 are in suppγ and we show as r → ∞,

P
(Y (r)(ti) − b(r/ti)

a(r/ti)
≤ xi; i = 1, 2

)
→ P

(
h←(B(ti)

ti

)
≤ xi; i = 1, 2

)

= P
(
B(ti) ≤ tih(xi); i = 1, 2

)
. (4.20)

We express the statements about Y (r) in terms of the Poisson counting measure and
consider:
(

N
([0, t1] × (a(r/t1)x1 + b(r/t1), ∞)

)

N
([0, t2] × (a(r/t2)x2 + b(r/t2), ∞)

)
)

=
(

N
([0, t1] × (a(r/t1)(x1, x2] + b(r/t1), ∞)

) + N
([0, t1] × (a(r/t1)x2 + b(r/t1), ∞)

)

N
([0, t1] × (a(r/t2)x2 + b(r/t2), ∞)

) + N
(
(t1, t2] × (a(r/t2)x2 + b(r/t2), ∞)

)
)

=
(

N1 + N2
N3 + N4

)

.

Consider the four terms Ni, i = 1, . . . , 4, in turn.

(1) The term N1 appropriately normed converges to 0:

N
([0, t1]×(a(r/t1)(x1, x2] + b(r/t1), ∞)

) − t1�(a(r/t1)(x1, x2] + b(r/t1))√
r

⇒ 0.

(4.21)

The reason is that the centering is

t1�(a(r/t1)(x1, x2])√
r

= t1Q(ax1 + b) − t1Q(ax2 + b)√
r

= r − t1Q(ax2 + b)√
r

− r − t1Q(ax1 + b)√
r

→ √
t1(h(x2) − h(x1)) > 0.
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So the left side of Eq. 4.21 is of the form (Nr −λr)/
√

r where λr/
√

r → c > 0
and thus

Var
(
(Nr − λr)/

√
r
)

= λr/r → 0,

which verifies the convergence to 0 in Eq. 4.21.
(2) The term N2 becomes asymptotically normal. Let Z1 be a standard normal

random variable and apply (4.17) and (4.12) to get

N
([0, t1]×(a(r/t1)x2 + b(r/t1),∞)

) − t1Q(a(r/t1)x2 + b(r/t1))√
r

⇒ √
t1Z1.

(3) For N3, despite its dependence on the variable t2, we also find

N
([0, t1]×(a(r/t2)x2 + b(r/t2),∞)

) − t1Q(a(r/t2)x2 + b(r/t2))√
r

⇒ √
t1Z1.

This result uses a combination of the reasoning that was used for N1, N2.
(4) The termN4 is independent ofN1, N2, N3 so there is a standard normal variable

Z2 ⊥⊥ Z1 and

N
(
(t1, t2] × (a(r/t2)x2 + b(r/t2),∞)

) − (t2 − t1)Q(a(r/t2)x2 + b(r/t2))√
r

⇒ √
t2 − t1Z2.

We conclude from this carving that

⎛

⎜
⎜
⎝

N
([0, t1] × (a(r/t1)x1 + b(r/t1),∞)

) − t1Q(a(r/t1)x1 + b(r/t1))√
r

N
([0, t2] × (a(r/t2)x2 + b(r/t2),∞)

) − t2Q(a(r/t2)x2 + b(r/t2))√
r

⎞

⎟
⎟
⎠

⇒
( √

t1Z1√
t1Z1 + √

t2 − t1Z2

)

,

as r → ∞. Use (4.3) to write,

P

(
⎛

⎜
⎜
⎝

Y (r)(t1) − a(r/t1)

b(r/t1)
Y (r)(t2) − a(r/t2)

b(r/t2)

⎞

⎟
⎟
⎠ ≤

(
x1
x2

))

=P

(
⎛

⎜
⎜
⎝

N
([0, t1]×(a(r/t1)x1 + b(r/t1),∞)

) − t1Q(a(r/t1)x1 + b(r/t1))√
r

N
([0, t2]×(a(r/t2)x2 + b(r/t2),∞)

) − t2Q(a(r/t2)x2 + b(r/t2))√
r

⎞

⎟
⎟
⎠
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≤

⎛

⎜
⎜
⎝

r − t1Q(a(r/t1)x1 + b(r/t1))√
r

r − t2Q(a(r/t2)x2 + b(r/t2))√
r

⎞

⎟
⎟
⎠

)

→ P
(√

t1Z1 ≤ t1h(x1),
√

t1Z1 + √
t2 − t1Z2 ≤ t2h(x2)

)
(as r → ∞)

= P
(B(t1)

t1
≤ h(x1),

B(t2)

t2
≤ h(x2)

)

= P
(
h←(B(t1)

t1

) ≤ x1, h
←(B(t2)

t2

) ≤ x2
)
.

This verifies (4.20).

5 Final thoughts

The results of this paper suggest some obvious questions the answers to which have
so far eluded us. Is there a jump process limit – presumably some sort of extremal
process – in Eq. 4.19 corresponding to some sort of Poisson limit regime as opposed
to the Brownian motion limit regime? In Proposition 4.2 is a stronger form of con-
vergence – say in the J1-topology – possible? And so far, the mathematics of proving
in a nice way that {Y (r), r ≥ 1} is Markov in the càdlàg space D(0, ∞) has not
cooperated.
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