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Abstract Likelihood-based procedures are a common way to estimate tail depen-
dence parameters. They are not applicable, however, in non-differentiable models
such as those arising from recent max-linear structural equation models. Moreover,
they can be hard to compute in higher dimensions. An adaptive weighted least-
squares procedure matching nonparametric estimates of the stable tail dependence
function with the corresponding values of a parametrically specified proposal yields
a novel minimum-distance estimator. The estimator is easy to calculate and applies
to a wide range of sampling schemes and tail dependence models. In large sam-
ples, it is asymptotically normal with an explicit and estimable covariance matrix.
The minimum distance obtained forms the basis of a goodness-of-fit statistic whose
asymptotic distribution is chi-square. Extensive Monte Carlo simulations confirm
the excellent finite-sample performance of the estimator and demonstrate that it is
a strong competitor to currently available methods. The estimator is then applied to
disentangle sources of tail dependence in European stock markets.
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1 Introduction

Extreme value analysis has been applied to measure and manage financial and actu-
arial risks, assess natural hazards stemming from heavy rainfall, wind storms, and
earthquakes, and control processes in the food industry, internet traffic, aviation,
and other branches of human activity. The extension from univariate to multivariate
data gives rise to the concept of tail dependence. The latter can and will be repre-
sented here by the stable tail dependence function, denoted by � (Huang 1992; Drees
and Huang 1998), or tail dependence function for short. Estimating this tail depen-
dence function is the subject of this paper. Fitting tail dependence models for spatial
phenomena observed at finitely many sites constitutes an interesting special case.

In high(er) dimensions, the class of tail dependence functions becomes rather
unwieldy, and therefore we follow the common route of modelling it parametrically.
Note that this is far from imposing a fully parametric model on the data generating
process. In particular, we only assume a domain-of-attraction condition at the copula
level. Parametric models for tail dependence have their origins in Gumbel (1960),
and many models have since then been proposed, see, e.g., Coles and Tawn (1991),
and more recently, Kabluchko et al. (2009).

Likelihood-based procedures are perhaps the most common way to estimate tail
dependence parameters (Davison et al. 2012; Wadsworth and Tawn 2014; Huser et al.
2016). Likelihood methods, however, are not applicable to models involving non-
differentiable tail dependence functions. Such functions arise in max-linear models
(Wang and Stoev 2011), in particular factor models (Einmahl et al. 2012) or struc-
tural equation models based on directed acyclic graphs (Gissibl and Klüppelberg
2017). Moreover, likelihoods can be hard to compute, especially in higher dimen-
sions. This is why current likelihood methods are usually based on composite
likelihoods, relying on pairs or triples of variables only, not exploiting information
from higher-dimensional tuples.

It is the goal of this paper to estimate the true parameter vector θ0 of the tail
dependence function � and to assess the goodness-of-fit of the parametric model.
The parameter estimator is obtained by comparing, at finitely many points in the
domain of �, some initial, typically nonparametric, estimator of the latter with the
corresponding values of the parametrically specified proposals, and retaining the
parameter value yielding the best match. The method is generic in the sense that it
applies to many parametric models, differentiable or not, and to many initial esti-
mators, not only the usual empirical tail dependence function but also, for instance,
bias-corrected versions thereof (Fougères et al. 2015; Beirlant et al. 2016). Further,
the method avoids integration or differentiation of functions of many variables and
can therefore handle joint dependence between many variables simultaneously, more
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easily than the likelihood methods mentioned earlier and the M-estimator approach in
Einmahl et al. (2016). This feature is particularly interesting for inferring on higher-
order interactions, going beyond mere distance-based dependence models such as
those frequently employed for spatial extremes. Finally, in those situations where
likelihood methods are applicable, the new estimator is a strong competitor.

The distance between the initial estimator and the parametric candidates is mea-
sured through weighted least squares. The weight matrix may depend on the unknown
parameter θ and is hence estimated simultaneously. The construction of the estimator
bears some similarity with the continuous updating generalized method of moments
(Hansen et al. 1996); the present estimator, however, is substantially different and
does not use moments. Our flexible estimation procedure is related to that in Einmahl
et al. (2016), but the continuous updating procedure is new in multivariate extreme
value statistics.

We show that the weighted least squares estimator for the tail dependence function
is consistent and asymptotically normal, provided that the initial estimator enjoys
these properties too, as is the case for the empirical tail dependence function and its
recently proposed bias-corrected variations. The asymptotic covariance matrix is a
function of the unknown parameter and can thus be estimated by a plug-in technique.
We also provide novel goodness-of-fit tests for the parametric tail dependence model
based on a comparison between the nonparametric and the parametric estimators.
Under the null hypothesis that the tail dependence model is correctly specified, the
test statistics are asymptotically chi-square distributed.

The paper is organized as follows. In Section 2 we present the estimator, the
goodness-of-fit statistic, and their asymptotic distributions. Section 3 reports on a
Monte Carlo simulation study involving a variety of models, as well as a finite-
sample comparison of our estimator with estimators based on composite likelihoods.
An application to European stock market data is presented in Section 4, where we try
to disentangle sources of tail dependence stemming from the country of origin (Ger-
many versus France) and the economic sector (chemicals versus insurance), fitting a
structural equation model. All proofs are deferred to Appendix A. In Appendix B we
verify the main conditions on the models considered in Sections 3.1–3.3.

2 Inference on tail dependence parameters

2.1 Setup

Let Xi = (Xi1, . . . , Xid), i ∈ {1, . . . , n}, be random vectors in R
d with a common

cumulative distribution function F and marginal cumulative distribution functions
F1, . . . , Fd . The (stable) tail dependence function � : [0, ∞)d → [0, ∞) is defined
as

�(x) := lim
t↓0

t−1
P[1 − F1(X11) ≤ tx1 or . . . or 1 − Fd(X1d) ≤ txd ], (2.1)

for x ∈ [0, ∞)d , provided the limit exists, as we will assume throughout. Existence
of the limit is a necessary, but not sufficient, condition for F to be in the max-domain
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of attraction of a d-variate Generalized Extreme Value distribution. Closely related
to � is the exponent measure function V (z) = �(1/z1, . . . , 1/zd), for z ∈ (0, ∞]d .
For more background on multivariate extreme value theory, see for instance Beirlant
et al. (2004) or de Haan and Ferreira (2006).

The function � is convex and homogeneous of order one, that is, �(cx) = c�(x)

for c > 0. Moreover, it satisfies

max(x1, . . . , xd) ≤ �(x) ≤ x1 + · · · + xd, x ∈ [0, ∞)d , (2.2)

where the lower bound corresponds to perfect tail dependence and the upper bound
to asymptotic independence. If d = 2, the above properties characterize the class of
all d-variate tail dependence functions, but not if d ≥ 3 (Molchanov 2008; Ressel
2013). For any dimension d ≥ 2, the collection of d-variate tail dependence func-
tions is infinite-dimensional. This poses challenges to inference on tail dependence,
especially in higher dimensions.

The usual way of dealing with this problem consists of considering parametric
models for �, a number of which are presented in Section 3. Henceforth we assume
that � belongs to a parametric family {�(· ; θ) : θ ∈ �} with � ⊂ R

p. Let θ0 denote
the true parameter vector, that is, let θ0 denote the unique point in � such that �(x) =
�(x; θ0) for all x ∈ [0, ∞)d . Our aim is to estimate the parameter θ0 and to test the
goodness-of-fit of the model.

Extremal coefficients are popular summary measures of tail dependence (de Haan
1984; Smith 1990; Schlather and Tawn 2003). For non-empty J ⊂ {1, . . . , d}, let
eJ ∈ R

d be defined by

(eJ )j :=
{

1 if j ∈ J ,
0 if j ∈ {1, . . . , d} \ J .

(2.3)

The extremal coefficients are defined by

�J := �(eJ ) = lim
t↓0

t−1
P[max

j∈J
Fj (X1j ) ≥ 1 − t]. (2.4)

By Eq. 2.2, it follows that 1 ≤ �J ≤ |J |. The extremal coefficients �J can be inter-
preted as assigning to each subset J the effective number of tail independent variables
among (X1j )j∈J .

Comparing initial and parametric estimators of the extremal coefficients is a spe-
cial case of the inference method that we propose. In fact, Smith (1990) already
proposes an estimator based on pairwise (|J | = 2) extremal coefficients; see also de
Haan and Pereira (2006) and Oesting et al. (2015).

2.2 Continuous updating weighted least squares estimator

Let �̂n,k denote an initial estimator of � based on X1, . . . , Xn; some possibilities will
be described in Subsection 2.5. The estimators �̂n,k that we will consider depend on
an intermediate sequence k = kn ∈ (0, n], that is,

k → ∞ and k/n → 0, as n → ∞. (2.5)

The sequence k will determine the tail fraction of the data that we will use for
inference, see for instance Subsection 2.5.
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Let c1, . . . , cq ∈ [0, ∞)d , with cm = (cm1, . . . , cmd) for m = 1, . . . , q, be q

points in which we will evaluate � and �̂n,k . Consider the q × 1 column vectors

L̂n,k := (
�̂n,k(cm)

)q
m=1,

L(θ) := (
�(cm; θ)

)q
m=1, (2.6)

Dn,k(θ) := L̂n,k − L(θ), (2.7)

where θ ∈ �. The points c1, . . . , cq need to be chosen in such a way that the map L :
� → R

q is one-to-one, i.e., θ is identifiable from the values of �(c1; θ), . . . , �(cq; θ).
In particular, we will assume that q ≥ p, where p is the dimension of the parameter
space �. Since �(ce{j}) = c for any tail dependence function �, any c ∈ [0, ∞) and
any j ∈ {1, . . . , d}, we will choose the points cm in such a way that each point has at
least two positive coordinates.

For θ ∈ �, let �(θ) be a symmetric, positive definite q × q matrix with ordered
eigenvalues 0 < λ1(θ) ≤ . . . ≤ λq(θ) and define

fn,k(θ) := ‖Dn,k(θ)‖2
�(θ) := DT

n,k(θ)�(θ)Dn,k(θ). (2.8)

Our continuous updating weighted least squares estimator for θ0 is defined as

θ̂n,k := arg min
θ∈�

fn,k(θ) = arg min
θ∈�

{
Dn,k(θ)T �(θ)Dn,k(θ)

}
. (2.9)

The set of minimizers could be empty or could have more than one element. The
present notation, suggesting that there exists a unique minimizer, will be justified in
Theorem 1. If all points cm are chosen as eJm in Eq. 2.3 for some collection J1, . . . , Jq

of q different subsets of {1, . . . , d}, each subset having at least two elements, then
we will refer to our estimator as an extremal coefficients estimator.

We will address the optimal choice of �(θ) below. The simplest choice for �(θ)

is the identity matrix Iq , yielding an ordinary least-squares estimator

θ̂n,k := arg min
θ∈�

q∑
m=1

(
�̂n,k(cm) − �(cm; θ)

)2
. (2.10)

This special case of our estimator is similar to the estimator proposed in Fougères
et al. (2016) in the more specific context of fitting max-stable distributions to a
random sample from such a distribution.

2.3 Consistency and asymptotic normality

If L is differentiable at an interior point θ ∈ �, its total derivative will be denoted
by L̇(θ) ∈ R

q×p. Differentiability of the map θ 
→ L(θ) is a basic smoothness
condition on the model; we do not assume differentiability of the map x 
→ �(x; θ).

Theorem 1 (Existence, uniqueness and consistency) Let {�( · ; θ) : θ ∈ �}, with
� ⊂ R

p, be a parametric family of d-variate stable tail dependence functions. Let
c1, . . . , cq ∈ [0, ∞)d be q ≥ p points such that the map L : θ 
→ (�(cm; θ))

q

m=1
is a homeomorphism from � to L(�). Let the true d-variate distribution function F

have stable tail dependence function �( · ; θ0) for some interior point θ0 ∈ �. Assume
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that L is twice continuously differentiable on a neighbourhood of θ0 and that L̇(θ0)

is of full rank; also assume that � : � → R
q×q is twice continuously differentiable

on a neighbourhood of θ0. Assume λ1 := infθ∈� λ1(θ) > 0. Finally assume, for
m = 1, . . . , q, and for a positive sequence k = kn satisfying (2.5),

�̂n,k(cm)
p−→ �(cm; θ0), as n → ∞. (2.11)

Then with probability tending to one, the minimizer θ̂n,k in Eq. 2.9 exists and is
unique. Moreover,

θ̂n,k
p−→ θ0, as n → ∞.

Typically, the above conditions on the parametric family, on �, and on the initial
estimator, can be verified. In Appendix B this is done for the parametric models
considered in Sections 3.1–3.3.

Theorem 2 (Asymptotic normality) If in addition to the assumptions of Theorem 1,
the estimator �̂n,k satisfies

√
k Dn,k(θ0) =

(√
k
{
�̂n,k(cm) − �(cm; θ0)

})q

m=1

d−→ Nq

(
0, �(θ0)

)
, as n → ∞,

(2.12)
for some q × q covariance matrix �(θ0), then, as n → ∞,
√

k (θ̂n,k − θ0) = (L̇T �L̇
)−1

L̇T �
√

k Dn,k(θ0) + op(1)
d−→ Np

(
0, M(θ0)

)
, (2.13)

where the p × p covariance matrix M(θ0) is defined by

M(θ0) := (L̇T �L̇)−1 L̇T ��(θ0)�L̇ (L̇T �L̇)−1,

and the matrices L̇ and � are evaluated at θ0.

Provided �(θ0) is invertible, we can choose � in such a way that the asymp-
totic covariance matrix M(θ0) is minimal, say Mopt(θ0), i.e., the difference M(θ0) −
Mopt(θ0) is positive semi-definite. The minimum is attained at �(θ0) = �(θ0)

−1 and
the matrix M(θ0) becomes simply

Mopt(θ0) = (L̇(θ0)
T �(θ0)

−1 L̇(θ0)
)−1

, (2.14)

see for instance Abadir and Magnus (2005, page 339). Now extend the covariance
matrix �(θ0) to the whole parameter space � by letting the map θ 
→ �(θ) be such
that �(θ) is an invertible covariance matrix and �−1 : � → R

q×q satisfies the
assumptions on �.

Corollary 1 (Optimal weight matrix) If the assumptions of Theorem 2 are satisfied
and θ̂n,k is the estimator based on the weight matrix �(θ) = �(θ)−1, then, with Mopt
as in Eq. 2.14, we have

√
k(θ̂n,k − θ0)

d−→ Np

(
0, Mopt(θ0)

)
, as n → ∞. (2.15)
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The asymptotic covariance matrices M and Mopt in Eqs. 2.13 and 2.15, respec-
tively, depend on the unknown parameter vector θ0 through the matrices L̇(θ), �(θ)

and �(θ) evaluated at θ = θ0. If these matrices vary continuously with θ , then it is a
standard procedure to construct confidence regions and hypothesis tests, cf. (Einmahl
et al. 2012, Corollaries 4.3 and 4.4).

2.4 Goodness-of-fit testing

It is of obvious importance to be able to test the goodness-of-fit of the parametric
family of tail dependence functions that we intend to use. The basis for such a test
is Dn,k(θ̂n,k), the difference vector between the initial and parametric estimators of
�(cm) at the estimated value of the parameter.

Corollary 2 Under the assumptions of Theorem 2, we have
√

k Dn,k(θ̂n,k) = (Iq −P(θ0))
√

k Dn,k(θ0)+op(1)

d−→Nq

(
0, (Iq−P(θ0))�(θ0) (Iq−P(θ0))

T
)
, as n→∞, (2.16)

where P := L̇(L̇T �L̇)−1 L̇T � has rank p and Iq − P has rank q − p.

The easiest case in which Eq. 2.16 can be exploited is when �(θ) is invertible and
�(θ) = �(θ)−1. Then it suffices to consider the minimum attained by the criterion
function fn,k in Eq. 2.8, i.e., the test statistic is just fn,k(θ̂n,k) = minθ∈� fn,k(θ).
Observe that it is important here that we allow � to depend on θ .

Corollary 3 Let q > p. If the assumptions of Corollary 1 are satisfied, in particular
if �(θ) = �(θ)−1, then

k fn,k(θ̂n,k)
d−→ χ2

q−p, as n → ∞.

If �(θ) is different from �(θ)−1, for instance when �(θ) is not invertible, a
goodness-of-fit test can still be based upon Eq. 2.16 by considering the spectral
decomposition of the limiting covariance matrix. For convenience, we suppress the
dependence on θ . Let

(Iq − P)� (Iq − P)T = V DV T

where V = (v1, . . . , vq) is an orthogonal q × q matrix, V T V = Iq , the columns of
which are orthonormal eigenvectors, and D is diagonal, D = diag(ν1, . . . , νq), with
ν1 ≥ . . . ≥ νq = 0 the corresponding eigenvalues, at least p of which are zero, the
rank of Iq − P being q − p. Let s ∈ {1, . . . , q − p} be such that νs > 0 and consider
the q × q matrix

A := VsD
−1
s V T

s

where Ds = diag(ν1, . . . , νs) is an s×s diagonal matrix and where Vs = (v1, . . . , vs)

is a q × s matrix having the first s eigenvectors as its columns.
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Corollary 4 If the assumptions of Theorem 2 hold and if s ∈ {1, . . . , q − p} is such
that, in a neighbourhood of θ0, νs(θ) > 0 and the matrix A(θ) depends continuously
on θ , then

k Dn,k(θ̂n,k)
T A(θ̂n,k)Dn,k(θ̂n,k)

d−→ χ2
s , as n → ∞.

Remark 1 If �(θ) is invertible for all θ , then we can set s = q − p and �(θ) =
�(θ)−1. The difference between the two test statistics in Corollaries 3 and 4 then
converges to zero in probability, i.e., the two tests are asymptotically equivalent under
the null hypothesis.

2.5 Choice of the initial estimator

Our estimator in Eq. 2.9 is flexible enough to allow for various initial estimators,
perhaps based on exceedances over high thresholds or rather on vectors of compo-
nentwise block maxima extracted from a multivariate time series (Bücher and Segers
2014). Here we will focus on the former case, and more specifically on the empirical
tail dependence function and a variant thereof.

For simplicity, we assume that the random vectors Xi , i ∈ {1, . . . , n}, are not
only identically distributed but also independent, so that they are a random sample
from F . Let Rn

ij denote the rank of Xij among X1j , . . . , Xnj for j = 1, . . . , d . For
convenience, assume that F is continuous.

2.5.1 Empirical stable tail dependence function

A natural estimator of �(x) is obtained by replacing F and F1, . . . , Fd in Eq. 2.1 by
their empirical counterparts and replacing t by k/n, yielding

�̃′
n,k(x) := 1

k

n∑
i=1

1
{
Rn

i1 > n + 1 − kx1 or . . . orRn
id > n + 1 − kxd

}
. (2.17)

This estimator, the empirical stable tail dependence function, was introduced for
d = 2 in Huang (1992) and studied further in Drees and Huang (1998). A slight
modification of it allows for better finite-sample properties,

�̃n,k(x) := 1

k

n∑
i=1

1
{
Rn

i1 > n + 1/2 − kx1 or . . . orRn
id > n + 1/2 − kxd

}
. (2.18)

By Einmahl et al. (2012, Theorem 4.6), this estimator satisfies Eq. 2.12 under
conditions controlling the rate of convergence in Eq. 2.1 and the growth rate of the
intermediate sequence k = kn. The first-order partial derivatives �̇j (x; θ0) of x 
→
�(x; θ0) are assumed to exist and to be continuous in neighbourhoods of the points
cm for which cmj > 0.

In this case, the entries of the matrix �(θ) in Eq. 2.12, for θ in the interior of �,
are, for i, j ∈ {1, . . . , q}, given by

�i,j (θ) = E[B(ci) B(cj )], (2.19)



A continuous updating weighted least squares estimator of tail. . . 213

with B(ci) := W�(ci) − ∑d
j=1 �̇j (ci)W�(cij ej ) and with (W�(x) : x ∈ [0, ∞)d)

a zero-mean Gaussian process with covariance function E[W�(x)W�(y)] = �(x) +
�(y)− �(x ∨y), the maximum being taken componentwise. For points ci of the form
eJ in Eq. 2.3, the expectation in Eq. 2.19 can be calculated as follows: for non-empty
subsets J and K of {1, . . . , d},

E[B(eJ ) B(eK)] = �J + �K − �J∪K −
∑
j∈J

�̇j,J (1 + �K − �{j}∪K)

−
∑
k∈K

�̇k,K (�J + 1 − �J∪{k})

+
∑
j∈J

∑
k∈K

�̇j,J �̇k,K (2 − �{j,k}),

where �J := �(eJ ; θ0) and �̇j,J := �̇j (eJ ; θ0).

2.5.2 Bias-corrected estimator

A drawback of �̃n,k in Eq. 2.18 is its possibly quickly growing bias as k increases.
Recently, two bias-corrected estimators have been proposed. We consider here the
kernel-type estimator of Beirlant et al. (2016), which is partly based on (the one in)
Fougères et al. (2015).

Consider first a rescaled version of �̃′
n,k in Eq. 2.17, defined as �̃n,k,a(x) :=

a−1�̃′
n,k(ax) for a > 0. Then define the weighted average

�̆n,k(x) := 1

k

k∑
j=1

K(aj ) �̃n,k,aj
(x), aj := j

k + 1
, j ∈ {1, . . . , k}, (2.20)

where K is a kernel function, i.e., a positive function on (0, 1) such that
∫ 1

0 K(u)

du = 1.
In addition to Eq. 2.1, we assume there exist a positive function α on (0, ∞)

tending to 0 as t ↓ 0 and a non-zero function M on [0, ∞)d such that for all x ∈
[0, ∞)d ,

lim
t↓0

1

α(t)
[t−1

P {1 − F1(X11) ≤ tx1 or . . . or1 − Fd(X1d) ≤ txd} − �(x)] = M(x).

(2.21)
Moreover, we assume a third-order condition on � (Beirlant et al. 2016, equation
(3)). In Beirlant et al. (2016, Theorem 1) the asymptotic distribution of �̆n,k in Eq.
2.20 is derived under these three assumptions and for intermediate sequences k = kn

growing faster than the ones considered above. A non-zero asymptotic bias term
arises and the idea is to estimate and remove it, thereby obtaining a possibly more
accurate estimator.

In order to achieve this bias reduction, the rate function, α, and its index of
regular variation, β, need to be estimated. Consider another intermediate sequence
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k1 = k1,n such that k/k1 → 0. The bias-corrected estimator is then defined
as

�n,k,k1(x) := �̆n,k(x) − (k1/k)β̂k1 (x)α̂k1(x) 1
k

∑k
j=1 K(aj )a

−β̂k1 (X)

j

1
k

∑k
j=1 K(aj )

,

where α̂k1 and β̂k1 are the estimators of α and β defined in Beirlant et al. (2016).
Under the mentioned conditions, asymptotic normality as in Eq. 2.12 holds, where
the limiting random vector is equal in distribution to

∫ 1
0 K(u)u−1/2 du times the one

corresponding to �̃n,k . Here, the growth rate of k here can be taken faster than when
using �̃n,k .

A simple choice for K is a power kernel, i.e, K(t) = (τ + 1)tτ for t ∈ (0, 1)

and τ > −1/2. Then
∫ 1

0 K(u) u−1/2 du = (2 + τ)/(1 + 2τ). Note that this factor
tends to 1 if τ → ∞. In practice, we take τ = 5 as recommended in Beirlant et al.
(2016).

3 Simulation studies

We conduct simulation studies for data in the max-domain of attraction of the logistic
model, the Brown–Resnick process and the max-linear model. For each model, we
report the empirical bias, standard deviation, and root mean squared error (RMSE)
of our estimators. We also study the finite-sample performance of the goodness-of-
fit statistic of Corollary 3. All simulations were done in the R statistical software
environment (R Core Team 2015). The programs used to calculate our estimator are
available in the R package tailDepFun (Kiriliouk 2016).

3.1 Logistic model: comparison with likelihood methods

The d-dimensional logistic model has stable tail dependence function

�(x1, . . . , xd; θ) = (x1/θ

1 + · · · + x
1/θ
d

)θ
, θ ∈ [0, 1].

The domain-of-attraction condition (2.1) holds for instance if F has continuous mar-
gins and its copula is Archimedean with generator φ(t) = 1/(tθ + 1), also known as
the outer power Clayton copula (Hofert et al. 2015).

In Huser et al. (2016), a comprehensive comparison of likelihood estimators for
θ has been performed based on random samples from this copula. We compare
those results to our extremal coefficients estimator, i.e., the weighted least squares
estimator based on points cm of the form eJ , with J ranging in the collection

Qa := {J ⊂ {1, . . . , d} : |J | = a
}

(3.1)

for a ∈ {2, 3}. Moreover, we let �(θ) be the identity matrix, since by exchangeability
of the model, a weighting procedure can bring no improvements.

Following Huser et al. (2016, Section 4.2), we simulated 10 000 random samples
of size n = 10 000 from the outer power Clayton copula. For the likelihood-based
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estimators, the margins are standardized to the unit Pareto scale via the rank
transformation

X∗
ij := n

n + 1/2 − Rn
ij

, i ∈ {1, . . . , n}, j ∈ {1, . . . , d}.

Again as in Huser et al. (2016, Section 4.2), we take dimension d ∈ {2, 5, 10, 15,

20, 25, 30} and parameter θ ∈ {0.3, 0.6, 0.9, 0.95}. Note that in the likelihood setting,
this is a very demanding experiment, and three of the ten likelihood-based estimators
considered in Huser et al. (2016) are only computed for d ∈ {2, 5, 10}. In Huser et al.
(2016), threshold probabilities are set to 0.98, corresponding to k = 200 in our setup.

Figure 1 shows the RMSE of three estimators based on the empirical tail depen-
dence function: the two extremal coefficients estimators mentioned above and the
pairwise M-estimator of Einmahl et al. (2016) as implemented in the R package
tailDepFun (Kiriliouk 2016). When dependence is strong, θ = 0.3, the estima-
tor based on Q3 performs best, whereas when dependence is weak, θ = 0.9 or
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Fig. 1 Logistic model: RMSE (on a logarithmic scale) for the estimators; 10 000 samples of size n =
10 000
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θ = 0.95, the estimator based on Q2 performs better than the estimator based on
Q3. Note also that when the dependence is not too weak, the estimators based on
extremal coefficients perform better than the pairwise M-estimator of Einmahl et al.
(2016). Finally, our estimation procedures have almost constant RMSE as the dimen-
sion increases, in line with the pairwise composite likelihood methods studied in
Huser et al. (2016).

Comparing these results to the ten likelihood-based estimators in Huser et al.
(2016, Figure 4), we see that our estimators are strong competitors in the sense that
they rank highly when comparing RMSEs, and are not dominated by one of the
likelihood-based estimators. More precisely, for θ = 0.3, only the likelihood esti-
mators based on the Poisson process representation (Coles and Tawn 1991) and the
multivariate Generalized Pareto distribution outperform our estimators; for θ = 0.6,
the same two likelihood estimators outperform ours, but only for d ≥ 15; finally, for
θ = 0.9 and θ = 0.95 only the pairwise censored likelihood estimator (Huser and
Davison 2014) has a smaller RMSE than our estimators.

3.2 Brown–Resnick process

The Brown–Resnick process on a planar set S ⊂ R
2 is given by

Y (s) = max
i∈N

ξi exp {εi(s) − γ (s)}, s ∈ S, (3.2)

where {ξi}i≥1 is a Poisson process on (0, ∞) with intensity measure ξ−2 dξ and
{εi( · )}i≥1 are independent copies of a Gaussian process ε with stationary increments
such that ε(0) = 0 and with variance 2γ ( · ) and semi-variogram γ ( · ). In Kabluchko
et al. (2009) it is shown that the Brown–Resnick process with γ (s) = (‖s‖/ρ)α is the
only possible limit of (rescaled) maxima of stationary and isotropic Gaussian random
fields; here ρ > 0 and 0 < α ≤ 2.

For d locations s1, . . . , sd ∈ S, the distribution of the random vector (Y (si))
d
i=1

is max-stable with tail dependence function � depending on γ ( · ). From Huser and
Davison (2013), we obtain the following representation for the extremal coefficients
�J in (2.4). Let �a( · ; R) denote the cumulative distribution function of the Na(0, R)

distribution. Then we have

�J =
∑
j∈J

�|J |−1(η
(j); R(j)), J ⊂ {1, . . . , d}, J �= ∅, (3.3)

where η(j) = (√γ (sj − si)/2
)
i∈J\{j} ∈ R

|J |−1 and where R(j) is a (|J |−1)×(|J |−
1) correlation matrix with entries given by

γ (sj − si) + γ (sj − sk) − γ (si − sk)

2
√

γ (sj − si) γ (sj − sk)
, i, k ∈ J \ {j}.

When J = {j1, j2} for j1, j2 ∈ {1, . . . , d}, expression (3.3) simplifies to �J =
2 �

(√
γ (sj1 − sj2)/2

)
.

We simulate 300 random samples of size n = 1000 from the Brown–Resnick
process on a 3 × 4 unit distance grid using the R package SpatialExtremes (Ribatet
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2015). To arrive at a more realistic estimation problem, we perturb the samples thus
obtained with additive noise, i.e., if Yi = (Yi1, . . . , Yid) is an observation from the
Brown–Resnick process, then we set Xij = Yij + |εij | for i = 1, . . . , n and j =
1, . . . , d , where εij are independent N (0, 1/4) random variables.

We estimate the parameters (α, ρ) = (1, 1) using the extremal coefficients estima-
tor based on the subset of Q2 in Eq. 3.1 consisting of pairs of neighbouring locations,
i.e., locations that are at most a distance

√
2 apart. This leads to q = 29 pairs.

Including pairs of locations that are further away tends to drastically increase the bias
(Einmahl et al. 2016).

The upper panels of Fig. 2 show the bias, standard deviation and RMSE for
three estimators: the estimator based on the empirical tail dependence function with
�(θ) = �(θ)−1 (solid lines), the estimator based on the bias-corrected tail depen-
dence function with �(θ) = �(θ)−1 (dotted lines), and the pairwise M-estimator
from Einmahl et al. (2016) (dashed lines). We see that for the estimation of the shape
parameter α = 1 it is better to use one of the estimators based on the empirical stable
tail dependence function, whereas for the scale parameter ρ = 1 the bias-corrected
estimator performs better.

To show the feasibility of the estimation procedure in high dimensions, we sim-
ulate 300 samples of size n = 1000 from the perturbed Brown–Resnick process on
a 10 × 15 unit-distance grid (d = 150), using again (α, ρ) = (1, 1) and selecting
pairs of neighbouring locations only, yielding q = 527 pairs in total. The bottom
panels of Fig. 2 show the bias, standard deviation and RMSE for the estimator based
on the empirical tail dependence function with �(θ) = Iq (solid lines), the estimator
based on the bias-corrected tail dependence function with �(θ) = Iq (dotted lines),
and the pairwise M-estimator from Einmahl et al. (2016) (dashed lines). Compared
to d = 12 above, the estimation of α has improved whereas the estimation quality of
ρ stays roughly the same.

3.3 Max-linear models on directed acyclic graphs

A max-linear or max-factor model has stable tail dependence function

�(x) =
r∑

t=1

max
j=1,...,d

bjtxj , x ∈ [0, ∞)d , (3.4)

where the factor loadings bjt are non-negative constants such that
∑r

t=1 bjt = 1 for
every j ∈ {1, . . . , d} and all column sums of the d × r matrix B := (bjt )j,t are
positive (Einmahl et al. 2012). An example of a random vector Y = (Y1, . . . , Yd)

that has tail dependence function (3.4) is Yj = maxt=1,...,r bjtZt for j ∈ {1, . . . , d},
where Z1, . . . , Zr are independent unit Fréchet variables. The random variables Yj

are then unit Fréchet as well.
Since the rows of B sum up to one, it has only d × (r − 1) free elements. Further

structure may be added to the coefficient matrix B, leading to parametric models
whose parameter dimension is lower than d × (r − 1); see below. Even then, the
map L in Eq. 2.6 induced by restricting the points cm to be of the form eJ in (2.3) is
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Fig. 2 Brown–Resnick process: bias, standard deviation and RMSE for the estimators in d = 12 (upper
panels) and d = 150 (lower panels); 300 samples of size n = 1000

typically not one-to-one. Therefore, we need more general choices of the points cm

in the definition of the estimator.
In Gissibl and Klüppelberg (2017), a link is established between max-linear mod-

els and structural equation models, from which graphical models based on directed
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acyclic graphs (DAGs) can be constructed. A recursive max-linear model is defined
via

Yj = max
k∈pa(j)

ukjYk ∨ ujZj , j = 1, . . . , d,

where pa(j) ⊂ {1, . . . , d} denotes the set of parents of node j in the graph, ukj >

0 for all k ∈ pa(j), and uj > 0 for all j ∈ {1, . . . , d}. We let Z1, . . . , Zd be
independent unit Fréchet random variables. A recursive max-linear model can then
be written as a max-linear model with parameters determined by the paths of the
corresponding graph.

We focus on the four-dimensional model corresponding to the following directed
acyclic graph (Gissibl and Klüppelberg 2017, Example 2.1):

If we require Y1, . . . , Y4 to be unit Fréchet, the matrix of factor loadings becomes

B =

⎛
⎜⎜⎝

1 0 0 0
u12 u2 0 0
u13 0 u3 0

u12u24 ∨ u13u34 u2u24 u3u34 u4

⎞
⎟⎟⎠ ,

where the diagonal elements uj for j ∈ {2, 3, 4} are such that the row sums are equal
to one. The parameter vector is then given by θ = (u12, u13, u24, u34).

We conduct a simulation study based on 300 samples of size n = 1000 from the
four-dimensional model with stable tail dependence function (3.4) and B as above,
with parameter vector θ = (0.3, 0.8, 0.4, 0.55). As before, we put Xij = Yij + |εij |,
with (Yi1, . . . , Yid) as above and εij independent N (0, 1/4) random variables. The
estimators are based on the q = 72 points cm on the grid {0, 1/2, 1}4 having at least
two positive coordinates.

Figure 3 shows the RMSE for the estimator based on the empirical tail dependence
function with �(θ) = �(θ)−1 (solid lines), the estimator based on the bias-corrected
tail dependence function with �(θ) = �(θ)−1 (dotted lines) and the pairwise M-
estimator from Einmahl et al. (2016) (dashed lines). The difference between the
pairwise M-estimator and our estimators based on the empirical tail dependence func-
tion is negligible. The estimators based on the empirical tail dependence function
perform better than the ones based on the bias-corrected version, especially for the
parameters u13 and u24.

Remark 2 For the weight matrix, we actually defined �(θ) as (�(θ) + cIq)−1 for
some small c > 0. The reason for applying such a Tikhonov correction is that some
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Fig. 3 Max-linear structural equation model based on a directed acylic graph: RMSE for the estimators;
300 samples of size n = 1000

eigenvalues of �(θ) are (near) zero, which can in turn be due to the fact that for max-
linear models such as here, �(cm; θ) may hit its lower bound max(cm,1, . . . , cm,d) for
some m ∈ {1, . . . , q}.

3.4 Goodness-of-fit test

We compare the performance of the goodness-of-fit test presented in Corollary 3
to the three goodness-of-fit test statistics κn, ω2

n, and A2
n proposed in Can et al.

(2015, page 18). In the simulation study there, the observed rejection frequencies are
reported at the 5% significance level under null and alternative hypotheses for two
bivariate models for �; a bivariate logistic model with θ ∈ (0, 1) and

�(x1, x2; ψ) = (1 − ψ)(x1 + x2) + ψ

√
x2

1 + x2
2 , ψ ∈ [0, 1], (3.5)

i.e., a mixture between the logistic model and tail independence. For both models,
they generate 300 samples of size n = 1500 from a “null hypothesis” distribution
function, for which the model is correct, and 100 samples of n = 1500 from an
“alternative hypothesis” distribution function, for which the model is incorrect. These
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distribution functions are described in equations (32), (33), (35), and (36) of Can
et al. (2015). We take cm ∈ {(1/2, 1/2), (1/2, 1), (1, 1/2), (1, 1)}, m = 1, . . . , 4,
and k = 200.

Table 1 shows the observed fractions of Type I errors under the null hypotheses and
the observed fraction of rejections under the alternative hypotheses. The results for
κn, ω2

n, and A2
n are taken from Can et al. (2015, Table 1). We see that our goodness-

of-fit test performs comparably to the test statistics in Can et al. (2015).
It should be noted that the tests are of very different nature. The three test statis-

tics in Can et al. (2015) are functionals of a transformed empirical process and are
therefore of omnibus-type. The results in there are based on the full max-domain
of attraction condition on F and the procedure is computationally complicated and
therefore difficult to apply in dimensions (much) higher than two. The present
test only performs comparisons at q points and avoids integration. Therefore it is
computationally much easier to apply in dimension d > 2.

To illustrate the power of our test in more detail, we suppose that under the null
hypothesis � is from a bivariate logistic model and we generate samples from the
asymmetric logistic model with stable tail dependence function

�(x1, x2; θ, φ) = (1 − φ)x2 +
(
x

1/θ

1 + (φx2)
1/θ
)θ

, θ, φ ∈ [0, 1].

Figure 4 shows the power of our test as a function of φ for θ = 0.5. If φ decreases,
the power becomes large. Note that φ = 0 yields a point on the boundary of the
parameter space under the null hypothesis.

4 Tail dependence in European stock markets

We analyze data from the EURO STOXX 50 Index, which represents the performance
of the largest 50 companies among 19 different “supersectors” within the 12 main
Eurozone countries. Since Germany (DE) and France (FR) together form 68% of
the index, we will focus on these two countries only. Every company belongs to a
supersector, of which there are 19 in total. We select two of them as an illustration:
chemicals and insurance. We study the following five stocks: Bayer (DE, chemicals),
BASF (DE, chemicals), Allianz (DE, insurance), Airliquide (FR, chemicals), and
Axa (FR, insurance), and we take the weekly negative log-returns of the stock prices

Table 1 Observed rejection
frequencies at the 5%
significance level under null and
alternative hypotheses

Null Alternative

logistic mixture logistic mixture

κn 19/300 9/300 92/100 97/100

ω2
n 11/300 13/300 90/100 97/100

A2
n 17/300 18/300 95/100 100/100

kfn,k(θ̂n,k) 16/300 14/300 100/100 82/100
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Fig. 4 Power for the
asymmetric model for k = 200;
1000 samples of size n = 1500
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of these companies from Yahoo Finance1 for the period January 2002 to November
2015, leading to a sample of size n = 711. This dataset and the functions used to
analyse it are available in the R package tailDepFun (Kiriliouk 2016).

We fit a structural equation model based on the directed acyclic graph given in Fig. 5.
The nodes DE and FR are represented by their national stock market indices, the
DAX and the CAC40, respectively, and the nodes chemicals and insurance are repre-
sented by corresponding sub-indices of the EURO STOXX 50 Index. Note that this is
a model for the tail dependence function only, i.e., we only assume that the joint dis-
tribution of the negative log-returns has tail dependence function � as in Eq. 3.4 with
coefficient matrix B given in Table 2. We have d = 10 and the parameter vector is
given by θ = (u12, u13, u14, u15, u26, u46, u27, u47, u38, u48, u39, u59, u2,10, u5,10).

We perform the goodness-of-fit test described in Corollary 4, based on the q =
1140 points cm in the grid {0, 1/2, 1}10 having either two or three non-zero coordi-
nates. We take �(θ) = Iq , k = 40, and we choose s such that νs > 0.1, leading in
this case to s = 11. The value of the test statistic is 5.28; the 95% quantile of a χ2

11
distribution is 19.68, so that the tail dependence model is not rejected.

The resulting parameter estimates are pictured at the edges of Fig. 5, where the
relative width of each edge is proportional to its parameter value. The standard errors
are given in parentheses. We note that, except for Allianz, the influence of the stock
market indices DAX and CAC40 is (much) stronger than the influence of the sector
indices chemicals and insurance.

5 Discussion

We have not addressed the number and choices of the points c1, . . . , cq . The more
points, the lower the asymptotic variance of the estimator. However, because q deter-
mines the dimension of � and thus of the weight matrix, choosing many points may

1http://finance.yahoo.com/

http://finance.yahoo.com/
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Fig. 5 European stock market data: directed acyclic graph with 14 parameters, whose estimates are shown
near the corresponding edges. The relative width of each edge is proportional to its parameter value. The
bottom row shows the estimated diagonal elements u6, . . . , u10 of the matrix B in Table 2

cause the inverse of � to become numerically unstable. Moreover, for spatial mod-
els and the extremal coefficients estimator,one sees that using points cm involving
locations far away from another tends to increase the bias. Overall, the optimal num-
ber of points and their values depend highly on the choice of the parametric model.
In the max-linear model, the choice of the points cm is even more important since it
influences the identifiability of the parameter vector; see Appendix B.

Table 2 European stock market data: coefficient matrix of the max-linear model stemming from the
directed acyclic graph in Fig. 5

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0

u12 u2 0 0 0 0 0 0 0 0

u13 0 u3 0 0 0 0 0 0 0

u14 0 0 u4 0 0 0 0 0 0

u15 0 0 0 u5 0 0 0 0 0

u12u26 ∨ u14u46 u2u26 0 u4u46 0 u6 0 0 0 0

u12u27 ∨ u14u47 u2u27 0 u4u47 0 0 u7 0 0 0

u13u38 ∨ u14u48 0 u3u38 u4u48 0 0 0 u8 0 0

u13u39 ∨ u15u59 0 u3u39 0 u5u59 0 0 0 u9 0

u12u2,10 ∨ u15u5,10 u2u2,10 0 0 u5u5,10 0 0 0 0 u10

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The diagonal elements ui , for i = 2; ... ; 10 are such that the rows sum up to one. European stock market
data: coefficient matrix...
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The effect of the optimal weight matrix also depends on the choice of the model
and the dimension d of the problem. The higher the dimension (and thus the more
points cm), the smaller the effect of the optimal weight matrix on the quality of our
estimator. Moreover, the continuous updating procedure is relatively slow when q is
large.

Finally, although our approach allows us to construct hypothesis tests, not all cases
of interest are covered by our theory. For instance, the Smith model is a submodel
of the Brown–Resnick process when α = 2, or in max-linear models one could
be interested in testing whether a factor loading is zero. These type of hypotheses
concern parameters on the boundary of the parameter space and are the subject of
current research by the second-named author.
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Appendix A: Proofs

Proof of Theorem 1 This proof follows the same lines as the one of (Einmahl et al.
2016, Proof of Theorem 1). Let ε0 > 0 be such that the closed ball Bε0(θ0) = {θ :
‖θ − θ0‖ ≤ ε0} is a subset of �; such an ε0 exists since θ0 is an interior point of �.
Fix ε > 0 such that 0 < ε ≤ ε0. Let, more precisely than in Eq. 2.9, �̂n,k be the set
of minimizers of the right-hand side of Eq. 2.9. We show first that

P[�̂n,k �= ∅ and �̂n,k ⊂ Bε(θ0)] → 1, n → ∞. (3.6)

Because L is a homeomorphism, there exists δ > 0 such that for θ ∈ �,
‖L(θ) − L(θ0)‖ ≤ δ implies ‖θ − θ0‖ ≤ ε. Equivalently, for every θ ∈ � such that
‖θ − θ0‖ > ε we have ‖L(θ) − L(θ0)‖ > δ. Define the event

An =
{

‖L(θ0) − L̂n.k‖ <
δ
√

λ1

(1 + √
λ1) max(1,

√
λq(θ0))

}
.

If θ ∈ � is such that ‖θ − θ0‖ > ε, then on the event An, we have

‖Dn,k(θ)‖�(θ) ≥ √
λ1(θ)‖Dn,k(θ)‖

≥ √
λ1‖L(θ0) − L(θ) − (L(θ0) − L̂n,k

) ‖
≥ √

λ1
(‖L(θ0) − L(θ)‖ − ‖L(θ0) − L̂n,k‖

)

>
√

λ1

(
δ − δ

√
λ1

1 + √
λ1

)
= δ

√
λ1

1 + √
λ1

.

It follows that on An,

inf
θ :‖θ−θ0‖>ε

‖Dn,k(θ)‖�(θ) ≥ δ
√

λ1

1 + √
λ1

>
√

λq(θ0)‖L(θ0) − L̂n,k‖
≥ ‖L(θ0) − L̂n,k‖�(θ0) ≥ inf

θ :‖θ−θ0‖≤ε
‖L(θ) − L̂n,k‖�(θ).



A continuous updating weighted least squares estimator of tail. . . 225

The infimum on the right-hand side is actually a minimum since L is continuous and
Bε(θ0) is compact. Hence on An the set �̂n,k is non-empty and �̂n,k ⊂ Bε(θ0). To
show Eq. 3.6, it remains to prove that P[An] → 1 as n → ∞, but this follows from
Eq. 2.11.

Next we will prove that, with probability tending to one, �̂n,k has exactly one
element, i.e., the function fn,k has a unique minimizer. To do so, we will show that
there exists ε1 ∈ (0, ε0] such that, with probability tending to one, the Hessian of
fn,k is positive definite on Bε1(θ0) and thus fn,k is strictly convex on Bε1(θ0). In
combination with Eq. 3.6 for ε ∈ (0, ε1], this will yield the desired conclusion.

For θ ∈ �, define the symmetric p × p matrix H(θ; θ0) by

(H(θ; θ0))i,j := 2

(
∂L(θ)

∂θj

)T

�(θ)

(
∂L(θ)

∂θi

)
− 2

(
∂2L(θ)

∂θj ∂θi

)T

×�(θ)
(
L(θ0) − L(θ)

)− 2

(
∂L(θ)

∂θi

)T
∂�(θ)

∂θj

(
L(θ0) − L(θ)

)

−2

(
∂L(θ)

∂θj

)T
∂�(θ)

∂θi

(
L(θ0) − L(θ)

)

+(L(θ0) − L(θ)
)T ∂2�(θ)

∂θj ∂θi

(
L(θ0) − L(θ)

)
,

for i, j ∈ {1, . . . , p}. The map θ 
→ H(θ; θ0) is continuous and

H(θ0; θ0) = 2 L̇(θ0)
T �(θ0) L̇(θ0), (3.7)

is a positive definite matrix. This p×p matrix is non-singular, since the q ×q matrix
�(θ0) is non-singular and the q × p matrix L̇(θ0) has rank p (recall q ≥ p). Let
‖ · ‖ denote the spectral norm of a matrix. From Weyl’s perturbation theorem (Jiang
2010, page 145), there exists an η > 0 such that every symmetric matrix A ∈ R

p×p

with ‖A − H(θ0; θ0)‖ ≤ η has positive eigenvalues and is therefore positive definite.
Let ε1 ∈ (0, ε0] be sufficiently small such that the second-order partial derivatives of
L and � are continuous on Bε1(θ0) and such that ‖H(θ; θ0) − H(θ0; θ0)‖ ≤ η/2 for
all θ ∈ Bε1(θ0).

Let Hn,k,�(θ) ∈ R
p×p denote the Hessian matrix of fn,k . Its (i, j)-th element is

(
Hn,k,�(θ)

)
ij

= ∂2

∂θj ∂θi

[
Dn,k(θ)T �(θ)Dn,k(θ)

]

= ∂

∂θj

[
−2Dn,k(θ)T �(θ)

∂L(θ)

∂θi

+ Dn,k(θ)T
∂�(θ)

∂θi

Dn,k(θ)

]

= 2

(
∂L(θ)

∂θj

)T

�(θ)

(
∂L(θ)

∂θi

)
− 2

(
∂2L(θ)

∂θj ∂θi

)T

�(θ)Dn,k(θ)

−2

(
∂L(θ)

∂θi

)T
∂�(θ)

∂θj

Dn,k(θ)−2

(
∂L(θ)

∂θj

)T
∂�(θ)

∂θi

Dn,k(θ)

+Dn,k(θ)T
∂2�(θ)

∂θj ∂θi

Dn,k(θ).
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Since Dn,k(θ) = L̂n,k − L(θ) and since L̂n,k converges in probability to L(θ0), we
obtain

sup
θ∈Bε1 (θ0)

‖Hn,k,�(θ) − H(θ; θ0)‖ p−→ 0, n → ∞. (3.8)

By the triangle inequality, it follows that

Pr

[
sup

θ∈Bε1 (θ0)

‖Hn,k,�(θ) − H(θ0; θ0)‖ ≤ η

]
→ 1, n → ∞. (3.9)

In view of our choice for η, this implies that, with probability tending to one,
Hn,k,�(θ) is positive definite for all θ ∈ Bε1(θ0), as required.

Proof of Theorem 2 Let ∇fn,k(θ), a 1 × q vector, be the gradient of fn,k at θ . By
Eq. 2.12, we have√

k ∇fn,k(θ0)=−2
√

k Dn,k(θ0)
T �(θ0) L̇(θ0)+

√
kDn,k(θ0)

T

×(∇�(θ)|θ=θ0

)
Dn,k(θ0)

=−2
√

k Dn,k(θ0)
T �(θ0) L̇(θ0)+oP (1), as n → ∞. (3.10)

Since θ̂n,k is a minimizer of fn,k , we have ∇fn,k(θ̂n,k)=0. An application of the mean
value theorem to the function t 
→ ∇fn,k

(
θ0 + t (θ̂n,k −θ0)

)
at t = 0 and t = 1 yields

0 = ∇fn,k(θ̂n,k)
T = ∇fn,k(θ0)

T + Hn,k,�(θ̃n,k) (θ̂n,k − θ0), (3.11)

where θ̃n,k is a random vector on the segment connecting θ0 and θ̂n,k and Hn,k,� is

the Hessian matrix of fn,k as in the proof of Theorem 1. Since θ̂n,k
p−→ θ0, we have

θ̃n,k
p−→ θ0 as n → ∞ too. By Eqs. 3.8 and 3.7 and continuity of θ 
→ H(θ; θ0), it

then follows that

Hn,k,�(θ̃n,k)
p−→ H(θ0; θ0) = 2L̇(θ0)

T �(θ0) L̇(θ0), as n → ∞. (3.12)

Since H(θ0; θ0) is non-singular, the matrix Hn,k,�(θ̃n,k) is non-singular with proba-
bility tending to one as well. Combine Eqs. 3.10, 3.11 and 3.12 to see that√

n
(
θ̂n,k − θ0

) = −Hn,k,�(θ̃n,k)
−1

√
k ∇fn,k(θ0)

T + op(1)

= (
L̇(θ0)

T �(θ0)L̇(θ0)
)−1

L̇(θ0)
T �(θ0)

√
k Dn,k(θ0)

+op(1), as n → ∞.

Convergence in distribution to the stated normal distribution follows from Eq. 2.12
and Slutsky’s lemma.

Proof of Corollary 2 Since Dn,k(θ) = L̂n,k − L(θ), we have
√

k Dn,k(θ̂n,k) = √
k Dn,k(θ0) − √

k
(
L(θ̂n,k) − L(θ0)

)
.

By Eq. 2.13 and the delta method, we have√
k
(
L(θ̂n,k) − L(θ0)

) = L̇
√

k(θ̂n,k − θ0) + op(1)

= L̇ (L̇T �L̇)−1L̇T �
√

k Dn,k(θ0) + op(1)

= P(θ0)
√

k Dn,k(θ0) + op(1), as n → ∞,
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where L̇ and � are evaluated at θ0. Combination of the two previous displays yields√
k Dn,k(θ̂n,k) = (Iq − P(θ0))

√
k Dn,k(θ0) + op(1), as n → ∞.

By Eq. 2.12 and Slutsky’s lemma, we arrive at Eq. 2.16, as required.
The q × q matrix P has rank p since the q × p matrix L̇ has rank p and the

q × q matrix � is non-singular. Since P 2 = P , it follows that rank(Iq − P) =
rank(Iq)−rank(P ) = q − p.

Proof of Corollary 3 Eq. 2.12 can be written as

Zn,k := √
k Dn,k(θ0)

d−→ Z ∼ Nq(0, �(θ0)
)
, as n → ∞.

In view of Eq. 2.16 and �(θ) = �(θ)−1, we find, by Slutsky’s lemma and the
continuous mapping theorem,

k fn,k(θ̂n,k) = k Dn,k(θ̂n,k)
T �(θ̂n,k)

−1 Dn,k(θ̂n,k)

= ZT
n,k (Iq − P(θ0))

T �(θ̂n,k)
−1 (Iq − P(θ0)) Zn,k + op(1)

d−→ ZT (Iq − P(θ0))
T �(θ0)

−1 (Iq − P(θ0)) Z, as n → ∞;

here P = L̇ (L̇T �−1L̇)−1 L̇T �−1, with L̇ and � evaluated at θ0.
It remains to identify the distribution of the limit random variable. The random

vector Z is equal in distribution to �1/2Y , where Y ∼ Nq(0, Iq) and where �1/2 is
a symmetric square root of �. Straightforward calculation yields

ZT (Iq − P)T �−1 (Iq − P)Z
d= YT (Iq − B)Y

where B =�−1/2L̇ (L̇T �−1L̇)−1 L̇T �−1/2. It is easily checked that B is a projection
matrix (B = BT = B2). Moreover, B has rank p. It follows that Iq−B is a projection
matrix too and that it has rank q − p. The distribution of the limit random variable
now follows by standard properties of quadratic forms of normal random vectors.

Proof of Corollary 4 Let Z ∼ Nq(0, �(θ0)), which by Eq. 2.12 is the limit in distri-
bution of

√
k Dn,k(θ0). By Eq. 2.16 and the continuous mapping theorem, we have,

as n → ∞,

k Dn,k(θ̂n,k)
T A(θ̂n,k)Dn,k(θ̂n,k)

d−→ ZT (Iq−P(θ0))
T A(θ0) (Iq−P(θ0)) Z. (3.13)

We can represent (Iq − P)Z as V D1/2Y , with Y ∼ Nq(0, Iq). The limiting random
variable in Eq. 3.13 is then given by

YT D1/2V T VsD
−1
s V T

s V D1/2Y.

Since V is an orthogonal matrix, this expression simplifies to
∑s

j=1 Y 2
j , which has

the stated χ2
s distribution.

Proof of Remark 1 Inspection of the proofs of Corollaries 3 and 4 shows that the
difference between the two test statistics converges in distribution to the random
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variable ZT R(θ0) Z, where Z is a certain q-variate normal random vector and
where

R(θ0) = (Iq − P(θ0)
)T

(�(θ0)
−1 − A(θ0)

) (
Iq − P(θ0)

)
.

The matrix R(θ0) can be shown to be equal to zero, proving the claim of the remark.
To see why R(θ0) is zero, note first that, suppressing θ0 and writing Q = Iq − P ,
we have Q2 = Q and �QT = Q� = Q�QT . Recall the eigenvalue equation
Q�QT vj = νj vj for j = 1, . . . , q. Note that νj > 0 if j ≤ s and νj = 0 if
j ≥ s+1. The eigenvalue equation implies that Qvj = vj for j ≤ s while Q�vj = 0
for j ≥ s + 1. Since the vectors v1, . . . , vq are orthogonal, we find that the vec-
tors v1, . . . , vs, �vs+1, . . . , �vq are linearly independent. It then suffices to show
that Rvj = 0 for all j ≤ s and R�vj = 0 for all j ≥ s + 1. The first property
follows from the fact that �−1vj = ν−1

j QT vj and Avj = ν−1
j vj for j ≤ s (use the

eigenvalue equation again), while the second property follows from Q�vj = 0 for
j ≥ s + 1.

Appendix B: Checking the conditions of the main theorems

In the main theorems, the following conditions are imposed:

1. The map L : θ 
→ (�(cm; θ))
q

m=1 is a homeomorphism from � to L(�).
2. L is twice continuously differentiable on a neighbourhood of θ0 and L̇(θ0) is of

full rank (i.e., of rank p).
3. � : � → R

q×q is twice continuously differentiable on a neighbourhood of θ0.

We verify these conditions on the parametric models in the simulation study.

Logistic model

For convenience, we exclude θ = 0 and θ = 1. For J ⊂ {1, . . . , d} with |J | ≥ 2, we
have �(eJ ; θ) = |J |θ . Assume we include eJ for all J ⊂ {1, . . . , d} with |J | = a for
some fixed a ∈ {2, . . . , d}. Then LT (θ) = (aθ , . . . , aθ ).

1. Continuity of L is clear. L is also one-to-one since θ = log(aθ )/ log a, and the
map z 
→ log z/ log a is continuous, so that L is a homeomorphism.

2. Clearly, L is twice continuously differentiable. Further, L̇T (θ) =
(aθ log a, . . . , aθ log a) and aθ log a > 0, so that L̇(θ) has rank 1.

3. As the model is exchangeable, setting � equal to the identity matrix is already
optimal, so there is nothing to prove.

Brown–Resnick model

Given d known points s1, . . . , sd ∈ R
2, consider the stable tail dependence function

�( · ; θ) of the Brown–Resnick model with parameter θ = (α, ρ) ∈ (0, 2] × (0, ∞).
For pairs j, k ∈ {1, . . . , d}, j �= k, we have

�(e{j,k}; θ) = 2 �(ajk/2) forajk = {2γ (sj − sk)}1/2 = 21/2‖sj − sk‖α/2/ρα/2,

(3.14)
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where � denotes the standard normal distribution function.
We consider points sj on a finite, rectangular, unit-distance grid and we set

cm = eJm for all possible pairs Jm ⊂ {1, . . . , d} such that the locations sj1 and
sj2 with Jm = {j1, j2} are neighbours (horizontally, vertically, or diagonally). The
number, q, of such pairs depends on the grid size; however, the pairwise extremal
coefficient (3.14) only depends on the distance between the two locations sj and sk .
For neighbouring locations on a unit-size rectangular grid, there are thus only two
distinct values to consider, ‖sj − sk‖ ∈ {1,

√
2}.

For L, we can thus reduce the analysis to the one of the function

L(θ) =
(

2 �(2−1/2ρ−α/2), 2 �(2−1/2+α/4ρ−α/2)
)

.

The partial derivatives are

∂L1(θ)

∂α
= −2−1/2ϕ(2−1/2ρ−α/2) ρ−α/2 log(ρ),

∂L1(θ)

∂ρ
= −2−1/2α ϕ(2−1/2ρ−α/2) ρ−α/2−1,

∂L2(θ)

∂α
= ϕ(2−1/2+α/4ρ−α/2) 2−1/2+α/4ρ−α/2{2−1 log(2) − log(ρ)},

∂L2(θ)

∂ρ
= −2−1/2+α/4α ϕ(2−1/2+α/4ρ−α/2) ρ−α/2−1,

with ϕ the standard normal density function. The determinant of the Jacobian matrix
is

det L̇(θ) = α(log 2)ρ−α−12−2+α/4ϕ(2−1/2ρ−α/2) ϕ(2−1/2+α/4ρ−α/2),

which is always positive. By the inverse function theorem, the function L is a dif-
feomorphism in the neighbourhood of θ0. Whether L is also continuously invertible
globally is a more difficult question. The two components of L are decreasing in ρ,
but the dependence on α is not monotone and depends on ρ.

For the empirical stable tail dependence function, the entries of �(θ) are clearly
smooth as a function of θ . We do not have an analytical proof that �(θ) is invertible,
but numerical experiments indicate it is. In that case, the matrix �(θ) = �(θ)−1

satisfies the conditions. Otherwise, we can define �(θ) = {�(θ) + λIq}−1 for some
constant λ > 0; see also the paragraph on max-linear graphical models.

Max-linear graphical model

Consider the four-dimensional max-linear model induced by the diamond-shaped
directed acyclic graph in the simulation study. Its coefficient matrix B = B(θ) ∈
R

4×4 is defined by

B = (bjt )
4
j,t=1 =

⎛
⎜⎜⎝

1 0 0 0
θ1 1 − θ1 0 0
θ2 0 1 − θ2 0

θ1θ3 ∨ θ2θ4 (1 − θ1)θ3 (1 − θ2)θ4 b44

⎞
⎟⎟⎠ ,
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with b44 = b44(θ) such that the sum of the fourth row is one. The stable tail
dependence function is

�(x; θ) = x1 ∨ θ1x2 ∨ θ2x3 ∨ (θ1θ3 ∨ θ2θ4)x4

+(1 − θ1)x2 ∨ (1 − θ1)θ3x4

+(1 − θ2)x3 ∨ (1 − θ2)θ4x4

+b44x4. (3.15)

The parameter set is � = (0, 1)4, although later on, we will have to limit the
parameter set to � = {θ ∈ (0, 1)4 : θ1θ3 �= θ2θ4}.

We consider points x = cm = eJm for Jm equal to one of the following q = 5
subsets of {1, . . . , 4}:
J1 = {1, 2}, J2 = {1, 3}, J3 = {1, 2, 4}, J4 = {1, 3, 4}, J5 = {1, 2, 3, 4}.

(3.16)
Clearly, the map θ 
→ L(θ) = (�(cm; θ))

q

m=1 is continuous. Next we show that it is
one-to-one and that the inverse map from L(�) to � is continuous too. We have

�(e{1,2}; θ) = 1 + (1 − θ1), �(e{1,3}; θ) = 1 + (1 − θ2),

from which we can identify θ1 and θ2. Next,

�(e{1,2,3,4}; θ) = 1 + (1 − θ1) + (1 − θ2) + b44,

from which we can recover b44. Finally,

�(e{1,2,4}; θ) = 1 + (1 − θ1) + (1 − θ2)θ4 + b44,

�(e{1,3,4}; θ) = 1 + (1 − θ1)θ3 + (1 − θ2) + b44,

from which we can solve θ4 and θ3, respectively. We find that L : (0, 1)4 →
L((0, 1)4) is one-to-one and that its inverse function is continuous.

If θ0 is such that θ1θ3 �= θ2θ4, then b44 = b44(θ) is a polynomial function of θ for
θ in a neighbourhood of θ0. Writing ḃ44,m = ∂b44/∂θm, the Jacobian of L is

L̇(θ) =
(

∂�(cm; θ)

∂θr

)
m=1,...,5
r=1,...,4

=

⎛
⎜⎜⎜⎜⎝

−1 0 0 0
0 −1 0 0

−1 + ḃ44,1 −θ4 + ḃ44,2 ḃ44,3 (1 − θ2) + ḃ44,4

−θ3 + ḃ44,1 −1 + ḃ44,2 (1 − θ1) + ḃ44,3 ḃ44,4

−1 + ḃ44,1 −1 + +ḃ44,2 ḃ44,3 ḃ44,4

⎞
⎟⎟⎟⎟⎠ .

The determinant of the upper 4 × 4 submatrix is

det L̇1:4,1:4(θ) = ḃ44,3ḃ44,4 − (1 − θ1 + ḃ44,3)(1 − θ2 + ḃ44,4)

= −(1 − θ1)(1 − θ2) − (1 − θ1)ḃ44,4 − (1 − θ2)ḃ44,3.

We need to show that this is nonzero. There are two cases: θ1θ3 > θ2θ4 or θ1θ3 <

θ2θ4. In the first case,

b44 = 1 − θ1θ3 − (1 − θ1)θ3 − (1 − θ2)θ4 = 1 − θ3 − (1 − θ2)θ4
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whence ḃ44,3 = −1 and ḃ44,4 = −(1 − θ2), and thus

det L̇1:4,1:4(θ) = −(1 − θ1)(1 − θ2) − (1 − θ1){−(1 − θ2)} − (1 − θ2)(−1)

= 1 − θ2 > 0,

as required. The case θ1θ3 < θ2θ4 is similar. We find that on {θ ∈ (0, 1)4 : θ1θ3 �=
θ2θ4}, the map L is twice continuously differentiable and its Jacobian is of full rank.

For the weight matrix, we set �(θ) = {�(θ) + λIq}−1, where �(θ) is the asymp-
totic covariance matrix of the empirical stable tail dependence function evaluated at
the points cm and where λ > 0 is a constant. The entries of the matrix �(θ) are a
polynomial expression in �(x; θ) and its partial derivatives with respect to x1, . . . , xd

for a finite set of points x. The matrix �(θ) is symmetric positive semidefinite so that
the matrix �(θ) + λIq is symmetric and positive definite with all eigenvalues larger
than or equal to λ. As a consequence, �(θ)+λIq is invertible for all θ . Matrix inver-
sion being a smooth operation, smoothness properties of �(θ) follow from those of
�(θ) + λIq and thus of �(θ). In view of the maxima in the expression for �(x; θ)

in Eq. 3.15, choosing x of the form eJ requires excluding certain values of θ from
the parameter set. Modulo this restriction, we find that �(θ) is twice continuously
differentiable on a neighbourhood of θ0.

In the simulation study, we considered many more points cm than the five points
eJ1 , . . . , eJ5 with Jm as in Eq. 3.16. The stated properties of L and � remain true,
with the exception that even more parameter values θ need to be excluded to ensure
smoothness of L and � in a neighbourhood of θ0. Since the set of points thus
excluded is a Lebesgue null set, this restriction should (hopefully) pose no problems
in practice.

Max-linear model: a counterexample

Consider the three-dimensional factor model⎧⎨
⎩

X1 = Z1,

X2 = αZ1 ∨ (1 − α)Z2,

X3 = βZ1 ∨ (1 − β)θZ2 ∨ (1 − β)(1 − θ)Z3,

where α, β ∈ (0, 1) are known and where θ ∈ (0, 1) is the only parameter. The stable
tail dependence function is given by

�(x; θ) = x1 ∨ αx2 ∨ βx3 + (1 − α)x2 ∨ (1 − β)θx3 + (1 − β)(1 − θ)x3.

If (1 − β)θx3 ≥ (1 − α)x2, then the expression simplifies to

�(x; θ) = x1 ∨ αx2 ∨ βx3 + (1 − β)x3,

and does no longer depend on θ . If x3 = 0, then �(x; θ) does not depend on θ either.
To identify θ from �(x; θ), we therefore need to choose x in such a way that x3 > 0
and (1 − β)θx3 < (1 − α)x2. Since θ ∈ (0, 1), it is sufficient to choose x such that
x3/x2 < (1 − α)/(1 − β).

However, if α is a parameter too, then the bound (1 − α)/(1 − β) approaches 0 as
α approaches 1. Hence, in the two-parameter model where α and θ are unknown, we
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cannot identify all (α, θ) ∈ (0, 1)2 from the values of � in a pre-specified, finite set
of q points x.
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Bücher, A., Segers, J.: Extreme value copula estimation based on block maxima of a multivariate stationary

time series. Extremes 17(3), 495–528 (2014)
Can, S.U., Einmahl, J.H.J., Khmaladze, E.V., Laeven, R.J.A., et al.: Asymptotically distribution-free

goodness-of-fit testing for tail copulas. Ann. Stat. 43(2), 878–902 (2015)
Coles, S.G., Tawn, J.A.: Modelling extreme multivariate events. J. Royal Stat. Soc. Ser. B (Stat. Methodol.)

53(2), 377–392 (1991)
Davison, A.C., Padoan, S.A., Ribatet, M.: Statistical modeling of spatial extremes. Stat. Sci. 27(2), 161–

186 (2012)
de Haan, L.: A spectral representation for max-stable processes. Ann. Probab. 12(4), 1194–1204 (1984)
de Haan, L., Ferreira, A.: Extreme Value Theory: An Introduction. Springer-Verlag Inc, German (2006)
de Haan, L., Pereira, T.T.: Spatial extremes: Models for the stationary case. Ann. Stat. 34(1), 146–168

(2006)
Drees, H., Huang, X.: Best attainable rates of convergence for estimators of the stable tail dependence

function. J. Multivar. Anal. 64(1), 25–47 (1998)
Einmahl, J.H.J., Krajina, A., Segers, J.: An M-estimator for tail dependence in arbitrary dimensions. Ann.

Stat. 40(3), 1764–1793 (2012)
Einmahl, J.H.J., Kiriliouk, A., Krajina, A., Segers, J.: An M-estimator of spatial tail dependence. J. Royal

Stat. Soc. Ser. B (Stat. Methodol.) 78(1), 275–298 (2016)
Fougères, A.L., De Haan, L., Mercadier, C.: Bias correction in multivariate extremes. Ann. Stat. 43(2),

903–934 (2015)
Fougères, A.L., Mercadier, C., Nolan, J.: Estimating Semi-Parametric Models for Multivariate Extreme

Value Data. Working paper (2016)
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