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1 Introduction

The aim of this paper is to investigate the tail behavior of a class of multivariate
conditionally heteroskedastic processes. Specifically, we consider the BEKK-ARCH
(or BEKK(1,0,l)) process, introduced by Engle and Kroner (1995), satisfying

Xt = H
1/2
t Zt , t ∈ N (1.1)

Ht = C +
l∑

i=1

AiXt−1X
ᵀ
t−1A

ᵀ
i , (1.2)

with (Zt : t ∈ N) i.i.d., Zt ∼ N(0, Id), C a d × d positive definite matrix,
A1, ..., Al ∈ M(d,R) (the set of d ×d real matrices), and some initial value X0. Due
to the assumption that Zt is Gaussian, it holds that Xt can be written as the stochastic
recurrence equation (SRE)

Xt = M̃tXt−1 + Qt, (1.3)

with

M̃t =
l∑

i=1

mitAi (1.4)

and (mit : t ∈ N) is an i.i.d. process mutually independent of (mjt : t ∈ N) for i �= j ,
with mit ∼ N(0, 1). Moreover (Qt : t ∈ N) is an i.i.d. process with Qt ∼ N(0, C)

mutually independent of (mit : t ∈ N) for all i = 1, ..., l.
To our knowledge, the representation in Eqs. 1.3-1.4 of the BEKK-ARCH pro-

cess is new. Moreover, the representation will be crucial for studying the stochastic
properties of the process. Firstly, we find a new sufficient condition in terms of the
matrices A1, ..., Al in order for (Xt : t ≥ 0) to be geometrically ergodic. In particu-
lar, for the case l = 1, we derive a condition directly related to the eigenvalues of A1,
in line with the strict stationarity condition found by Nelson (1990) for the univariate
ARCH(1) process. This condition is milder compared to the conditions found in the
existing body of literature on BEKK-type processes. Secondly, the representation is
used to characterize the tails of the stationary solution to (Xt : t ∈ N).

Whereas the tail behavior of univariate GARCH processes is well-established, see
e.g. Basrak et al. (2002b), few results on the tail behavior of multivariate GARCH
processes exist. Some exceptions are the multivariate constant conditional correla-
tion (CCC) GARCH processes, see e.g. Stărică (1999), Pedersen (2016), and Matsui
and Mikosch (2016), and a class of factor GARCH processes, see Basrak and Segers
(2009). This existing body of literature relies on rewriting the (transformed) process
on companion form that obeys a non-negative multivariate SRE. The characteriza-
tion of the tails of the processes then follows by an application of Kesten’s Theorem
(Kesten 1973) for non-negative SREs. Such approach is not feasible when analyzing
BEKK-ARCH processes, as these are stated in terms of an R

d -valued SRE in Eq.
1.3. For some special cases of the BEKK-ARCH process, we apply existing results
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for Rd -valued SREs in order to show that the stationary distribution for the BEKK-
ARCH process is multivariate regularly varying. Specifically, when the matrix M̃t

in Eq. 1.4 is invertible (almost surely) and has a law that is absolutely continuous
with respect to the Lebesgue measure on M(d,R) (denoted ID BEKK-ARCH) we
argue that the classical results of Kesten (1973, Theorem 6), see also Alsmeyer and
Mentemeier (2012), apply. Moreover, when M̃t is the product of a positive scalar
and a random orthogonal matrix (denoted Similarity BEKK-ARCH) we show that
the results of Buraczewski et al. (2009) apply. Importantly, we do also argue that the
results of Alsmeyer and Mentemeier (2012) rely on rather restrictive conditions that
can be shown not to hold for certain types of BEKK-ARCH processes, in particular
the much applied process where l = 1 and A1 is diagonal, denoted Diagonal BEKK-
ARCH. Specifically, and as ruled out in Alsmeyer and Mentemeier (2012), we show
that the Diagonal BEKK-ARCH process exhibits different marginal tail indices, i.e.
P(±Xt,i > x)/cix

−αi → 1 as x → ∞ for some constant ci > 0, i = 1, ..., d

(denoted Condition M). In order to analyze this class of BEKK-ARCH processes,
where the tail indices are allowed to differ among the elements of Xt , we intro-
duce a new notion of vector scaling regular variation (VSRV) distributions, based on
element-wise scaling of Xt instead of scaling by an arbitrary norm of Xt . We empha-
size that the notion of VSRV is similar to the notion of non-standard regular variation
(see Resnick (2007, Chapter 6)) under the additional Condition M. In addition, in
the spirit of Basrak and Segers (2009), we introduce the notion of VSRV processes
with particular attention to Markov chains and characterize their extremal behav-
ior. We argue that the stationary distribution of the Diagonal BEKK-ARCH process
is expected to be VSRV, which is supported in a simulation study. Proving that the
VSRV property applies requires that new multivariate renewal theory is developed,
and we leave such task for future research.

The rest of the paper is organized as follows. In Section 2, we state sufficient
conditions for geometric ergodicity of the BEKK-ARCH process and introduce the
notion of vector-scaling regular varying (VSRV) distributions. We show that the
distribution of Xt satisfies this type of tail-behavior, under suitable conditions. In
Section 3 we introduce the notion of VSRV processes and state that certain BEKK-
ARCH processes satisfy this property. Moreover, we consider the extremal behavior
of the process, in terms of the asymptotic behavior of maxima and extremal indices.
Lastly, we consider the convergence of point processes based on VSRV processes. In
Section 4, we consider the limiting distribution of the sample covariance matrix of
Xt , which relies on point process convergence. Section 5 contains some concluding
remarks on future research directions.

Notation: Let GL(d,R) denote the set of d × d invertible real matrices. With
M(d,R) the set of d × d real matrices and A ∈ M(d,R), let ρ(A) denote the spec-
tral radius of A. With ⊗ denoting the Kronecker product, for any real matrix A let
A⊗p = A ⊗ A ⊗ · · · ⊗ A (p factors). For two matrices, A and B, of the same dimen-
sion, A	B denotes the elementwise product of A and B. Unless stated otherwise, ‖·‖
denotes an arbitrary matrix norm. Moreover, Sd−1 = {x ∈ R

d : ‖x‖ = 1}. For two
matrices A and B of the same dimensions, A � B means that Aij > Bij for some i, j .
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For two positive functions f and g, f (x) ∼ g(x), if limx→∞ f (x)/g(x) = 1. Let
L(X) denote the distribution of X. By default, the mode of convergence for
distributions is weak convergence.

2 Stationary solution of the BEKK-ARCH model

2.1 Existence and geometric ergodicity

We start out by stating the following theorem that provides a sufficient condition
for geometric ergodicity of the BEKK-ARCH process. To our knowledge, this result
together with Proposition 2.3 below are new.

Theorem 2.1 Let Xt satisfy (1.1)-(1.2). With M̃t defined in Eq. 1.4, suppose that

inf
n∈N

{
1

n
E

[
log

(∥∥∥∥∥

n∏

t=1

M̃t

∥∥∥∥∥

)]}
< 0. (2.1)

Then (Xt : t = 0, 1, ...) is geometrically ergodic, and for the associated stationary
solution, E[‖Xt‖s] < ∞ for some s > 0.

The proof of the theorem follows by Alsmeyer (2003, Theorems 2.1-2.2, Example
2.6.d, and Theorem 3.2) and is hence omitted.

Remark 2.2 A sufficient condition for the existence of finite higher-order moments
of Xt can be obtained from Theorem 5 of Feigin and Tweedie (1985). In particu-
lar, if ρ(E[M̃⊗2n

t ]) < 1 for some n ∈ N, then, for the strictly stationary solution,
E[‖Xt‖2n] < ∞. For example, ρ(

∑l
i=1 A⊗2

i ) < 1 implies that E[‖Xt‖2] < ∞.
This result complements Theorem C.1 of Pedersen and Rahbek (2014) that contains
conditions for finite higher-order moments for the case l = 1.

For the case where M̃t contains only one term, i.e. l = 1, the condition in Eq. 2.1
simplifies and a condition for geometric ergodicity can be stated explicitly in terms
of the eigenvalues of the matrix A1:

Proposition 2.3 Let Xt satisfy (1.1)-(1.2) with l = 1 and let A := A1. Then a
necessary and sufficient condition for Eq. 2.1 is that

ρ(A) < exp

{
1

2

[−ψ(1) + log(2)
]} = 1.88736..., (2.2)

where ψ(·) is the digamma function.

Proof The condition (2.1) holds if and only if there exists n ∈ N such that

E

[
log

(∥∥∥∥∥

n∏

t=1

M̃t

∥∥∥∥∥

)]
< 0. (2.3)
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Let mt := m1t . It holds that

E

[
log

(∥∥∥∥∥

n∏

t=1

M̃t

∥∥∥∥∥

)]
= E

[
log

(∥∥∥∥∥A
n

n∏

t=1

mt

∥∥∥∥∥

)]

= log
(∥∥An

∥∥)− nE
[− log(|mt |)

]

= log
(∥∥An

∥∥)− n

{
1

2

[−ψ(1) + log(2)
]}

,

and hence (2.3) is satisfied if

log
(∥∥An

∥∥1/n
)

<
1

2

[−ψ(1) + log(2)
]
.

The result now follows by observing that ‖An‖1/n → ρ(A) as n → ∞.

Remark 2.4 It holds that ρ(A⊗2) = (ρ(A))2. Hence the condition in Eq. 2.2 is
equivalent to

ρ(A⊗2) < exp {−ψ(1) + log(2)} = 1

2
exp

[
−ψ

(
1

2

)]
= 3.56...,

which is similar to the strict stationary condition found for the ARCH coefficient of
the univariate ARCH(1) process with Gaussian innovations; see Nelson (1990).

Boussama et al. (2011) derive sufficient conditions for geometric ergodicity
of the GARCH-type BEKK process, where Ht = C + ∑p

i=1 AiXt−iX
ᵀ
t−iA

ᵀ
i +∑q

j=1 BjHt−jB
ᵀ
j , Ai, Bj ∈ M(d,R), i = 1, ..., p, j = 1, ..., q. Specifically, they

show that a sufficient condition is ρ(
∑p

i=1 A⊗2
i +∑q

j=1 B⊗2
j ) < 1. Setting p = 1

and q = 0, this condition simplifies to ρ(A⊗2
1 ) < 1, which is stronger than the

condition derived in Eq. 2.2.
Below, we provide some examples of BEKK-ARCH processes that are geometri-

cally ergodic and that will be studied in detail throughout this paper.

Example 2.5 (ID BEKK-ARCH) Following Alsmeyer and Mentemeier (2012), we
consider BEKK processes with corresponding SRE’s satisfying certain irreducibility
and density conditions (ID), that is conditions (A4)-(A5) in Appendix Section A1.
Specifically, we consider the bivariate BEKK-ARCH process in Eqs. 1.1–1.2 with

Ht = C +
4∑

i=1

AiXt−1X
ᵀ
t−1A

ᵀ
i ,

where

A1 =
(

a1 0
0 0

)
A2 =

(
0 0
a2 0

)
, A3 =

(
0 a3
0 0

)
, A4 =

(
0 0
0 a4

)
(2.4)

and

a1, a2, a3, a4 �= 0. (2.5)
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Writing Xt as an SRE, we obtain

Xt = M̃tXt−1 + Qt, (2.6)

with

M̃t =
4∑

i=1

Aimit (2.7)

where (m1t ), (m2t ), (m3t ), (m4t ) are mutually independent i.i.d. processes with
mit ∼ N(0, 1). Assuming that a1, a2, a3, a4 are such that the top Lyapunov exponent
of (M̃t ) is strictly negative, we have that the process is geometrically ergodic.

Notice that one could consider a more general d-dimensional process with the
same structure as in Eqs. 2.4–2.7, but with M̃t containing d2 terms such that M̃t has
a Lebesgue density on M(d,R), as clarified in Example 2.10 below. Moreover, one
could include additional terms to M̃t , say a term containing a full matrix A or an
autoregressive term, as presented in Remark 2.8 below. We will focus on the simple
bivariate process, but emphasize that our results apply to more general processes.

Example 2.6 (Similarity BEKK-ARCH) Consider the BEKK process in Eqs. 1.1–
1.2 with l = 1 and A := A1 = aO, where a is a positive scalar and O is an
orthogonal matrix. This implies that the SRE (1.3) has M̃t = amtO. By defini-
tion, M̃t is a similarity with probability one, where we recall that a matrix is a
similarity if it can be written as a product of a positive scalar and an orthogonal
matrix. From Proposition 2.3, we have that if a < exp

{
(1/2)

[−ψ(1) + log(2)
]} =

1.88736..., then the process is geometrically ergodic. An important process satisfy-
ing the similarity property is the well-known scalar BEKK-ARCH process, where
Ht = C + aXt−1X

ᵀ
t−1, a > 0. Here A = √

aId , with Id the identity matrix.

Example 2.7 (Diagonal BEKK-ARCH) Consider the BEKK-ARCH process in
Eqs. 1.1-1.2 with l = 1 such that A := A1 is diagonal. We refer to this
process as the Diagonal BEKK-ARCH process. Relying on Proposition 2.3, the
process is geometrically ergodic, if each diagonal element of A is less than
exp

{
(1/2)

[−ψ(1) + log(2)
]} = 1.88736... in modulus.

As discussed in Bauwens et al. (2006), diagonal BEKK models are typically used
in practice, e.g. within empirical finance, due to their relatively simple parametriza-
tion. As will be shown below, even though the parametrization is simple, the tail
behavior is rather rich in the sense that each marginal of Xt has different tail indices,
in general.

Remark 2.8 As an extension to Eqs. 1.1-1.2, one may consider the autoregressive
BEKK-ARCH (AR BEKK-ARCH) process

Xt = A0Xt−1 + H
1/2
t Zt , t ∈ N

Ht = C +
l∑

i=1

AiXt−1X
ᵀ
t−1A

ᵀ
i ,
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with A0 ∈ M(R, d). This process has recently been studied and applied by Nielsen
and Rahbek (2014) for modelling the term structure of interest rates. Notice that the
process has the SRE representation

Xt = M̃tXt−1 + Qt, M̃t = A0 +
l∑

i=1

mitAi.

Following the arguments used for proving Theorem 2.1, it holds that the AR BEKK-
ARCH process is geometrically ergodic if condition (2.1) is satisfied. Interestingly,
as verified by simulations in Nielsen and Rahbek (2014) the Lyapunov condition may
hold even if the autoregressive polynomial has unit roots, i.e. if A0 = Id + �, where
� ∈ M(R, d) has reduced rank.

2.2 Multivariate regularly varying distributions

The stationary solution of the BEKK-ARCH process (see Theorem 2.1) can be
written as

Xt =
∞∑

i=0

i∏

j=1

M̃t−j+1Qt−i , t ∈ Z. (2.8)

Even if the random matrices M̃t are light-tailed under the Gaussian assumption, the
maximum of the products (

∏T
t=1 M̃t )T ≥0 may exhibit heavy tails when T → ∞.

More precisely, the tails of the stationary distribution are suspected to have an
extremal behavior as a power law function: For any u ∈ S

d−1,

P(uᵀX0 > x) ∼ C(u)x−α(u), x → ∞, (2.9)

with α(u) > 0 and C(u0) > 0 for some u0 ∈ S
d−1. The cases where α(u) = α and

C(u) > 0 for all u ∈ S
d−1 are referred as Kesten’s cases, because of the seminal

paper (Kesten 1973), and are the subject of the monograph by Buraczewski et al.
(2016). A class of multivariate distributions satisfying this property is the class of
multivariate regularly varying distributions (de Haan and Resnick 1977):

Definition 2.9 Let R̄d
0 := R̄

d \{0}, R̄ := R∪{−∞, ∞}, and B̄d
0 be the Borel σ -field

of R̄d
0 . For an R

d -valued random variable X and some constant scalar x > 0, define
μx(·) := P(x−1X ∈ ·)/P(‖X‖ > x). Then X and its distribution are multivariate
regularly varying if there exists a non-null Radon measure μ on B̄d

0 which satisfies

μx(·) → μ(·) vaguely, as x → ∞. (2.10)

For any μ-continuity set C and t > 0, μ(tC) = t−αμ(C), and we refer to α as the
index of regular variation.

We refer to de Haan and Resnick (1977) for the notion of vague convergence and
additional details. Below, we provide two examples of multivariate regularly varying
BEKK processes.
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Example 2.10 (ID BEKK-ARCH, continued) Consider the ID BEKK-ARCH pro-
cess (2.4)-(2.7) from Example 2.5. By verifying conditions (A1)-(A7) of Theorem
1.1 of Alsmeyer and Mentemeier (2012), stated in Appendix Section A.1 we establish
that the process is multivariate regularly varying.

Since (m1t , m2t , m3t , m4t ) and Qt are Gaussian, we have that (A1)-(A2) hold.
Moreover,

M̃t =
(

a1m1t a3m3t

a2m2t a4m4t

)
(2.11)

is invertible with probability one, which ensures that (A3) is satisfied. From Eq. 2.11
we also notice that the distribution of M̃t has a Lebesgue density on M(d,R) which
is strictly positive in a neighborhood of I2. This ensures that the irreducibility and
density conditions (A4)-(A5) are satisfied. The fact that Qt ∼ N(0, C) and inde-
pendent of M̃t implies that condition (A6) holds. Lastly, condition (A7) holds by the
fact that (m1t , m2t , m3t , m4t ) and Qt are Gaussian. By Theorem 1.1 of Alsmeyer and
Mentemeier (2012) we have established the following proposition:

Proposition 2.11 Let Xt satisfy (2.4)-(2.7) such that the top Lyapunov exponent of
(M̃t ) is strictly negative. Then for the stationary solution (Xt ), there exists α > 0
such that

lim
t→∞ tαP(xᵀX0 > t) = K(x), x ∈ S

1, (2.12)

for some finite, positive, and continuous function K on S1.

The proposition implies that each marginal of the distribution of X0 is regularly
varying of order α. By Theorem 1.1.(ii) of Basrak et al. (2002a), we conclude that
X0 is multivariate regularly varying whenever α is a non-integer. Moreover, since X0
is symmetric, the multivariate regular variation does also hold if α is an odd integer,
see Remark 4.4.17 in Buraczewski et al. (2016).

The proposition does also apply if a1 = 0 or a4 = 0. This can be seen by observing
that

∏n
k=1 M̃k has a strictly positive density on M(d,R) for n sufficiently large,

which is sufficient for establishing conditions (A4)-(A5).

Example 2.12 (Similarity BEKK-ARCH, continued) The Similarity BEKK-
ARCH, introduced in Example 2.6, fits into the setting of Buraczewski et al.
(2009), see also Section 4.4.10 of Buraczewski et al. (2016). Specifically, using the
representation M̃t = a|mt |sign(mt )O, we have that

(i) E[log(|mta|)] < 0 if a < exp
{
(1/2)

[−ψ(1) + log(2)
]}

,
(ii) P(M̃tx + Qt = x) < 1 for any x ∈ R

d , and
(iii) log(|amt |) has a non-arithmetic distribution.

Then, due to Theorem 1.6 of Buraczewski et al. (2009), we have the following
proposition:
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Proposition 2.13 Let Xt satisfy (1.1)–(1.2) with l = 1 such that A := A1 = aO,
where a > 0 andO is an orthogonal matrix. If a < exp

{
(1/2)

[−ψ(1) + log(2)
]} =

1.88736..., then the process has a unique strictly stationary solution (Xt ) with Xt

multivariate regularly varying with index α > 0 satisfying E[(|mt |a)α] = 1.

In the following example, we clarify that the Diagonal BEKK-ARCH process,
introduced in Example 2.7, does not satisfy the conditions of Theorem 1.1 of
Alsmeyer and Mentemeier (2012). Moreover, we argue that the marginals may have
different tail indices, which motivates the notion of vector scaling regular variation,
introduced in the next section.

Example 2.14 (Diagonal BEKK-ARCH, continued) Consider the diagonal BEKK-
ARCH process in Example 2.7, i.e. Eqs. 1.1–1.2 with l = 1 such that A := A1 is
diagonal, mt := m1t , and Mt := M̃t = mtA. For this process, the distribution of
Mt is too restricted to apply the results by Alsmeyer and Mentemeier (2012), as in
Example 2.10. Specifically, the irreducibility condition (A4) in Appendix A.1 can be
shown not to hold, as clarified next. It holds that

P

{
‖xᵀ

n∏

k=1

Mk‖−1

(
xᵀ

n∏

k=1

Mk

)
∈ U

}
= P

{
|

n∏

k=1

mk |−1‖xᵀAn‖−1

(
n∏

k=1

mk

)
xᵀAn ∈ U

}

= P

{
sign

(
n∏

k=1

mk

)
‖xᵀAn‖−1xᵀAn ∈ U

}
.

Hence for any x ∈ S
d−1 we can always find a non-empty open U ⊂ S

d−1 such that

max
n∈N

P

{
sign

(
n∏

k=1

mk

)
‖xᵀAn‖−1xᵀAn ∈ U

}
= 0. (2.13)

As an example, for d = 2, choose x = (1, 0)ᵀ. Then ‖xᵀAn‖−1xᵀAn ∈ {(−1, 0)} ∪
{(1, 0)} for any n ∈ N. We conclude that condition (A4) does not hold for the
diagonal BEKK-ARCH process.

Note that, each element of Xt = (Xt,1, ..., Xt,d)ᵀ of the diagonal BEKK-ARCH
process can be written as an SRE,

Xt,i = AiimtXt−1,i + Qt,i, t ∈ Z, i = 1, . . . , d.

By Theorem 4.1 of Goldie (1991), the stationary solution of the marginal equation
exists if and only if E[log(|Aiim0|)] < 0. In that case there exists a unique αi > 0
such that E[|m0|αi ] = |Aii |−αi and

P(±X0,i > x) ∼ cix
−αi where ci = E[|X1,i |αi − |Aiim1X0,i |αi ]

2αiE[|Aiim1|αi log(|Aiim1|)] .

Hence each marginal of X0 may in general have different tail indices. More precisely,
the tail indices are different if the diagonal elements of A, i.e. the Aiis, are, and the
heaviest marginal tail index αi0 corresponds to the largest diagonal coefficient Ai0i0 .
When i0 is unique, i.e. αi0 < αi for all i = 1, ..., d except i �= i0, the distribution X0
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can be considered as multivariate regularly varying with index αi0 and with a limit
measure μ with degenerate marginals i �= i0.

2.3 Vector scaling regularly varying distributions

The previous Example 2.14 shows that the Diagonal BEKK-ARCH process fits into
the case where α(u) in Eq. 2.9 is non-constant. Such cases have not attracted much
attention in the existing body of literature. However, recent empirical studies, such
as Matsui and Mikosch (2016), see also Damek et al. (2017), may suggest that it is
more realistic to consider different marginal tail behaviors when modelling multidi-
mensional financial observations. The idea is to use a vector scaling instead of the
scaling P(‖X‖ > x) in Definition 2.9 that reduced the regular variation properties of
the vector X to the regular variation properties of the norm ‖X‖ only. More precisely,
let (Xt ) be a stationary process in R

d and let x = (x1, . . . , xd)ᵀ ∈ R
d . Denote also

x−1 = (x−1
1 , . . . , x−1

d )ᵀ.
In our framework, we consider distributions satisfying the following condition:

Condition M Each marginal of X0 is regularly varying of order αi > 0, i =
1, ..., d . The slowly varying functions �i(t) → ci > 0 as t → ∞, i = 1, ..., d .

Indeed, the Diagonal BEKK-ARCH process introduced in Example 2.14 satis-
fies Condition M. Moreover, any regularly varying distribution satisfying the
Kesten property (2.9) satisfies Condition M. In particular, the ID and Similarity
BEKK-ARCH processes, introduced in Examples 2.5 and 2.6 respectively, satisfy
Condition M.

We introduce the notion of vector scaling regular variation as the nonstandard
regular variation of the book of Resnick (2007) under Condition M, extended to
negative components (Resnick 2007, Sections 6.5.5-6.5.6):

Definition 2.15 The distribution of the vector X0 is vector scaling regularly vary-
ing (VSRV) if and only if it satisfies Condition M and it is non-standard regularly
varying, i.e. there exists a normalizing sequence x(t) and a Radon measure μ with
non-null marginals such that

tP(x(t)−1 	 X0 ∈ ·) → μ(·), vaguely. (2.14)

The usual way of analyzing non-standard regularly varying vectors is to con-
sider a componentwise normalization that is standard regularly varying in the sense
of Definition 2.9. Specifically, when X0 = (X0,1, ..., X0,d )ᵀ satisfies Definition
2.15, (c−1

1 (X0,1/|X0,1|)|X0,1|α1 , ..., c−1
d (X0,d/|X0,d |)|X0,d |αd )ᵀ satisfies Definition

2.9 with index one. Throughout we find it helpful to focus on the non-normalized
vector X0 in order to preserve the multiplicative structure of the tail chain introduced
in Section 3.2 below, which is used for analyzing the extremal properties of VSRV
processes.

In the following proposition we state the VSRV vector X0 has a polar decomposi-
tion. In the case where Condition M is not satisfied, note that the polar decomposition
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holds on a transformation of the original process. Under Condition M, the natural
radius notion is ‖ · ‖α , where

‖x‖α := max
1≤i≤d

c−1
i |xi |αi . (2.15)

Notice that the homogeneity of ‖ · ‖α , due to Condition M, will be essential for the
proof.

Proposition 2.16 Suppose that the vector X0 satisfies Condition M. Then X0 is
VSRV if and only if there exists a tail vector Y0 ∈ R

d with non-degenerate marginals
such that

L(((ci t)
−1/αi )1≤i≤d 	 X0 | ‖X0‖α > t) →t→∞ L(Y0), (2.16)

where ‖ · ‖α is defined in (2.15). Moreover, ‖Y0‖α is standard Pareto distributed.

Notice that a similar vector scaling argument has been introduced in Lindskog
et al. (2014).

Proof Adapting Theorem 4 of de Haan and Resnick (1977), the definition of vector
scaling regularly varying distribution of X0 in Eq. 2.14 implies (2.16). Conversely,
under Condition M, we have that |X0,k|αk is regularly varying of order 1 for all 1 ≤
k ≤ d with slowly varying functions �i(t) ∼ ci . Moreover ‖X0‖α is regularly varying
from the weak convergence in Eq. 2.16 applied on the Borel sets {‖X0‖α > ty},
y ≥ 1. Thus, ‖X0‖α is regularly varying of order 1 with slowly varying function �(t).
One can rewrite (2.16) as

�(t)−1tP(x(t)−1 	 X0 ∈ ·, ‖X0‖α > t) → P(Y0 ∈ ·).
Using the slowly varying property of �, we obtain, for any ε > 0,

�(t)−1tP(x(t)−1 	 X0 ∈ ·, ‖X0‖α > tε) → ε−1
P(Y0 ∈ ·).

Then by marginal homogeneity of ‖ · ‖α ,

�(t)−1tP(x(t)−1 	 X0 ∈ ·, ‖x(t)−1 	 X0‖α > ε) → ε−1
P(Y0 ∈ ·).

Notice that �(t)t−1 > 0 is non-increasing as it is the tail of ‖X0‖α . So there exists a
change of variable t = h(t ′) so that �(t)−1t = t ′ and

t ′P(x(h(t ′))−1 	 X0 ∈ ·, ‖x(h(t ′))−1 	 X0‖α > ε) → ε−1
P(Y0 ∈ ·).

We obtain the existence of μ for x′ = x ◦ h in Eq. 2.14 such that μ(·, ‖x‖α > ε) =
P(·), which is enough to characterize μ entirely, choosing ε > 0 arbitrarily small.

The spectral properties of VSRV X0 can be expressed in terms of the tail vector
Y0. Notice that for any u ∈ {+1, 0, −1}d , there exists c+(u) ≥ 0 satisfying

lim
t→∞P

(
max

1≤i≤d
c−1
i (uiX0,i )

αi+ > t | ‖X0‖α > t

)
= c+(u).
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Consider c−1 	 (u 	 X0)
α+, where c−1 = (c−1

1 , . . . , c−1
d )ᵀ and for x ∈ R

d and α =
(α1, ..., αd)ᵀ, (x)α+ = ((x1)

α1+ , ..., (xd)
αd+ )ᵀ. If c+(u) is non-null, by a continuous

mapping argument, c−1 	 (u 	 X0)
α+ satisfies

L(t−1c−1 	(u	X0)
α+ | ‖(u	X0)+‖α > t) →t→∞ L(c+(u)−1(u	Y0)

α+), (2.17)

and c−1 	 (u	X0)
α+ is regularly varying of index 1. By homogeneity of the limiting

measure in the multivariate regular variation (2.10), we may decompose the limit as
a product

P(‖(u 	 X0)+‖α > ty, c−1 	 (u 	 X0)
α+/‖(u 	 X0)+‖α ∈ ·)

P(‖(u 	 X0)+‖α > t)
→ y−α

P	u(·),

for any y ≥ 1. Such limiting distribution is called a simple max-stable distribution,
and ¶	u , supported by the positive orthant, is called the spectral measure of c−1 	
(u	X0)

α+, see de Haan and Resnick (1977) for more details. By identification of the
two expressions of the same limit, we obtain the following proposition.

Proposition 2.17 With Y0 defined in Proposition 2.16, the distribution of (u 	
Y0)

α+/‖(u	Y0)+‖α , if non-degenerate, is the spectral measure of c−1 	(u	X0)
α+ ∈

[0, ∞)d . Moreover, it is independent of ‖(u 	 Y0)+‖α , and c+(u)−1‖(u 	 Y0)+‖α is
standard Pareto distributed.

Proof That c+(u)−1‖(u 	 Y0)+‖α is standard Pareto distributed follows from the
convergence in Eq. 2.17 associated with the regularly varying property, ensuring the
homogeneity of the limiting measure. Then, using again the homogeneity in Eq. 2.17,
it follows that (u 	 Y0)

α+/‖(u 	 Y0)+‖α and c+(u)−1‖(u 	 Y0)+‖α are independent.

Example 2.18 (Diagonal BEKK-ARCH, continued) We have not been able to
establish the existence of Y0 satisfying (2.16), except the case of the scalar BEKK-
ARCH where the diagonal elements of A are identical. In this case the process is
a special case of the Similarity BEKK-ARCH, see Example 2.6. Even in this case,
the characterization of the spectral distribution is not an easy task because of the
diagonality of A, ruling out Theorem 1.4 of Buraczewski et al. (2009). In Appendix
Section A.2 we have included some estimates of the spectral measure of X0 for the
bivariate case. The plots suggest that the tails of the process are indeed dependent. We
emphasize that new multivariate renewal theory should be developed in order to prove
that the Diagonal-ARCH model is VSRV. We leave such task for future research.

3 Vector-scaling regularly varying time series and their extremal
behavior

The existence of the tail vector in Proposition 2.16 allows us to extend the asymptotic
results of Perfekt (1997) to VSRV vectors taking possibly negative values. In order
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to do so, we use the notion of tail chain from Basrak and Segers (2009) adapted to
VSRV stationary sequences with eventually different tail indices.

3.1 Vector scaling regularly varying time series

We introduce a new notion of multivariate regularly varying time series based on
VSRV of Xt .

Definition 3.1 The stationary process (Xt ) is VSRV if and only if there exists a
process (Yt )t≥0, with non-degenerate marginals for Y0, such that

L(((ci t)
−1/αi )1≤i≤d 	 (X0, X1, . . . , Xk) | ‖X0‖α > t) →t→∞ L(Y0, . . . , Yk),

for all k ≥ 0. The sequence (Yt )t≥0 is called the tail process.

Following Basrak and Segers (2009), we extend the notion of spectral measure to
the one of spectral processes for any VSRV stationary process:

Definition 3.2 The VSRV stationary process (Xt ) admits the spectral process (	t )

if and only if

L(‖X0‖−1
α (X0, X1, . . . , Xk) | ‖X0‖α > t) →t→∞ L(	0, . . . , 	k),

for all k ≥ 0.

By arguments similar to the ones in the proof of Proposition 2.17, it follows that
the VSRV properties also characterize the spectral process of (c−1 	 (u 	 Xt)

α+)t≥0,
with X0 following the stationary distribution, which has the distribution of ((u 	
Yt )

α+/‖(u 	 Y0)+‖α)t≥0. We have the following proposition.

Proposition 3.3 For a VSRV stationary process (Xt ), where Y0 has non-degenerate
marginals and ‖Y0‖α is standard Pareto distributed, the spectral process of any non-
degenerate (c−1 	 (u	Xt)

α+)t≥0 is distributed as ((u	Yt )
α+/‖(u	Y0)+‖α)t≥0 and

independent of ‖(u 	 Y0)+‖α . Moreover c+(u)−1‖(u 	 Y0)+‖α is standard Pareto
distributed.

3.2 The tail chain

In the following, we will focus on the dynamics of the tail process (Yt )t≥1 in Defini-
tion 3.1, given the existence of Y0. We will restrict ourselves to the case where (Xt ) is
a Markov chain, which implies that (Yt ) is also a Markov chain called the tail chain;
see Perfekt (1997). We have the following proposition.

Proposition 3.4 Let (Xt ) satisfy (1.1)-(1.2) be a VSRV stationary process. With M̃t

defined in Eq. 1.4, the tail process (Yt ) admits the multiplicative form

Yt+1 = M̃t+1Yt , t ≥ 0. (3.1)
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Proof Following the approach of Janssen and Segers (2014), one first notices that
the existence of the kernel of the tail chain does not depend on the marginal distri-
bution. Thus the characterization of the kernel extends automatically from the usual
multivariate regular variation setting to the vector scaling regular variation one. It is
straightforward to check Condition 2.2 of Janssen and Segers (2014). We conclude
that the tail chain has the multiplicative structure in Eq. 3.1.

The tail chain for VSRV process satisfying (1.1)-(1.2) is the same no matter the
values of the marginal tail indices; for the multivariate regularly varying case with
common tail indices it coincides with the tail chain of Janssen and Segers (2014)
under Condition M. Notice that we can extend the tail chain Yt backward in time
(t < 0) using Corollary 5.1 of Janssen and Segers (2014).

3.3 Asymptotic behavior of the maxima

From the previous section, we have that the tail chain (Yt ) quantifies the extremal
behavior of (Xt ) in Eqs. 1.1-1.2. Let us consider the asymptotic behavior of the
component-wise maxima

max(X1, . . . , Xn) = (
max(X1,k, . . . , Xn,k)

)
1≤k≤d

.

Let u = (1, . . . , 1) = 1 ∈ R
d and assume that c+(1) = limt→∞ P(X0 � x(t) |

|X0| � x(t)) is positive. Recall that for (Xt ) i.i.d ., the suitably scaled maxima
converge to the Fréchet distribution; see de Haan and Resnick (1977), i.e. for any
x = (x1, . . . , xd)ᵀ ∈ R

d+, defining un(x) such that nP(X0,i > un,i(x)) ∼ x−1
i ,

1 ≤ i ≤ d, we have

P(max(X1, . . . , Xn) ≤ un(x)) → exp(−A∗(x)),

if and only if (X0)+ is vector scaling regularly varying. In such case, due to Condition
M, we have the expression

A∗(x) = c+(1)E
[

1

‖(Y0)+‖α

max
1≤i≤d

(Y0,i )
αk+

cixi

]
. (3.2)

Let us assume the following Condition, slightly stronger than Eq. 2.1:

There exists p > 0 such that lim
n→∞E[‖M̃1 · · · M̃n‖p]1/n < 1. (3.3)

Theorem 3.5 Let Xt satisfy (1.1)–(1.2). With M̃t defined in Eq. 1.4, suppose that
condition (3.3) holds. Suppose that the stationary distribution is VSRV. Assuming the
existence of Y0 in Definition 3.1, we have that

P(max(Xm, . . . , Xn) ≤ un(x)) → exp(−A(x)),

where A(x) admits the expression

c+(1)E

⎡

⎢⎣ max
1≤i≤d

maxk≥0

((∏
1≤j≤k M̃k−j Y0

)

i

)αk

+
‖(Y0)+‖αcixi

− max
1≤i≤d

maxk≥1

((∏
1≤j≤k M̃k−j Y0

)

i

)αk

+
‖(Y0)+‖αcixi

⎤

⎥⎦ . (3.4)
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Proof We verify the conditions of Theorem 4.5 of Perfekt (1997). Condition B2 of
Perfekt (1997) is satisfied under the more tractable Condition 2.2 of Janssen and
Segers (2014). Indeed, the tail chain depends only on the Markov kernel and one can
apply Lemma 2.1 of Janssen and Segers (2014), because it extends immediately to the
vector scaling regularly varying setting. Condition D(un) of Perfekt (1997) holds by
geometric ergodicity of the Markov chain for a sequence un = C log n, with C > 0
sufficiently large. Lastly, the finite clustering condition,

lim
m→∞ lim supn→∞P[max(|Xm|, . . . , |XC log n|) � un(x) | |X0| � un(x)] = 0,

(3.5)
holds for any C > 0 using the same reasoning as in the proof of Theorem 4.6 of
Mikosch and Wintenberger (2013) under the drift condition (DCp) for some p <

α = min{αi : 1 ≤ i ≤ d}. As (Xt ) is also standard α regularly varying, actually the
drift condition holds thanks to Condition (3.3) on some sufficiently large iterations
of the Markov kernel. Finally, as Eq. 3.5 is a special case of Condition D∞(c log n)

of Perfekt (1997), we obtain the desired result with the characterization given in
Theorem 4.5 of Perfekt (1997),

A(x) =
∫

(0,∞)d\(0,x)

P
(
Tj ≤ x, k ≥ 1 | T0 = y

)
ν(dy),

where (Tk)k≥0 is the tail chain of the standardized Markov chain (c−1
i (Xk,i)

αi+ )1≤i≤d ,
k ≥ 0. As μ restricted to (0, ∞)d \ (0, 1)d is the distribution of Y0, we assume that
xi ≥ 1 for all 1 ≤ i ≤ d so that we identify ν as the distribution of

(c−1
i (Y0,i )

αi+ )1≤i≤d under the constraint max
1≤i≤d

c−1
i (Y0,i )

αi+ /xi > 1.

Thus we have

A(x) = P

(
c−1
i (Yk,i)

αi+ /xi ≤ 1, k ≥ 1, 1 ≤ i ≤ d, max
1≤i≤d

c−1
i (Y0,i )

αi+ /xi > 1

)
.

To obtain an expression that is valid for any xi > 0, we exploit the homogeneity
property, and we obtain

A(x) = P

(
max
k≥0

max
1≤i≤d

(cixi)
−1Y

αi

k,i > 1

)
− P

(
max
k≥1

max
1≤i≤d

(cixi)
−1Y

αi

k,i > 1

)

= c+(1)E

[
maxk≥0 max1≤i≤d (cixi)

−1(Yk,i )
αi+

‖(Y0)+‖α

− maxk≥1 max1≤i≤d (cixi)
−1(Yk,i )

αi+
‖(Y0)+‖α

]

because c+(1)−1‖(Y0)+‖α is standard Pareto distributed and independent of the
spectral process (Yk)

α+/‖(Y0)+‖α . This expression is homogeneous and extends to
any possible x by homogeneity.

3.4 Extremal indices

As the random coefficients M̃t in Eq. 1.4 may be large, consecutive values of Xt can
be large. In the univariate case, one says that the extremal values appear in clusters.
An indicator of the average length of the cluster is the inverse of the extremal index,
an indicator of extremal dependence; see Leadbetter et al. (1983).



276 R. S. Pedersen and O. Wintenberger

Thus, the natural extension of the extremal index is the function θ(x) =
A(x)/A∗(x), with A∗(x) and A(x) defined in Eqs. 3.2 and 3.4, respectively. Notice
that there is no reason why θ should not depend on x. When xi ≥ c+(1), for
1 ≤ i ≤ d, we have the more explicit expression in terms of the spectral process,

θ(x) = P

(
Y

αi

k,i ≤ cixi, k ≥ 1, 1 ≤ i ≤ d | Y
αi

0,i > cixi, 1 ≤ i ≤ d
)

. (3.6)

However, the extremal index θi of the marginal (Xt,i) is still well-defined. It depends
on the complete dependence structure of the multivariate Markov chain thanks to the
following proposition:

Proposition 3.6 Let Xt satisfy (1.1)-(1.2). With M̃t defined in Eq. 1.4 satisfying (3.3)
and assuming the existence of Y0 in Definition 3.1, the extremal index, θ , defined
in Eq. 3.6, is a positive continuous function bounded from above by 1 that can be
extended to (0, ∞]d \ {∞, . . . , ∞}. The extremal indices of the marginals are
θi = θ(∞, . . . , ∞, xi , ∞, . . . ,∞)

=
E

[
‖(Y0)+‖−1

α

(
maxk≥0

((∏
1≤j≤k M̃k−j Y0

)

i

)αi

+
− maxk≥1

((∏
1≤j≤k M̃k−j Y0

)

i

)αi

+

)]

E

[
‖(Y0)+‖−1

α

(
Y0,i

)αi

+
] .

Proof Except for the positivity of the extremal index, the result follows by Proposi-
tion 2.5 in Perfekt (1997). The positivity is ensured by applying Corollary 2 in Segers
(2005).

Example 3.7 (Diagonal BEKK-ARCH, continued) Suppose that X0 is VSRV as
conjectured in Example 2.18. It follows from the tail chain approach of Janssen
and Segers (2014) that the stationary Markov chain (Xt ) is regularly varying.
Thanks to the diagonal structure of the matrices M̃k = Amk , one can factor-
ize ‖(Y0)+‖−1

α (Y0,i )
αi in the expression of θi provided in Proposition 3.6. Since

‖(Y0)+‖−1
α (Y0,i )

αi and mk are independent for k ≥ 1, we recover a similar expression
as in the remarks after Theorem 2.1 in de Haan et al. (1989):

θi = E

⎡

⎣max
k≥0

⎛

⎝Ak
ii

∏

1≤j≤k

mj

⎞

⎠
αi

+
− max

k≥1

⎛

⎝Ak
ii

∏

1≤j≤k

mj

⎞

⎠
αi

+

⎤

⎦ .

We did not manage to provide a link between the θi and the extremal index θ(x) of
the (multivariate) stationary solution (Xt ) of the Diagonal BEKK-ARCH. Due to the
different normalising sequences in the asymptotic extremal result given in Theorem
3.5, the extremal index θ(x) depends on the constants ci, i = 1, ..., d . For x∗

i =
c+(1), 1 ≤ i ≤ d, the expression (3.6) gets more simple because c+(1)−1‖(Y0)+‖α

is standard Pareto distributed and supported on [1, ∞):

θ(x∗) = P

⎛

⎝Ak
ii

∏

1≤j≤k

mjY0,i ≤ (cic+(1))1/αi , k ≥ 1, 1 ≤ i ≤ d

⎞

⎠ .



Tail behavior of multivariate heteroskedastic processes 277

One can check that θ(x∗) ≥ θi0 where 1 ≤ i0 ≤ d satisfies Ai0i0 ≥ Aii , 1 ≤ i ≤ d so
that i0 is the marginal with smallest tail and extremal indices. Thus the inverse of the
extremal index of the multidimensional Diagonal BEKK-ARCH is not larger than the
largest average length of the marginals clusters. It can be interpreted as the fact that
the largest clusters are concentrated along the i0 axis, following the interpretation of
the multivariate extremal index given on p. 423 of Beirlant et al. (2006).

3.5 Convergence of point processes

Let us consider the vector scaling point process on R
d

Nn(·) =
n∑

t=1

δ((cin)−1/αi )1≤i≤d	Xt
(·), n ≥ 0. (3.7)

We want to characterize the asymptotic distribution of the point process Nn when
n → ∞. We refer to Resnick (2007) for details on the convergence in distribution
for random measures. In order to characterize the limit, we adapt the approach of
Davis and Hsing (1995) to the multivariate VSRV case similar to Davis and Mikosch
(1998). The limit distribution will be a cluster point process admitting the expression

N(·) =
∞∑

j=1

∞∑

t=1

δ(
(cij )−1/αi

)
1≤i≤d

	 Qj,t
(·), (3.8)

where j , j = 1, 2, ..., are arrival times of a standard Poisson process, and (Qj,t )t∈Z,
j = 1, 2, ..., are mutually independent cluster processes. Following Basrak and Tafro
(2016), we use the back and forth tail chain (Yt ) to describe the cluster process:
Consider the process (Zt ), satisfying

L
(
(Zt )t∈Z

)
= L

(
(Yt )t∈Z | sup

t≤−1
‖Yt‖α ≤ 1

)
,

which is well defined when the anti-clustering condition (3.5) is satisfied. Then we
have

L
(
(Qj,t )t∈Z

)
= L

(
L−1

Z (Zt )t∈Z
)
, j ≥ 1,

with LZ = supt∈Z ‖Zt‖α . Notice that the use of the pseudo-norm ‖ · ‖α and the fact
that ‖Y0‖α is standard Pareto are crucial to mimic the arguments of Basrak and Tafro
(2016). The limiting distribution of the point process Nn coincides with the one of N :

Theorem 3.8 Let Xt satisfy (1.1)-(1.2). With M̃t defined in Eq. 1.4, suppose that Eq.
3.3 holds, and assume that Y0 in Definition 3.1 exists. With Nn defined in Eq. 3.7 and
N defined in Eq. 3.8,

Nn
d→ N, n → ∞.

Proof Let us denote sign the operator sign(x) = x/|x|, x ∈ R, applied coordi-
natewise to vectors in R

d . We apply Theorem 2.8 of Davis and Mikosch (1998)
to the transformed process (c−1 	 sign(Xt ) 	 |Xt |α)t∈Z which is standard regu-
larly varying of order 1. In order to do so, one has to check that the anti-clustering
condition (3.5) is satisfied and that the cluster index of its max-norm is positive.
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This follows from arguments developed in the proof of Theorem 3.5. The mixing
condition of Davis and Mikosch (1998) is implied by the geometric ergodicity of
(Xt ). Thus, the limiting distribution of the point process

∑n
t=1 δn−1c−1	sign(Xt )	|Xt |α

coincides with the one of the cluster point process
∑∞

j=1
∑∞

t=1 δ
−1

j Q̃j,t
for some

cluster process (Q̃j,t )t∈Z. A continuous mapping argument yields the convergence of
Nn to

∑∞
j=1

∑∞
t=1 δ

((cij )−1/αi )1≤i≤d	 sign(Q̃j,t )	|Q̃j,t |α . The limiting cluster process
coincide with Qj,t in distribution thanks to the definition of VSRV processes.

4 Sample covariances

In this section, we derive the limiting distribution of the sample covariances for
certain BEKK-ARCH processes. Consider the sample covariance matrix,

n,X = 1

n

n∑

t=1

XtX
ᵀ
t .

Let vech(·) denote the half-vectorization operator, i.e. for a d × d matrix A = [aij ],
vech(A) = (a11, a21, ..., ad1, a22, ..., ad2, a33, ..., add)ᵀ (d(d + 1)/2 × 1). The
derivation of the limiting distribution of the sample covariance matrix relies on
using the multidimensional regularly varying properties of the stationary process
(vech(XtX

ᵀ
t ) : t ∈ Z). Let a−1

n denote the normalization matrix,

a−1
n = (

n−1/αi−1/αj c
−1/αi

i c
−1/αj

j

)
1≤i,j≤d

.

Using Theorem 3.8 and adapting the continuous mapping argument of Proposition
3.1 of Davis and Mikosch (1998) yield the following result.

Proposition 4.1 Let Xt satisfy (1.1)-(1.2). With M̃t defined in Eq. 1.4 satisfying (3.3)
and assuming the existence of Y0 in Definition 3.1, we have

n∑

t=1

δvech(a−1
n )	vech(XtX

ᵀ
t )

d→
∞∑

�=1

∞∑

t=1

δvech(P�)	 vech(Q�,tQ
ᵀ
�,t )

, n → ∞,

where

P� = (


−1/αi−1/αj

� c
−1/αi

i c
−1/αj

j

)
1≤i,j≤d

.

Let us define αi,j = αiαj /(αi + αj ) and assume that αi,j �= 1 and αi,j �= 2
for all 1 ≤ i ≤ j ≤ d. Note that αi,j is a candidate for the tail index of the cross
product Xt,iXt,j and that αi,i = αi/2, 1 ≤ i ≤ d. Actually it is the case under some
extra assumptions ensuring that the product Y0,iY0,j is non null, see Proposition 7.6
of Resnick (2007). In line with Theorem 3.5 of Davis and Mikosch (1998), we then
get our main result on the asymptotic behavior of the empirical covariance matrix.
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Theorem 4.2 Let Xt satisfy (1.1)-(1.2). With M̃t defined in Eq. 1.4, suppose that
Eq. 3.3 holds, and assume that Y0 in Definition 3.1 exists. Moreover, for any (i, j)

such that 1 < αi,j < 2, suppose that

lim
ε→0

lim sup
n→∞

Var
(
n−1/αi,j

n∑

t=1

Xt,iXt,j1|Xt,iXt,j |≤n
1/αi,j ε

) = 0. (4.1)

Then
(√

n ∧ n1−1/αi,j (n,X − E[n,X]1αi,j >1)i,j

)

1≤j≤i≤d

d→ S, n → ∞,

where Si,j is an αi,j ∧ 2-stable random variable for 1 ≤ i ≤ j ≤ d and non-
degenerate for i = j .

When Theorem 4.2 applies, as αi,j ≥ (αi ∧ αj )/2, the widest confidence interval
on the covariance estimates is supported by the i0th marginal satisfying αi0 ≤ αi for
all 1 ≤ i ≤ d.

In order to apply Theorem 4.2, the main difficulty is to show that the condition
(4.1) holds. However, notice that Theorem 4.2 applies simultaneously on the cross-
products with αi,j /∈ [1, 2] with no extra assumption. Next, we apply Theorem 4.2 to
the ongoing examples.

Example 4.3 (Diagonal BEKK-ARCH, continued) Consider the diagonal BEKK-
ARCH process and the cross products Xt,iXt,j for some i ≤ j and any t ∈ Z. From
Hölder’s inequality (which turns out to be an equality in our case), we have

E[|AiiAjjm
2
0|αi,j ] = E[|Aiim0|αi |]αi,j /αiE[|Ajjm0|αj ]αi,j /αj = 1.

Thus, (Xt,iXt,j ), which is a function of the Markov chain (Xt ), satisfies the drift
condition (DCp) of Mikosch and Wintenberger (2013) for all p < αi,j . Then, one
can show that Eq. 4.1 is satisfied using the same reasoning as in the proof of Theorem
4.6 of Mikosch and Wintenberger (2013).

Example 4.4 (Similarity BEKK-ARCH, continued) If αi,j /∈ [1, 2], the limiting
distribution of the sample covariance matrix for the Similarity BEKK-ARCH fol-
lows directly from Theorem 4.2. If αi,j ∈ (1, 2) the additional condition (4.1) has
to be checked. Relying on the same arguments as in Example 4.3, one would have
to verify that the condition (DCp) of Mikosch and Wintenberger (2013) holds for
the Similarity BEKK-ARCH process, which appears a difficult task as it requires to
find a suitable multivariate Lyapunov function. We leave such task for future inves-
tigation. Consider the special case of the scalar BEKK-ARCH process introduced in
Example 2.6. Here A = √

aId , with Id the identity matrix, such that M̃t is diagonal.
In the case αi,j ∈ (1, 2) for a least some pair (i, j), the limiting distribution of the
sample covariance is derived along the lines of Example 4.3. Specifically, this relies
on assuming that a < exp

{
(1/2)

[−ψ(1) + log(2)
]}

such that a stationary solution
exists, and noting that the index of regular variation for each marginal of Xt is given
by α satisfying E[|√amt |α] = 1.
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Example 4.5 (ID BEKK-ARCH, continued) Whenever αi,j /∈ [1, 2], the limit-
ing distribution of the sample covariance matrix for the ID BEKK-ARCH follows
directly from Theorem 4.2. Similar to Example 4.4 we leave for future investigation
to show whether condition (4.1) holds.

The previous examples are important in relation to variance targeting estimation
of the BEKK-ARCH model, as considered in Pedersen and Rahbek (2014). For the
univariate GARCH process, Vaynman and Beare (2014) have shown that the limiting
distribution of the (suitably scaled) variance targeting estimator follows a singular
stable distribution when the tail index of the process lies in (2, 4). We expect a similar
result to hold for the BEKK-ARCH process.

5 Concluding remarks

We have found a mild sufficient condition for geometric ergodicity of a class of
BEKK-ARCH processes. By exploiting that the processes can be written as a multi-
varaite stochastic recurrence equation (SRE), we have investigated the tail behavior
of the invariant distribution for different BEKK-ARCH processes. Specifically, we
have demonstrated that existing Kesten-type results apply in certain cases, implying
that each marginal of the invariant distribution has the same tail index. Moreover, we
have shown for certain empirically relevant processes, existing renewal theory is not
applicable. In particular, we show that the Diagonal BEKK-ARCH processes may
have component-wise different tail indices. In light of this property, we introduce
the notion of vector scaling regular varying (VSRV) distributions and processes. We
study the extremal behavior of such processes and provide results for convergence
of point processes based on VSRV processes. It is conjectured, and supported by
simulations, that the Diagonal BEKK-ARCH process is VSRV. However, it remains
an open task to verify formally that the property holds. Such task will require the
development of new multivariate renewal theory.

Our results are expected to be important for future research related to the statistical
analysis of the Diagonal BEKK-ARCH model. As recently shown by Avarucci et al.
(2013), the (suitably scaled) maximum likelihood estimator for the general BEKK-
ARCH model (with l = 1) does only have a Gaussian limiting distribution, if the
second-order moments of Xt is finite. In order to obtain the limiting distribution in
the presence of very heavy tails, i.e. when E[‖Xt‖2] = ∞, we believe that non-
standard arguments are needed, and in particular the knowledge of the tail-behavior
is expected to be crucial for the analysis. We leave additional considerations in this
direction to future research.
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A Appendix

A.1 Theorem 1.1 of Alsmeyer and Mentemeier (2012)

Consider the general SRE

Yt = AtYt−1 + Bt (4.2)

with (At , Bt ) a sequence of i.i.d. random variables with generic copy (A, B) such that
A is a d × d real matrix and B takes values in R

d . Consider the following conditions
of Alsmeyer and Mentemeier (2012):

• (A1) E[log+(‖A‖)] < ∞, where ‖ · ‖ denotes the operator norm.
• (A2) E[log+(‖B‖)] < ∞.
• (A3) P[A ∈ GL(d,R)] = 1.
• (A4) maxn∈N P

{‖xᵀ∏n
i=1 Ai‖−1

(
xᵀ∏n

i=1 Ai

) ∈ U
}

> 0, for any x ∈ S
d−1

and any non-empty open subset U of Sd−1.
• (A5) Let Vδ denote the open δ-ball in GL(d,R) and let LEB denote the Lebesgue

measure on M(d,R). It holds that for any Borel set A ∈ M(d,R), P(
∏n0

i=1 Ai ∈
A) ≥ γ01Vc(0)(A)LEB(A) for some 0 ∈ GL(d,R), n0 ∈ N, and c, γ0 > 0.

• (A6) P(A0v + B0 = v) < 1 for any v ∈ R
d .

• (A7) There exists κ0 > 0 such that

E[ inf
x∈Sd−1

‖xᵀA0‖κ0]≥1, E[‖A0‖κ0 log+ ‖A0‖] < ∞, and 0<E[‖B0‖κ0 ]<∞.

Theorem A.1 (Alsmeyer and Mentemeier 2012, Theorem 1.1) Consider the SRE in
Eq. 4.2 suppose that β := limn→∞ n−1 log(‖∏n

i=1 Ai‖) < 0 and that (A1)-(A7)
hold, then there exists a unique κ ∈ (0, κ0] such that

lim
n→∞ n−1 log(‖

n∏

i=1

Ai‖κ) = 0.

Moreover, the SRE has a strictly stationary solution satisfying,

lim
t→∞ tκP(xᵀY0 > t) = K(x) f orall x ∈ S

d−1,

where K is a finite positive and continuous function on Sd−1.

A.2 Estimation of the spectral measure for the bivariate diagonal
BEKK-ARCH process

In this section we consider the estimation of the spectral measure of the diagonal
BEKK-ARCH process presented in Example 2.14. Specifically, we consider a special
case of the BEKK-ARCH process in Eqs. 1.1-1.2, where d = 2:

Xt = mtAXt−1 + Qt,
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with {Qt : t ∈ N} an i.i.d. process with Qt ∼ N(0, C) independent of {mt : t ∈ N},
and

A =
[

A11 0
0 A22

]
.

Following the approach for i.i.d. sequences of vectors given in Einmahl et al.
(2001), we consider the following estimator of the spectral measure of Xt =
(Xt,1, Xt,2)

ᵀ:

�̂(θ) = 1

k

T∑

t=1

1
{R(1)

t ∨R
(2)
t ≥T +1−k,arctan

T +1−R
(2)
t

T +1−R
(1)
t

≤θ}
, θ ∈ [0, π/2],

where R
(j)
t denotes the rank of Xt,j among X1,j , ..., XT,j , j = 1, 2, i.e.

R
(j)
t :=

T∑

i=1

1{Xi,j ≥Xt,j }.

Here k is a sequence satisfying k(T ) → ∞ and k(T ) = o(T ). Einmahl et al. (2001)
showed that this estimator is consistent for i.i.d. series. We expect a similar result to
hold for geometrically ergodic processes. The reason is that the asymptotic behavior
of the empirical tail process used in Einmahl et al. (2001) has been extended to such
cases in Kulik et al. (2015).
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Fig. 1 Nonparametric estimates for k = 100, 200, 300, 400, 500 and for various choices of α1, α2, and c
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We consider the estimation of the spectral measure for different values of C, A11,
and A22. In particular, the matrix C is

C = 10−5
[

1 c

c 1

]
, c ∈ {0, 0.5},

and the values A11 and A22 are determined according to choices of the tail indices
of Xt,1 and Xt,2, respectively. I.e. A11 and A22 satisfy E[|mt |αi ] = |Aii |−αi and are
determined by analytical integration. Specifically, with φ(·) the pdf of the standard
normal distribution,

αi = 0.5 ⇒ Aii = (

∫ ∞

−∞
|m|0.5φ(m)dm)−1/0.5 ≈ 1.479

αi = 2.0 ⇒ Aii = 1

αi = 3.0 ⇒ Aii = (8/π)−1/6 ≈ 0.8557

αi = 4.0 ⇒ Aii = 3−1/4 ≈ 0.7598

Figure 1 contains plots of the estimates of the spectral measure. The estimates
�̂(θ) are based on one realization of the process with T = 2,000 and a burn-in period
of 10,000 observations.
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