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Abstract Spatially isotropic max-stable processes have been used to model extreme
spatial or space-time observations. One prominent model is the Brown-Resnick pro-
cess, which has been successfully fitted to time series, spatial data and space-time
data. This paper extends the process to possibly anisotropic spatial structures. For
regular grid observations we prove strong consistency and asymptotic normality of
pairwise maximum likelihood estimates for fixed and increasing spatial domain,
when the number of observations in time tends to infinity. We also present a statis-
tical test for isotropy versus anisotropy. We apply our test to precipitation data in
Florida, and present some diagnostic tools for model assessment. Finally, we present
a method to predict conditional probability fields and apply it to the data.

Keywords Anisotropic space-time process · Brown-Resnick space-time process ·
Hypothesis test for spatial isotropy · Max-stable process · Max-stable model
check · Pairwise likelihood · Pairwise maximum likelihood estimate

AMS 2000 Subject Classifications Primary–62G32 · 62M40 · 62P12;
Secondary–62F05 · 62F12

1 Introduction

Max-stable processes, such as the Brown-Resnick process, have been successfully
fitted to time series, spatial and recently to space-time data. Methods for inference
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include pairwise likelihood based on the bivariate density of the models (cf.
Padoan et al. 2010), censored likelihood (cf. Wadsworth and Tawn 2014) or
threshold-based approaches (cf. Engelke et al. 2015). In Davis et al. (2013b) a
spatially isotropic Brown-Resnick space-time process is suggested and applied
to precipitation data. Pairwise maximum likelihood estimates are shown to be
strongly consistent and asymptotically normal, provided the domain of observa-
tions increases jointly in space and time. Their approach is restricted to isotropic
spatial dependence.

In the present paper we generalise the Brown-Resnick model to allow anisotropy
in space. The new model allows for different extremal behaviour along orthogonal
spatial directions. Anisotropy is often observed on Earth, for example in Mid-
dle Europe with its westerly winds or near the equator where trade winds involve
predominant easterlies. All dependence parameters are summarised in the semi-
variogram of an underlying Gaussian space-time process. This semivariogram then
defines the dependence structure of the max-stable process and, as a consequence,
the tail dependence coefficient between two process values evaluated at two location
and two time points.

Furthermore, since in real world applications, observations are often recorded over
a large number of time points, but only at a comparably small number of spatial loca-
tions, we consider both a fixed and increasing spatial domain in combination with an
increasing temporal domain. For both settings, fixed and increasing spatial domain,
we prove strong consistency and asymptotic normality of the pairwise maximum like-
lihood estimates in the anisotropic model based on regular grid observations. This
requires in particular to prove space-time and temporal mixing conditions in both
settings for the anisotropic model.

We also provide tests for isotropy versus anisotropy again in both settings, which
are designed for the new model. The asymptotic normality of the parameter esti-
mates determines in principle the rejection areas of the test. However, the covariance
matrices of the normal limit laws are not available in closed form. We formulate a
subsampling procedure in the terminology of the Brown-Resnick space-time process
and prove its convergence for fixed and increasing spatial domain.

We conclude with an analysis of space-time block maxima of radar rainfall
measurements in Florida. Firstly, we present a simple procedure to test whether
they originate from a max-stable process. As this cannot be rejected, we fit the
Brown-Resnick space-time model to the data, using pairwise maximum likelihood
estimation. Subsequently we apply the new isotropy test. Both the estimation and
the test are based on the setting of a fixed spatial domain and increasing time series.
In particular, since the Brown-Resnick space-time process satisfies the strong mix-
ing conditions for increasing spatial and time domain as well as for fixed spatial and
increasing time domain, the estimation and test procedure are independent of the spe-
cific setting: it works in both settings in exactly the same way, taking the different
asymptotic covariance matrices into account. Finally, we assess the goodness of fit
of the estimated model by a simulation diagnostics based on a large number of i.i.d.
simulated anisotropic Brown-Resnick space-time processes. As a result, there is no
statistical significance that the anisotropic Brown-Resnick space-time process with
the fitted parameters should be rejected.
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Our paper is organised as follows. In Section 2 we present the Brown-Resnick
space-time model, which allows for anisotropic effects in space, and various depen-
dence measures, including the parameterised dependence function. In Section 3 we
compute the pairwise maximum likelihood estimates for the new model and prove
their strong consistency and asymptotic normality for both settings, fixed and increas-
ing spatial domain. Section 4 presents hypothesis tests for spatial isotropy and derives
rejection areas based on a subsampling procedure. A data analysis is performed in
Section 5 with focus on model assessment. The isotropy test rejects spatial isotropy
for these data in favour of our new anisotropic model. Based on two other test proce-
dures, we conclude that the anisotropic Brown-Resnick space-time process with the
given dependence parameters is an appropriate model for the block-maxima data. We
conclude by predicting conditional probability fields, which give the probability of a
high value (for example of the amount of precipitation) at some space-time location
given a high value at some other location.

2 Spatially anisotropic Brown-Resnick processes

Throughout the paper we consider a stationary Brown-Resnick space-time process
with representation

η(sss, t) =
∞∨

j=1

{
ξj eWj (sss,t)−δ(sss,t)

}
, (sss, t) ∈ R

d × [0, ∞), (2.1)

where {ξj : j ∈ N} are points of a Poisson process on [0, ∞) with intensity ξ−2dξ ,
the dependence function δ is nonnegative and conditionally negative definite and
{Wj(sss, t) : sss ∈ R

d , t ∈ [0, ∞)} are independent replicates of a Gaussian process
{W(sss, t) : sss ∈ R

d , t ∈ [0, ∞)} with stationary increments, W(000, 0) = 0,
E[W(sss, t)] = 0 and covariance function

Cov[W(sss(1), t (1)), W(sss(2), t (2))] = δ(sss(1), t (1)) + δ(sss(2), t (2)) − δ(sss(1) − sss(2), t (1) − t (2)).

Representation (2.1) goes back to De Haan (1984) and Giné et al. (1990). Brown-
Resnick processes have been studied by Brown and Resnick (1977) in a time series
context, as a spatial model by Kabluchko et al. (2009), and in a space-time setting
by Davis et al. (2013a) and Huser and Davison (2014). The univariate margins of the
process η follow standard Fréchet distributions.

There are various quantities to describe the dependence in Eq. 2.1:

– In geostatistics, the dependence function δ is termed the semivariogram of the
process {W(sss, t)}: For (sss(1), t (1)), (sss(2), t (2)) ∈ R

d × [0, ∞), it holds that

Var[W(sss(1), t (1)) − W(sss(2), t (2))] = 2δ(sss(1) − sss(2), t (1) − t (2)).

– For hhh ∈ R
d and u ∈ R, the tail dependence coefficient χ(hhh, u) is given by (cf.

Kabluchko et al. 2009, Remark 25 or Davis et al. 2013a, Section 3.)

χ(hhh, u) := lim
y→∞P

(
η(sss(1), t (1)) > y | η(sss(2), t (2)) > y

) = 2

(
1 − �

(√
δ(hhh, u)

2

))
, (2.2)
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where hhh = sss(1) − sss(2), u = t (1) − t (2), and � denotes the standard normal
distribution function.

– For D = {(sss(1), t (1)), . . . , (sss(|D|), t (|D|))} and yyy = (y1, . . . , y|D|) > 000 the finite-
dimensional margins are given by

P(η(sss(1), t (1)) ≤ y1, η(sss(2), t (2)) ≤ y2, . . . , η(sss(|D|), t (|D|)) ≤ y|D|) = e−VD(yyy). (2.3)

Here VD denotes the exponent measure, which is homogeneous of order -1.
– The extremal coefficient ξD for any finite set D ⊂ R

d × [0, ∞) is defined
through

P(η(sss(1), t (1)) ≤ y, η(sss(2), t (2)) ≤ y, . . . , η(sss(|D|), t (|D|)) ≤ y) = e−ξD/y, y > 0;

i.e., ξD = VD(1, . . . , 1). If |D| = 2, then (cf. Beirlant et al. 2004, Section 9.5.1)

χ(sss(1) − sss(2), t (1) − t (2)) = 2 − ξD.

In this paper we assume the dependence function δ to be given for spatial lag hhh

and time lag u by

δ(hhh, u) =
d∑

j=1

Cj |hj |αj + Cd+1|u|αd+1 , (hhh, u) = (h1, . . . , hd, u) ∈ R
d+1,(2.4)

with parameters Cj > 0 and αj ∈ (0, 2] for j = 1, . . . , d + 1.
Model (2.4) allows for different rates of decay of extreme dependence in differ-

ent directions. This particularly holds along the axes of a d-dimensional spatial grid,
but also for other directions. For example in the case d = 2, the decreases of depen-
dence along the directions (1, 2) and (2, 1) differ. Model (2.4) can be generalised
by a simple rotation to a setting, where not necessarily the axes, but other principal
orthogonal directions play the major role. The rotation angle then needs to be esti-
mated together with the other model parameters. A similar approach has been applied
to introduce geometric or zonal anisotropy into a spatial isotropic model (see e.g.
Blanchet and Davison 2011, Section 4.2, or Engelke et al. 2015, Section 5.2). For a
justification of model (2.4) see Buhl (2013), Sections 4.1 and 4.2. There it is shown
that Brown-Resnick processes with this dependence function arise as limits of appro-
priately rescaled maxima of Gaussian processes with a large variety of correlation
functions.

3 Pairwise maximum likelihood estimation

We extend the pairwise maximum likelihood procedure described in Davis
et al. (2013b) for spatially isotropic space-time Brown-Resnick processes to the
anisotropic case. We focus on the difference introduced by the spatial anisotropy
and refer to the corresponding formulas in Davis et al. (2013b), where also a short
introduction to composite likelihood estimation and further references can be found.
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The pairwise likelihood function uses the bivariate distribution function of

(η(sss, t), η(sss + hhh, t + u))
d= (η(000, 0), η(hhh, u)) (equal in distribution by stationarity)

for hhh ∈ R
d and u ∈ R, which is given as

G(y1, y2) = exp{−V (y1, y2)}, y1, y2 > 0, (3.1)

where the exponent measure V = VD for D = {(sss(1), t (1)), (sss(2), t (2))} has the
representation

V (y1, y2)

= 1

y1
�

(
log(y2/y1)√

2δ(hhh, u)
+
√

δ(hhh, u)

2

)
+ 1

y2
�

(
log(y1/y2)√

2δ(hhh, u)
+
√

δ(hhh, u)

2

)
,(3.2)

which is a particular form of Eq. (2.7) in Hüsler and Reiss (1989). The dependence
function δ is given by Eq. 2.4. For a derivation of Eq. 3.2 see for instance Oesting
(2009), Satz und Definition 2.4.

From this we can calculate the pairwise density g(y1, y2) = gθθθ (y1, y2) of G by
differentiation. The parameter vector θθθ = (C1, . . . , Cd+1, α1, . . . , αd+1) lies in the
parameter space

	 := {(C1, . . . , Cd+1, α1, . . . , αd+1) : Cj ∈ (0,∞), αj ∈ (0, 2], j = 1, . . . , d + 1
}
.

We focus on data on a regular spatial grid and at equidistant time points. More
precisely, we assume that the spatial observations lie on a regular d-dimensional
lattice,

SM = {sss = (s1, . . . , sd) ∈ {1, . . . , M}d}

for M ∈ N, and that the time points are given by the set TT = {1, . . . , T } for T ∈ N.
For the computation of the pairwise likelihood it is common not to include obser-

vations on all available space-time pairs, but only on those that lie within some
prespecified spatio-temporal distance. This is motivated by the fact that pairs which
lie sufficiently far apart in a space-time sense have little influence on the dependence
parameters, see Nott and Rydén (1999), Section 2.1. To express this notationally, we
take inspiration from that paper and use a design mask adapted to the anisotropic
setting,

Hrrr := {hhh = (h1, . . . , hd) ∈ N
d
0 : hhh ≤ rrr

}
, rrr = (r1, . . . , rd) ∈ N

d
0 . (3.3)

We are now ready to define the pairwise log-likelihood function and the resulting
estimate.
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Definition 1 (Pairwise likelihood estimate) The pairwise log-likelihood function
based on space-time pairs, whose maximum spatial lag is rrr ∈ N

d
0 and maximum time

lag is p ∈ N0, such that (rrr, p) �= (000, 0), is defined as

PL(M,T )(θθθ) :=
∑

sss∈SM

T∑

t=1

∑

hhh∈Hrrr
sss+hhh∈SM

p∑

u=0
t+u≤T

1{(hhh,u)�=(000,0)} log {gθθθ (η(sss, t), η(sss + hhh, t + u))}

=
∑

sss∈SM

T∑

t=1

qθθθ (sss, t; rrr, p) − R(M,T )(θθθ), θθθ ∈ 	, (3.4)

where

qθθθ (sss, t; rrr, p) :=
∑

hhh∈Hrrr

p∑

u=0

1{(hhh,u) �=(000,0)} log {gθθθ (η(sss, t), η(sss + hhh, t + u))} (3.5)

and

R(M,T )(θθθ) :=
∑

sss∈SM

T∑

t=1

∑

hhh∈Hrrr

p∑

u=0

1{sss+hhh/∈SM or t+u>T } log {gθθθ (η(sss, t), η(sss + hhh, t + u))}

=
∑

hhh∈Hrrr

p∑

u=0

∑

(sss,t)∈GM,T (hhh,u)

log {gθθθ (η(sss, t), η(sss + hhh, t + u))} , (3.6)

with

GM,T (hhh, u) := {(sss, t) ∈ SM × TT : sss + hhh /∈ SM or t + u > T } . (3.7)

for (hhh, u) ∈ N
d+1. The pairwise maximum likelihood estimate (PMLE) is given by

θ̂θθ = argmax
θθθ∈	

PL(M,T )(θθθ). (3.8)

We derive the asymptotic properties of the PMLE for two scenarios. The first one
is based on regularly spaced observations with an increasing spatio-temporal domain.
For this scenario we follow the proofs in Davis et al. (2013b) and show that the
properties of strong consistency and asymptotic normality also hold if the depen-
dence structure δ allows for spatially anisotropic effects as in Eq. 2.4. In the second
scenario, the observations are taken from a fixed spatial domain and an increasing
temporal domain.

3.1 Increasing spatio-temporal domain

Lemma 1 For (hhh, u) ∈ Hrrr × {0, . . . , p}, it holds that
|GM,T (hhh, u)| ≤ K2(M

d−1T + Md),

where K2 is a constant independent of M and T .
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Proof The number of space-time points within the space-time observation area, from
which some grid point outside the observation area is within a lag (hhh, u) ∈ Hrrr ×
{1, . . . , p}, is bounded by Md−1T

d∑
j=1

rj + Mdp. Thus we obtain

|GM,T (hhh, u)| ≤ Md−1T

d∑

j=1

rj + Mdp ≤ K2(M
d−1T + Md),

where K2 := max
{∑d

j=1 rj , p
}

is a constant independent of M and T .

Theorem 1 (Strong consistency for large M and T )
Let

{
η(sss, t) : sss ∈ R

d , t ∈ [0, ∞)
}
be a Brown-Resnick process as in Eq. 2.1 with

dependence structure

δ(hhh, u) =
d∑

j=1

Cj |hj |αj + Cd+1|u|αd+1, (hhh, u) ∈ R
d+1,

where 0 < αj ≤ 2 and Cj > 0 for j = 1, . . . , d +1. Denote the parameter vector by

θθθ = (C1, . . . , Cd+1, α1, . . . , αd+1).

Assume that the true parameter vector θθθ
 lies in a compact set

	
 ⊂ {(C1, . . . , Cd+1, α1, . . . , αd+1) : Cj ∈ (0, ∞), αj ∈ (0, 2], j = 1, . . . , d + 1
}
. (3.9)

Suppose that the following identifiability condition holds for all (sss, t) ∈ SM ×TT :

θθθ = θ̃θθ ⇔ gθθθ (η(sss, t), η(sss + hhh, t + u)) (3.10)

= g
θ̃θθ

(η(sss, t), η(sss + hhh, t + u)) , hhh ∈ Hrrr , 0 ≤ u ≤ p.

Then, the PMLE

θ̂θθ
(M,T ) = argmax

θθθ∈	

PL(M,T )(θθθ)

is strongly consistent:

θ̂θθ
(M,T ) a.s.→ θθθ
 as M, T → ∞.

Proof The proof uses the method of Wald (1949). One aim is to show that for some
chosen maximum space-time lag (rrr, p) ∈ N

d+1
0 \ {000} and θθθ ∈ 	
,

1

MdT
PL(M,T )(θθθ)

= 1

MdT

( ∑

sss∈SM

T∑

t=1

qθθθ (sss, t; rrr, p) − R(M,T )(θθθ)
)

a.s.→ PL(θθθ) := E[qθθθ (111, 1; rrr, p)]

as M, T → ∞. This is done by verifying the following two limit results: Uniformly
on 	
,
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(A)
1

MdT

∑
sss∈SM

T∑

t=1

qθθθ (sss, t; rrr, p)
a.s.→ PL(θθθ) as M, T → ∞,

(B)
1

MdT
R(M,T )(θθθ)

a.s.→ 0 as M, T → ∞.

Furthermore, we need to show:

(C) The limit function PL(θθθ) is uniquely maximized at the true parameter vector
θθθ
 ∈ 	
.

We show (A). The almost sure convergence holds because qθθθ (·) is a measurable func-
tion of lagged versions of η(sss, t) for sss ∈ SM , t ∈ TT . Proposition 3 of Davis
et al. (2013b) implies a strong law of large numbers. What remains to show is that
the convergence is uniform on the compact parameter space 	
. This can be done
by carefully following the lines of the proof of Theorem 1 of Davis et al. (2013b),
adapting it to the spatially anisotropic setting. For details we refer to Buhl (2013),
Theorem 4.4. We find that there is a positive finite constant K1, independent of θθθ, M

and T , such that
E
[∣∣ log gθθθ

(
η(sss(1), t (1)), η(sss(2), t (2))

)∣∣] < K1, (sss(1), t (1)), (sss(2), t (2)) ∈ N
d+1, (3.11)

and that E
[

supθθθ∈	
 |qθθθ (111, 1; rrr, p)| ] < ∞. Theorem 2.7 of Straumann (2004)
implies that the convergence is uniform.

Next we show (B). Using Proposition 3 of Davis et al. (2013b) and Eq. 3.11 we
have that, uniformly on 	
,

∑
hhh∈Hrrr

p∑
u=0

1
|GM,T (hhh,u)|

∑
(sss,t)∈GM,T (hhh,u)

log {gθθθ (η(sss, t), η(sss + hhh, t + u))}

a.s.→ E

[ ∑
hhh∈Hrrr

p∑
u=0

log {gθθθ (η(111, 1), η(111 + hhh, 1 + u))}
]

as M, T → ∞.

By Lemma 1 and Eq. 3.11 it follows that, uniformly on 	
,
1

MdT
|R(M,T )(θθθ)|

≤ K2
( 1

M
+ 1

T

)∣∣∣∣
∑

hhh∈Hrrr

p∑

u=0

1

|GM,T (hhh, u)|
∑

(sss,t)∈GM,T (hhh,u)

log {gθθθ (η(sss, t), η(sss + hhh, t + u))}
∣∣∣∣

a.s.→ 0 as M, T → ∞,

Finally, we prove (C). Let θθθ �= θθθ
. For sss ∈ SM and t ∈ TT , Jensen’s inequality
yields

E

[
log

{
gθθθ (η(sss, t), η(sss + hhh, t + u))

gθθθ
 (η(sss, t), η(sss + hhh, t + u))

}]
≤ log

{
E

[
gθθθ (η(sss,t),η(sss+hhh,t+u))
gθθθ
 (η(sss,t),η(sss+hhh,t+u))

]}

= log
{ ∫

(0,∞)2

gθθθ (y1, y2)

gθθθ
(y1, y2)
gθθθ
(y1, y2) d(y1, y2)

}

= log
{ ∫

(0,∞)2

gθθθ (y1, y2) d(y1, y2)
}

= 0,



Anisotropic Brown-Resnick processes: estimation and model assessment 635

Table 1 Identifiable
parameters for model (2.4) with
d = 2 for some examples of
maximum space-time lags
(r1, r2, p)

r1 r2 p identifiable parameters

1 0 0 C1

1 1 0 C1, C2

1 1 1 C1, C2, C3

> 1 0 0 C1, α1

> 1 > 1 > 1 C1, α1, C2, α2, C3, α3

and it directly follows from Eq. 3.5 that PL(θθθ) ≤ PL(θθθ
). As θθθ �= θθθ
, the
identifiability condition (3.10) yields (C).

Remark 1 There are combinations of maximum space-time lags that lead to non-
identifiable parameters, see Table 1. However, Theorem 1 still applies to all
identifiable parameters (cf. Davis et al. 2013b, Remark 2).

Next we prove asymptotic normality of the PMLE defined in Eq. 3.8. As in the
proof of Theorem 1 we follow the lines of proof of Davis et al. (2013b), Section 5,
adapting the arguments to the anisotropic setting. We start with some basic results
needed throughout the remainder of the section.

Lemma 2 Assume that all conditions of Theorem 1 are satisfied. Then for sss(1), sss(2) ∈
R

d and t (1), t (2) ∈ [0, ∞), the following assertions hold componentwise:

(1) The gradient of the bivariate log-density satisfies

E

[∣∣∣∇θθθ log gθθθ (η(sss(1), t (1)), η(sss(2), t (2)))

∣∣∣
3
]

< ∞, θθθ ∈ 	
.

(2) The Hessian matrix of the bivariate log-density satisfies

E

[
sup

θθθ∈	


∣∣∣∇2
θθθ log gθθθ (η(sss(1), t (1)), η(sss(2), t (2)))

∣∣∣
]

< ∞.

Proof Assume identifiability of all parameters Cj , αj for j = 1, . . . , d + 1. For
y1, y2 ∈ (0, ∞) and for (hhh, u) ∈ R

d+1 \ {000} lengthy but simple calculations of
derivatives of Eq. 3.1 yield

∇θθθ log gθθθ (y1, y2) = ∂ log gθθθ (y1, y2)

∂δ(hhh, u)
∇θθθ δ(hhh, u),

∂δ(hhh, u)

∂Cj

= |hj |αj ,
∂δ(hhh, u)

∂αj

= Cj |hj |αj log |hj |, j = 1, . . . d,

and
∂δ(hhh, u)

∂Cd+1
= |u|αd+1 ,

∂δ(hhh, u)

∂αd+1
= Cd+1|u|αd+1 log |u|.
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By compactness of the parameter space, as required in Eq. 3.9, we can bound those
first partial derivatives as well as the second order partial derivatives from above and
below. So it remains to show that for sss(1), sss(2) ∈ S and t (1), t (2) ∈ T ,

Eθθθ


[∣∣∣∣
∂ log{gθθθ (η(sss(1), t (1)), η(sss(2), t (2)))}

∂δ(hhh, u)

∣∣∣∣
3]

< ∞

and

Eθθθ


[
sup

θθθ∈	


∣∣∣∣
∂2 log{gθθθ (η(sss(1), t (1)), η(sss(2), t (2)))}

∂2δ(hhh, u)

∣∣∣∣

]
< ∞,

where the function δ(hhh, u) can be treated as a constant since it is bounded away from
0 by Eq. 3.9. Hence, for the rest of the proof we refer to that of Davis et al. (2013b),
Lemma 1.

For a central limit theorem we need certain mixing properties for a space-time
setting (cf. Davis et al. 2013b, Section 5.1 and Huser and Davison 2014, Section 3.2).

Definition 2 (Mixing coefficients and α-mixing) Let {η(sss, t) : sss ∈ Z
d , t ∈ N}

be a space-time process. Let d be some metric induced by a norm on R
d+1. For

�1, �2 ⊂ Z
d × N let

d(�1, �2) := inf{d((sss(1), t (1)), (sss(2), t (2))) : (sss(1), t (1)) ∈ �1, (sss
(2), t (2)) ∈ �2}.

(1) For k, , n ≥ 0 the mixing coefficients are defined as

αk,(n) := sup{|P(A1 ∩ A2) − P(A1)P(A2)| :
A1 ∈ F�1 , A2 ∈ F�2 , |�1| ≤ k, |�2| ≤ , d(�1,�2) ≥ n}, (3.12)

where F�i
= σ(η(sss, t) : (sss, t) ∈ �i) for i = 1, 2.

(2) {η(sss, t) : sss ∈ Z
d , t ∈ N} is called α-mixing if for all k,  > 0,

αk,(n) → 0, n → ∞.

Recall from Eq. 2.2 that for (hhh, u) ∈ R
d+1 with δ as in Eq. 2.4 the tail dependence

coefficient of the Brown-Resnick process is given by

χ(hhh, u) = 2

(
1 − �

(√
1

2

[
C1|h1|α1 + · · · + Cd |hd |αd + Cd+1|u|αd+1

]
))

.

Corollary 2.2 of Dombry and Eyi-Minko (2012) links the α-mixing coefficients
with the tail dependence coefficients, and we will use this for the next result.

Proposition 1 Let {η(sss, t) : sss ∈ R
d , t ∈ [0, ∞)} be the Brown-Resnick process (2.1)

with dependence function δ given by Eq. 2.4. Then the process {η(sss, t) : sss ∈ Z
d , t ∈

N} is α-mixing, where the mixing coefficients in Eq. 3.12 satisfy for Hrrr as in Eq. 3.3

(1)
∞∑

n=1
ndαk,(n) < ∞ for k + l ≤ 4(|Hrrr | + 1)(p + 1),

(2) α(|Hrrr |+1)(p+1),∞(n) = o(n−(d+1)) as n → ∞,
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(3)
∞∑

n=1
ndα(|Hrrr |+1)(p+1),(|Hrrr |+1)(p+1)(n)

1
3 < ∞.

Proof Note that for (hhh, u) ∈ R
d+1, by the equivalence of norms, for some positive

constant L,

d((hhh, u), (000, 0)) ≤ 1

L
max{|h1|, . . . , |hd |, |u|}

Therefore, for n ∈ N, presuming d((hhh, u), (000, 0)) ≥ n results in
max{|h1|, . . . , |hd |, |u|} ≥ Ln, so that by Corollary 2.2 and Eq. (3) of Dombry and
Eyi-Minko (2012) we get

αk,(n) ≤ 2k sup
d((hhh,u),(000,0))≥n

χ(hhh, u) ≤ 2k sup
max{|h1|,...,|hd |,|u|}≥Ln

χ(hhh, u), (3.13)

αk,∞(n) ≤ 2k
∑

d((hhh,u),(000,0))≥n

χ(hhh, u) ≤ 2k
∑

max{|h1|,...,|hd |,|u|}≥Ln

χ(hhh, u). (3.14)

In the following we use the notation ‖(hhh, u)‖∞ := max{|h1|, . . . , |hd |, |u|} for
(hhh, u) ∈ Z

d ×N. Using 1 −�(x) ≤ exp{− 1
2x2} for x > 0 and Eqs. 2.2 and 3.13, we

find for all k,  ≥ 0,

αk,(n) ≤ 4k sup
‖(hhh,u)‖∞≥Ln

(
1 − �(

√
δ(hhh, u)

2

)

≤ 4k sup
‖(hhh,u)‖∞≥Ln

exp

{
−δ(hhh, u)

4

}

= 4k sup
‖(hhh,u)‖∞≥Ln

exp

{
−1

4

[
C1|h1|α1 + . . . + Cd |hd |αd + Cd+1|u|αd+1

]}

≤ 4k sup
‖(hhh,u)‖∞≥Ln

exp

{
−1

4
min{|C1|, . . . , |Cd+1|}‖(hhh, u)‖min{α1,...,αd+1}∞

}

≤ 4k exp

{
−1

4
min{|C1|, . . . , |Cd+1|}(Ln)min{α1,...,αd+1}

}
(3.15)

→ 0 as n → ∞.

This implies α-mixing.
By similar arguments we obtain by Eq. 3.14 for all k ≥ 0,

αk,∞(n) ≤
4k

∑

‖(hhh,u)‖∞≥Ln

exp

{
−1

4
min{|C1|, . . . , |Cd+1|}‖(hhh, u)‖min{α1,...,αd+1}

∞
}

. (3.16)

We use the above bounds to prove assertions (1)–(3).

(1) For k +  ≤ 4(|Hrrr | + 1)(p + 1) we have by Eq. 3.15,
∞∑

n=1
ndαk,(n) ≤ 4k

∞∑
n=1

nd exp
{
− 1

4 min{|C1|, . . . , |Cd+1|}(Ln)min{α1,...,αd+1}
}

< ∞.
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(2) First note that the number of grid points (hhh, u) ∈ R
d+1 with ‖(hhh, u)‖∞ = i for

i ∈ N equals (i+1)d+1 −id+1, and is therefore of order O(id). We use Eq. 3.16
and a more precise estimate than in part (1) to obtain for sufficiently large n

nd+1α(|Hrrr |+1)(p+1),∞(n)

≤ 4nd+1(|Hrrr | + 1)(p + 1)

∑

‖(hhh,u)‖∞≥Ln

exp

{
−1

4
min{|C1|, . . . , |Cd+1|}‖(hhh, u)‖min{α1,...,αd+1}

∞
}

≤ K3n
d+1(|Hrrr | + 1)(p + 1)

∞∑

i=�Ln�
id exp

{
− 1

4
min{C1, . . . , Cd+1}imin{α1,...,αd+1}}

→ 0 as n → ∞,

where K3 is a positive constant. Convergence to 0 follows using the integral
test for power series convergence and Lemma A.1, Eq. A.1.

(3) We find, using again (3.15),

∞∑

n=1

ndα(|Hrrr |+1)(p+1),(|Hrrr |+1)(p+1)(n)
1
3

≤ (
4
[
(|Hrrr | + 1)(p + 1)

]2) 1
3

·
∞∑

n=1

nd exp
{

− 1

12
min{C1, . . . , Cd+1}(Ln)min{α1,...,αd+1}

}

< ∞
as in (1).

Because of Lemma 2 and Proposition 1 the following central limit theorem of
Bolthausen (1982) holds.

Corollary 1 Consider the process {∇θθθ qθθθ
(sss, t; rrr, p) : sss ∈ Z
d , t ∈ N}. Then

1

M
d
2
√

T

∑

sss∈SM

T∑

t=1

∇θθθ qθθθ
(sss, t; rrr, p)
D→ N (000, �1) as M, T → ∞,

where

�1 :=
∞∑

s1=−∞
· · ·

∞∑

sd=−∞

∞∑

t=1

Cov
[∇θθθ qθθθ
 (111, 1; rrr, p), ∇θθθ qθθθ
 (s1, . . . , sd , t; rrr, p)

]
. (3.17)

Now we formulate the main result of this section.

Theorem 2 (Asymptotic normality for large M and T ) Assume the same conditions
as in Theorem 1. Then

√
MdT (̂θθθ − θθθ
)

D→ N (000, �̃1) as M, T → ∞, (3.18)
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where �̃1 := F−1
1 �1(F

−1
1 )� with �1 given in Eq. 3.17 and

F1 := E

[
−∇2

θθθ qθθθ
(111, 1; rrr, p)
]
.

Proof A Taylor expansion of the score function ∇θθθPL(M,T )(θθθ) around the true
parameter vector θθθ
 yields for some θ̃θθ ∈ [̂θθθ,θθθ
] :

000 = ∇θθθPL(M,T )(̂θθθ) = ∇θθθPL(M,T )(θθθ
) + ∇2
θθθ PL(M,T )(θ̃θθ)(̂θθθ − θθθ
).

Therefore,

M
d
2
√

T (̂θθθ − θθθ
) = −
( 1

MdT
∇2

θθθ PL(M,T )(θ̃θθ)
)−1( 1

M
d
2
√

T
∇θθθPL(M,T )(θθθ
)

)

= −
( 1

MdT

∑

sss∈SM

T∑

t=1

∇2
θθθ q

θ̃θθ
(sss, t; rrr, p) − 1

MdT
∇2

θθθ R(M,T )(θ̃θθ)
)−1

( 1

M
d
2
√

T

∑

sss∈SM

T∑

t=1

∇θθθ qθθθ
 (sss, t; rrr, p) − 1

M
d
2
√

T
∇θθθR

(M,T )(θθθ
)
)

=: −(I1 − I2)
−1(J1 − J2).

Note the following:

– Corollary 1 implies that J1
D→ N (000, �1) as M, T → ∞.

– Using representation (3.6) of the boundary term R(M,T )(·) and Lemma 1, we
find

‖J2‖ = 1

M
d
2
√

T

∥∥∥∥
∑

hhh∈Hrrr

p∑

u=0

∑

(sss,t)∈GM,T (hhh,u)

∇θθθ log{gθθθ
 (η(sss, t), η(sss + hhh, t + u))}
∥∥∥∥

≤ √K2

√
Md−1T + Md

M
d
2
√

T
∥∥∥∥
∑

hhh∈Hrrr

p∑

u=0

1
√|GM,T (hhh, u)|

∑

(sss,t)∈GM,T (hhh,u)

∇θθθ log{gθθθ
 (η(sss, t), η(sss + hhh, t + u))}
∥∥∥∥

≤ √K2(
1√
M

+ 1√
T

)

∥∥∥∥
∑

hhh∈Hrrr

p∑

u=0

1
√|GM,T (hhh, u)|

∑

(sss,t)∈GM,T (hhh,u)

∇θθθ log{gθθθ
 (η(sss, t), η(sss + hhh, t + u))}
∥∥∥∥

In the same way as done in Corollary 1 for the process {∇θθθ qθθθ
(sss, t; rrr, p) :
sss ∈ Z

d , t ∈ N}, we can apply Bolthausen’s central limit theorem to the pro-
cesses {∇θθθ log{gθθθ
(η(sss, t), η(sss + hhh, t + u))} : sss ∈ Z

d , t ∈ N} for hhh ∈ Hrrr ,
u ∈ {0, . . . , p}. We conclude that

∑

hhh∈Hrrr

p∑

u=0

1
√|GM,T (hhh, u)|

∑

(sss,t)∈GM,T (hhh,u)

∇θθθ log{gθθθ
(η(sss, t), η(sss + hhh, t + u))}
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converges weakly to a normal distribution as M, T → ∞, and it follows that

J2
P→ 000 as M, T → ∞.

– As {η(sss, t) : sss ∈ Z
d, t ∈ N} is α-mixing, the process

{∇2
θθθ qθθθ (sss, t; rrr, p) : sss ∈ Z

d , t ∈ N}
is α-mixing as a set of measurable functions of mixing lagged processes. Fur-
thermore, as θ̃θθ ∈ [̂θθθ,θθθ
] and θ̂θθ is strongly consistent, we have that I1

a.s.→ −F1 as
M, T → ∞. The convergence is uniform on 	
 by Lemma 2 which implies that

E

[
sup

θθθ∈	


∣∣∣∇2
θθθ qθθθ (111, 1; rrr, p)

∣∣∣
]

< ∞.

– Concerning I2, the law of large numbers applied to
{
∇2

θθθ log{gθθθ (η(sss, t), η(sss + hhh, t + u))} : sss ∈ Z
d , t ∈ N

}

results in the fact that, in the same way as in part (B) of the proof of Theorem 1,
I2

a.s.→ 000 as M, T → ∞.

Finally, summarising these results, Slutzky’s Lemma yields (3.18).

3.2 Fixed spatial domain and increasing temporal domain

As before we compute the PMLE based on observations on the area SM × TT , but
now we consider M fixed, whereas T tends to infinity.

We define the temporal α-mixing coefficients (cf. Ibragimov and Linnik 1971,
Definition 17.2.1 or Bradley 2007, Definition 1.6).

Definition 3 (Temporal mixing coefficients and temporal α-mixing) Let {η(sss, t) :
sss ∈ SM, t ∈ N} be a space-time process. Consider the metric d(·) of Definition 2.

(1) Let T (1), T (2) ⊂ N. For n ≥ 0 the temporal α-mixing coefficients are defined
as

α(n) := sup{|P(A1 ∩ A2) − P(A1)P (A2)| :
A1 ∈ FSM×T (1) , A2 ∈ FSM×T (2) , d(SM × T (1),SM × T (2)) ≥ n},(3.19)

where FSM×T (i) = σ(η(sss, t) : (sss, t) ∈ SM × T (i)) for i = 1, 2.
(2) {η(sss, t) : sss ∈ SM, t ∈ N} is called temporally α-mixing, if

α(n) → 0, n → ∞. (3.20)

Proposition 2 Let {η(sss, t) : sss ∈ R
d , t ∈ [0, ∞)} be the Brown-Resnick process (2.1)

with dependence function δ given by Eq. 2.4. Then the process {η(sss, t) : sss ∈ SM, t ∈
N} is temporally α-mixing, where the mixing coefficients (3.19) satisfy

∞∑

n=1

|α(n)| 1
3 < ∞. (3.21)
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Proof We use Eq. (3) and Corollary 2.2 of Dombry and Eyi-Minko (2012) and
Eq. 2.2 to obtain for n ∈ N

α(n)

≤ 2 sup
d(SM×T (1),SM×T (2))≥n

∑

(sss(1),t(1))

∈SM ×T (1)

∑

(sss(2),t(2))

∈SM ×T (2)

χ(sss(1) − sss(2), t (1) − t (2))

= 4 sup
d(SM×T (1),SM×T (2))≥n

∑

(sss(1),t(1))

∈SM ×T (1)

∑

(sss(2),t(2))

∈SM ×T (2)

(
1 − �

(√1

2

[
C1|s(1)

1 − s
(2)
1 |α1 + · · · + Cd |s(1)

d − s
(2)
d |αd + Cd+1|t (1) − t (2)|αd+1

]))

≤ 4M2d sup
d(SM×T (1),SM×T (2))≥n

∑

(t(1),t(2))

∈T (1)×T (2)

(
1 − �

(√1

2

[
Cd+1|t (1) − t (2)|αd+1

]))

≤ 4M2d sup
d(SM×T (1),SM×T (2))≥n

∑

(t(1),t(2))

∈T (1)×T (2)

exp
{

− 1

4
Cd+1|t (1) − t (2)|αd+1

}
,

where the last inequality follows from 1 −�(x) ≤ exp{− 1
2x2} for x > 0. We bound

α(n) for large n further by

α(n) ≤ 4M2d
∑

t (1)∈{−∞,...,0}

∑

t (2)∈{n,...,∞}
exp
{

− 1

4
Cd+1|t (1) − t (2)|αd+1

}
.

In the double sum a temporal lag u = |t (1) − t (2)| ≥ n appears exactly u − (n − 1)

times. This yields

α(n) ≤ 4M2d

∞∑

u=n

(u − (n − 1)) exp
{

− 1

4
Cd+1u

αd+1
}

≤ 4M2d

∞∑

u=n

u exp
{

− 1

4
Cd+1u

αd+1
}
.

Convergence of the series (3.21) now follows by the integral test and Lemma A.1.

In the following we show that strong consistency of the PMLE also holds, if the
spatial domain remains fixed.

Theorem 3 (Strong consistency for fixed M and large T ) Assume the same condi-
tions as in Theorem 1 restricted to the fixed space SM . Then the PMLE

θ̂θθ
(M,T ) = argmax

θθθ∈	

PL(M,T )(θθθ)

is strongly consistent, that is,

θ̂θθ
(M,T ) a.s.→ θθθ
 as T → ∞.
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Proof For θθθ ∈ 	
 and t ∈ N, set

qM
θθθ (t; rrr, p) :=

∑

sss∈SM

∑

hhh∈Hrrr
sss+hhh∈SM

p∑

u=0
t+u≤T

1{(hhh,u) �=(000,0)} log {gθθθ (η(sss, t), η(sss + hhh, t + u))} .

Then

PL(M,T )(θθθ) =
T∑

t=1

qM
θθθ (t; rrr, p).

Following carefully the lines of the proof of Theorem 1, the following conditions
hold for fixed spatial domain:

(A)
1

T

T∑
t=1

qM
θθθ (t; rrr, p)

a.s.→ PLM(θθθ) := E[(qM
θθθ (1; rrr, p)] as T → ∞ uniformly on

the compact parameter space 	
. The main argument is that qM
θθθ

(·) is a function
of temporally mixing lagged processes, then we apply again Theorem 2.7 of
Straumann (2004).

(B) The limit function PLM(θθθ) is uniquely maximised at the true parameter vector
θθθ
 ∈ 	
.

Now we formulate the main result of this section.

Theorem 4 (Asymptotic normality for fixed M and large T ) Assume the same
conditions as in Theorem 1 restricted to the fixed space SM . Then

√
T (̂θθθ − θθθ
)

D→ N (000, �̃2) as T → ∞, (3.22)

where �̃2 := F−1
2 �2(F

−1
2 )� with

F2 := E[−∇2
θθθ qM

θθθ
 (1; rrr, p)]
and

�2 := Var[∇θθθ q
M
θθθ
 (1; rrr, p)] + 2

∞∑

t=2

Cov[∇θθθ q
M
θθθ
 (1; rrr, p),∇θθθ q

M
θθθ
 (t; rrr, p)].

Proof By its definition as a function of lagged temporally mixing processes,
(∇θθθ q

M
θθθ
 (t; rrr, p))t∈N is also temporally α-mixing with coefficients α′(n) = α(n−p).

Furthermore,

E
[∇θθθ log {gθ
θ
θ
 (η(000, 0), η(hhh, u))}] = 0, (hhh, u) ∈ N

d+1
0 ,

because Lemma 2 implies regularity conditions of the pairwise log-likelihood (3.4)
allowing to interchange differentiation and integration. Now note that Lemma 2 and
Proposition 2 imply that

– E[|∇θθθ q
M
θθθ
 (t; rrr, p)|3] < ∞ for t ∈ N and every maximum spatial lag rrr and time

lag p, and that
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–
∞∑

n=1
|α′(n)| 1

3 < ∞.

Therefore, the conditions of Theorem 18.5.3 of Ibragimov and Linnik (1971) (see
also Bradley 2007, Theorem 10.7) are satisfied and we conclude that

1√
T

T∑

t=1

∇θθθ q
M
θθθ
 (t; rrr, p)

D→ N (000, �2) as T → ∞. (3.23)

Taylor expansion of the score function ∇θθθPL(M,T )(θθθ) around the true parameter
vector θθθ
 yields for some θ̃θθ ∈ [̂θθθ,θθθ
] :

000 = ∇θθθPL(M,T )(̂θθθ) = ∇θθθPL(M,T )(θθθ
) + ∇2
θθθ PL(M,T )(θ̃θθ)(̂θθθ − θθθ
).

Therefore,
√

T (̂θθθ − θθθ
) = −
( 1

T
∇2

θθθ PL(M,T )(θ̃θθ)
)−1( 1√

T
∇θθθPL(M,T )(θθθ
)

)

= −
( 1

T

T∑

t=1

∇2
θθθ qM

θ̃θθ
(t; rrr, p)

)−1( 1√
T

T∑

t=1

∇θθθ q
M
θθθ
 (t; rrr, p)

)
=: −I−1J.

Note the following:

– Eq. 3.23 implies that J
D→ N (000, �2) as T → ∞.

– Uniform convergence holds because of Lemma 2 which implies that component-
wise

E

[
sup

θθθ∈	


∣∣∣∇2
θθθ qM

θθθ (1; rrr, p)

∣∣∣
]

< ∞.

By temporal α-mixing, since θ̃θθ ∈ [̂θθθ,θθθ
], and θ̂θθ is strongly consistent, we have
I

a.s.→ −F2 as T → ∞.

Finally, summarising those results, Slutzky’s Lemma yields (3.22).

Throughout this section we have proved asymptotic properties of the parameter
estimates of model (2.4) by classical results for ML estimators in combination with a
spatio-temporal central limit theorem. Such results can also be applied to other mod-
els like geometrically anisotropic models, provided the required rates for α-mixing
hold.

4 Test for spatial isotropy

We use the results of Section 3 to formulate statistical tests for spatial isotropy versus
anisotropy based on the model (2.4),

δ(hhh, u) =
d∑

j=1

Cj |hj |αj + Cd+1|u|αd+1,
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for spatial lags (hhh, u) = (h1, . . . , hd, u) ∈ R
d+1. We derive the necessary results

for d = 2. Generalisations to higher dimensions are possible, but notationally much
more involved. Again we consider the two cases of an increasing and fixed spatial
domain.

Due to the structure of model (2.4) a test for isotropy versus anisotropy is a test of

H0 : {C1 = C2 and α1 = α2} versus H1 : {C1 �= C2 or α1 �= α2}. (4.1)

4.1 Increasing spatial domain

From Theorem 2 we know that, under suitable regularity conditions, the PMLE

θ̂θθ = (Ĉ1, Ĉ2, Ĉ3, α̂1, α̂2, α̂3)

is asymptotically normal; more precisely, for M2 spatial observations on a regular
grid and for T equidistant time points we have

M
√

T

⎛

⎜⎜⎜⎜⎜⎜⎝

Ĉ1 − C1

Ĉ2 − C2

Ĉ3 − C3
α̂1 − α1
α̂2 − α2
α̂3 − α3

⎞

⎟⎟⎟⎟⎟⎟⎠

D→ N (000, �̃1) as M, T → ∞, (4.2)

where �̃1 ∈ R
6×6 is the asymptotic covariance matrix given in Theorem 2.

Our test is based on the spatial parameters only. Moreover, we test the two equal-
ities in H0 separately and use Bonferroni’s inequality to solve the multiple test
problem.

Lemma 3 Assume the conditions of Theorem 2. Setting A1 := (−1, 1, 0, 0, 0, 0) and
A2 := (0, 0, 0, −1, 1, 0), we have that, as M, T → ∞,

M
√

T ((Ĉ2 − Ĉ1) − (C2 − C1))
D→ N (0, A1�̃1A

�
1 ), (4.3)

M
√

T ((̂α2 − α̂1) − (α2 − α1))
D→ N (0, A2�̃1A

�
2 ). (4.4)

Proof We obtain the left hand side of Eqs. 4.3 and 4.4 by multiplying A1 and A2 to
Eq. 4.2, respectively. This yields the limits on the right hand side by the continuous
mapping theorem.

We define

θC := (C2 − C1), θ̂C := (Ĉ2 − Ĉ1), θα := (α2 − α1), θ̂α := (̂α2 − α̂1).

Then the multiple test problem (4.1) becomes

H0,1 : {θC = 0} versus H1,1 : {θC �= 0} (4.5)

H0,2 : {θα = 0} versus H1,2 : {θα �= 0}. (4.6)

Since the variances in Eqs. 4.3 and 4.4 are not known explicitly, we find the rejection
areas of the two tests by subsampling as suggested in Politis et al. (1999), Chapter 5.
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Their main Assumption 5.3.1, the existence of a weak limit law of the estimates, is
satisfied by Lemma 3.

We formulate the subsampling procedure in the terminology of the space-time
process {η(sss, t) : sss ∈ SM, t ∈ TT }. We choose space-time block lengths bbb =
(b1, b2, b3) ≥ (1, 1, 1) and the degree of overlap eee = (e1, e2, e3) ≤ (M, M, T ). The
blocks are indexed by iii = (i1, i2, i3) ∈ N

3 with ij ≤ qj for qj := �M−bj

ej
� + 1,

j = 1, 2 and q3 := �T −bj

ej
� + 1. This results in a total number of q = q1q2q3 blocks,

which we summarise in the set

Eiii,bbb,eee = {
(s1, s2, t) ∈ SM × TT : (ij − 1)ej + 1 ≤ sj ≤ (ij − 1)ej + bj , j = 1, 2,

(i3 − 1)e3 + 1 ≤ t ≤ (i3 − 1)e3 + b3
}
.

Now we estimate θC and θα based on all observations in a block, hence getting q

different estimates, which we denote by θ̂C,bbb,iii and θ̂α,bbb,iii .
In order to find rejection areas for the isotropy test, we will use Lemma 3, and take

care of the unknown variance in the normal limit by a subsampling result.

Theorem 5 Denote by τM,T := M
√

T and τbbb = √
b1b2b3 the square roots of

the number of observations in total and in each block, respectively. Assume that the
conditions of Theorem 2 hold and, as M, T → ∞,

(i) bi → ∞ for i = 1, 2, 3, such that bi = o(M) for i = 1, 2, and b3 = o(T )

(hence, τbbb/τM,T → 0),
(ii) eee does not depend on M or T .

In the following θ̂ stands for either θ̂C or θ̂α . Define the empirical distribution
function

Lbbb,θ̂ (x) := 1

q

q1∑

i1=1

q2∑

i2=1

q3∑

i3=1

111{τbbb
∣∣θ̂bbb,iii−θ̂

∣∣≤x
}, x ∈ R, (4.7)

and the empirical quantile function

cbbb,θ̂ (1 − β) := inf
{
x ∈ R : Lbbb,θ̂ (x) ≥ 1 − β

}
, β ∈ (0, 1). (4.8)

Then the following statements hold for M, T → ∞:

(1) Denote by �σ (·) the distribution function of a mean 0 normal random variable
Z with variance

σ 2 =
{

A1�̃1A
�
1 , in case of θ̂C,

A2�̃1A
�
2 , in case of θ̂α,

and recall that 2�σ (·) − 1 is the distribution function of |Z|. Then
Lbbb,θ̂ (x)

P→ 2�σ (x) − 1, x ∈ R.

(2) Set Jθ̂ (x) := P(τM,T |θ̂ − θ | ≤ x) for x ∈ R, then

sup
x∈R

∣∣Lbbb,θ̂ (x) − Jθ̂ (x)
∣∣ P→ 0.
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(3) For β ∈ (0, 1),

P
(
τM,T |θ̂ − θ | ≤ cbbb,θ̂ (1 − β)

)→ 1 − β. (4.9)

Proof We apply Corollary 5.3.1 of Politis et al. (1999). Their main Assumption 5.3.1;
i.e., the existence of a continuous limit distribution, is satisfied by Lemma 3. Assump-
tions (i)-(ii) are also presumed by Politis et al. (1999). The required condition on
the α-mixing coefficients is satisfied similarly as in the proof of Proposition 1 by
Lemma A.1 and the result holds.

From Eq. 4.9, we find rejection areas for the test statistics τM,T θ̂ at confidence
level β ∈ (0, 1) as (recall that θ̂ stands for either θ̂C or θ̂α)

Rej(M,T )

θ̂
:= (−∞, −cbbb,θ̂ (1−β))∪(cbbb,θ̂ (1−β), ∞) = [−cbbb,θ̂ (1−β), cbbb,θ̂ (1−β)]c.

Bonferroni’s inequality

P(reject H0,1 or H0,2) ≤ P(reject H0,1) + P(reject H0,2) ≤ 2β,

applies and solves the multiple test problem.

4.2 Fixed spatial domain

First note that an analogue of Lemma 3 holds with rate
√

T instead of M
√

T and
with the asymptotic covariance matrix �̃2 as given in Theorem 4.

The subsampling statement corresponding to Theorem 5 then reads as follows.

Theorem 6 Denote by τT := √
T and τb3 = √

b3 the square roots of the number
of time points of observations in total and in each block, respectively. Assume that
the conditions of Theorem 4 are satisfied and that Lemma 3 holds for T → ∞ with
rate

√
T instead of M

√
T and with the asymptotic covariance matrix �̃2 as given in

Theorem 4. Assume further that as T → ∞,

(i) b3 → ∞ such that b3 = o(T ) (hence, τb3/τT → 0),
(ii) eee does not depend on T ,

(iii) b1, b2 → M .

Let bbb = (b1, b2, b3), τbbb = √
b1b2b3 and τM,T = M

√
T . With �̃1 as in Theorem 5

replaced by M2�̃2, conclusions (a), (b), and (c) of Theorem 5 remain true as T tends
to infinity.

Proof We apply Corollary 5.3.2 of Politis et al. (1999). The required temporal mixing
condition is satisfied similarly as in the proof of Proposition 2 by Lemma A.1.

Remark 2 We can in practice apply the same procedure of subsampling as in
Section 4.1. This is justified by the fact that τb3/τT → 0 implies that τbbb/τM,T → 0
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Fig. 1 Rainfall observation area in Florida

as T → ∞ under conditions (6)–(6) of Theorem 6. In particular, the rejection area
for τT θ̂ (where again θ̂ stands for either θ̂C or θ̂α) is found as

Rej(T )

θ̂
:= 1

M
Rej(M,T )

θ̂
.

5 Data analysis

We fit the Brown-Resnick space-time process (2.1) with dependence structure given
by the model (2.4) to radar rainfall data, which were provided by the Southwest
Florida Water Management District (SWFWMD). The data used for the analysis are
rainfall measurements on a square of 120 km×120 km in Florida (see Fig. 1) over
the years 1999–2004. The raw data consist of measurements in inches on a regu-
lar grid in space every two kilometres and every 15 minutes. Since there exist wet
seasons and dry seasons with almost no rain we consider only the wet season June-
September. Moreover, the area is basically flat with predominant easterly winds due
to its closeness to the equator and, therefore, existing trade winds. Hence, Eq. 2.4 with
parameters that possibly differ along both spatial axes fits well without introducing a
rotation matrix.
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5.1 Data transformation and marginal modelling

We carry out a block-maxima method in space and time as follows: We calculate
cumulated hourly rainfall by adding up four consecutive measurements. Then we
take block-maxima over 24 consecutive hours and over 10 km×10 km areas; i.e., the
daily maxima over 25 locations, resulting in a 12 × 12 grid in space for all 6 × 122
days of the wet seasons giving a time series of dimension 12 × 12 and of length 732.
Taking smaller areas than 10km×10km squares or a higher temporal resolution (e.g.
12-hour-maxima) results in observations that are not max-stable and the max-stability
test described in Section 5.2 would reject.

By removing possible seasonal effects, we transform the data to stationarity. We
obtain the observations

{η̃((s1, s2), t) : s1, s2 = 1, . . . , 12, t = 1, . . . , 732} . (5.1)

Taking daily maxima removes for every location most of the dependence in the time
series. This implies that marginal parameter estimates found by maximum likelihood
estimation are consistent and asymptotically normal.

To give some details: for each fixed location (s1, s2), we fit a univariate gener-
alised extreme value distribution (cf. Embrechts et al. 1997, Definition 3.4.1) to the
associated time series. The estimated shape parameters are all sufficiently close to
0 to motivate a Gumbel distribution as appropriate model. We therefore fit a Gum-

bel distribution �μ,σ (x) = exp{−e− x−μ
σ } with parameters μ = μ(s1, s2) ∈ R and

σ = σ(s1, s2) > 0 and obtain estimates μ̂ = μ̂(s1, s2) and σ̂ = σ̂ (s1, s2).
Depending on different statistical questions and methods, we transform (5.1)

either to standard Gumbel or standard Fréchet margins. In the first case we set

η1((s1, s2), t) := η̃((s1, s2), t) − μ̂

σ̂
, t = 1, . . . , 732, (5.2)

and in the latter case, with �μ̂,̂σ denoting the Gumbel distribution with estimated
parameters,

η2((s1, s2), t) := − 1

log
{
�μ̂,̂σ (η̃((s1, s2), t))

} , t = 1, . . . , 732. (5.3)

We assess the goodness of the marginal fits by qq-plots of the observations (5.2)
versus the standard Gumbel quantiles for every spatial location. Figure 2 depicts
the qq-plots at four exemplary spatial locations (1, 1), (6, 8), (9, 4) and (11, 10).1

Confidence bounds are based on the Kolmogorov-Smirnov statistic (cf. Doksum and
Sievers 1976, Theorem 1 and Remark 1). All graphs show a reasonably good fit.

1We use the R-package extRemes (Gilleland and Katz 2011).
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Fig. 2 qq-plots of the Gumbel transformed time series values versus the standard Gumbel distribution for
four locations: (1,1) (top left), (6,8) (top right), (9,4) (bottom left) and (11,10) (bottom right). Dashed blue
lines mark 95 % confidence bounds. Solid red lines correspond to no deviation

In the following data analysis we regard (5.3) as realisations of the space-time
Brown-Resnick process (2.1) with dependence structure δ as in Eq. 2.4:

δ(h1, h2, u) = C1|h1|α1 + C2|h2|α2 + C3|u|α3 , (5.4)

with h1 = s
(1)
1 − s

(2)
1 , h2 = s

(1)
2 − s

(2)
2 , u = t (1) − t (2), for two spatial locations

sss(1) = (s
(1)
1 , s

(1)
2 ) and sss(2) = (s

(2)
1 , s

(2)
2 ) and two time points t (1) and t (2).
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5.2 Testing for max-stability in the data

We first want to check if the block-maxima data originate from a max-stable process.
A diagnostic tool is based on a multivariate Gumbel model (cf. Gabda et al. 2012),
and we explain first the method in general. We assume a space-time model of a
general spatial dimension d ∈ N. As before, we denote the regular grid of space-time
observations by

SM × TT = {1, . . . , M}d × {1, . . . , T }.
We define a hypothesis test based on the standard Gumbel transformed space-time
observations (5.2) by

H0 : {η1(sss, t) : (sss, t) ∈ R
d × [0, ∞)} is max-stable. (5.5)

Under H0 all finite-dimensional margins are max-stable; particularly, for every D ⊆
SM ×TT , the multivariate distribution function of {η1(sss, t) : (sss, t) ∈ D} is given by

GD(y1, . . . , y|D|) = exp{−VD(ey1 , . . . , ey|D|)}, (y1, . . . , y|D|) ∈ R
|D|,

where VD is the exponent measure from Eq. 2.3. Since VD is homogeneous of order
-1, the random variable

ηD := max{η1(sss, t) : (sss, t) ∈ D}
has univariate Gumbel distribution function

P(ηD ≤ y) = GD(y, . . . , y) = exp{−e−yVD(1, . . . , 1)} = e−e−(y−μD)

, y ∈ R; (5.6)

i.e., μD := log VD(1, . . . , 1) is the location parameter and, since 1 ≤
VD(1, . . . , 1) ≤ |D|, we have 0 ≤ μD ≤ log |D|. These considerations can be used
to construct a graphical test for max-stability: First, choose different subsets D with
the same fixed cardinality. Then extract several independent realisations of the ran-
dom variables ηD from the data and test by means of a qq-plot, if they follow a
Gumbel distribution.

We apply this test to the standardized Gumbel transformed data (5.2). As indicated
above, taking daily maxima removes for every location most of the dependence in
the time series. For this test we want to take every precaution to make sure that we
work indeed with independent data. Preliminary tests show that spatial observations,
which are a small number of B2 days apart (to be specified below), show only very
little time-dependence.

Consequently, we define time blocks of size B1 of spatial observations, which are
in turn separated by time blocks of size B2 as

SM × T (i) = {1, . . . , M}2 × {(i − 1)(B1 + B2) + t : t = 1, . . . , B1}, (5.7)

for i = 1, . . . , R = � T
B1+B2

�. The numbers B1 and B2 need to be chosen in such a
way that the blocks can be considered as independent. This results in R independent
time blocks of length B1 of spatial data and thus in R independent realisations of ηD

for every D ⊆ SM × {1, . . . , B1}. The procedure is illustrated in Fig. 3.
We use these i.i.d. realisations to estimate μD for every D by maximum likelihood

estimation restricted to [0, log |D|]. Since the MLE of the location parameter of a
Gumbel distribution is not unbiased (cf. Johnson et al. 1995, Section 9.6), we perform
a bias correction.
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Fig. 3 R independent realisations of ηD for different subsets D of the space-time observation area

For the diagnostic we take K ∈ N and consider subsets D with cardinality |D| =
K . As the total number

(
B1M

2

K

)
of those subsets is in most cases intractably large,

we randomly choose m := min{R,
(
B1M

2

K

)} subsets and obtain in total N = m · R

subsets, which we denote by D
(i)
j for j = 1, . . . , m and i = 1, . . . , R. For every

j = 1, . . . , m we estimate μDj
by MLE based on the i.i.d. random variables η

(i)
Dj

:=
η

D
(i)
j

, i = 1, . . . , R. Then we perform qq-plots of

η
(1)
D1

− μD1 , . . . , η
(m)
Dm

− μDm

versus the standard Gumbel distribution. As a measure of variability of the estimates,
non-parametric block bootstrap methods (cf. Politis and Romano 1993, Section 3.2)
are applied to obtain 95 % pointwise confidence bounds. Using bootstrap methods,
we preserve the dependence between different subsets D in the confidence intervals.
Under H0, the bisecting line should lie within these confidence bounds.

The Florida daily rainfall maxima show only little temporal dependence beyond
one day. Hence we choose B1 = 2 and B2 = 1, which yields R = � 732

3 � = 244
mutually independent time blocks of spatial data. We perform the described proce-
dure for K = 2, 3, 4, 5, which entails m = R = 244. Thus we obtain a total number
of N = 2442 = 59 536 subsets. The power of this diagnostic test increases with K

(cf. Gabda et al. 2012) as it gets less likely to include sets of space-time points that
are K-wise independent. Figure 4 shows the results for the different choices of K .
The solid red bisecting lines lie inside the confidence bounds. Hence, there is no sta-
tistically significant evidence of the space-time process generating the data not to be
max-stable.
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Fig. 4 qq-plots of theoretical standard Gumbel quantiles versus the empirical quantiles (black dots). The
latter correspond to the empirical distribution of maxima taken over groups of cardinality K . Dashed blue
lines mark 95 % pointwise confidence bounds obtained by block bootstrap. Solid red lines correspond to
no deviation

5.3 Pairwise maximum likelihood estimation

We apply the pairwise maximum likelihood estimation to the standard Fréchet trans-
formed data (5.3). The parameters to estimate are those of the function δ in Eq. 5.4;
i.e., C1, C2, C3 ∈ (0, ∞) and α1, α2, α3 ∈ (0, 2].

In the definition of the pairwise log-likelihood function (3.4), the maximum spatial
and temporal lags are specified by the numbers r1, r2 and p, respectively. Immedi-
ately by model (5.4) for δ, the parameters of the three different dimensions (space
and time) are separated in the extremal setting. This has also been noticed in Davis
et al. (2013b), where a simulation study in Section 7 for the isotropic model shows
that estimating the spatial and temporal parameter pairs individually leads to very
good results in terms of root-mean-square error and mean absolute error. Hence, for
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Table 2 Estimates of the
parameter pairs (C1, α1),
(C2, α2) and (C3, α3) for
different maximum spatial and
temporal lags

max. lags Ĉi α̂i

(2,0,0) 0.6287 [0.5928, 0.6646] 0.9437 [0.9065, 0.9808]
(3,0,0) 0.6358 [0.5989, 0.6728] 0.8599 [0.8189, 0.9009]
(4,0,0) 0.6438 [0.6051, 0.6825] 0.8107 [0.7690, 0.8525]
(0,2,0) 0.7271 [0.6492, 0.8050] 0.9517 [0.8715, 1.0320]
(0,3,0) 0.7370 [0.6586, 0.8154] 0.8521 [0.7737, 0.9305]
(0,4,0) 0.7476 [0.6677, 0.8275] 0.7931 [0.7039, 0.8822]
(0,0,2) 4.8378 [4.4282, 5.2474] 0.1981 [0.0177, 0.3784]

Intervals next to the point
estimates are asymptotic
95 %-confidence bounds based
on subsampling

example for parameter estimates for C1 and α1, we can set the maximum lags cor-
responding to the remaining parameters equal to 0 (i.e., we set r2 = p = 0). This
means that we basically fit univariate models to the respective spatial and temporal
parts of the dependence function (5.4). Hence, this separation simplifies the statis-
tical estimation. However, proving asymptotic properties of the pairwise likelihood
estimator in the special case of a univariate model would for instance still involve
showing the required mixing conditions and thus not remove much of the complexity.

Furthermore, we know that we should not include too many lags in space or time
into the likelihood, since independence effects can introduce a bias in the estimates,
see for example Nott and Rydén (1999), Section 2.1, or Huser and Davison (2014),
Section 4. On the other hand, an empirical analysis showed that extremal spatial
dependence of the Florida daily rainfall maxima ranges up to lag 4 and extremal
temporal dependence does not last more than one or two days, cf. Figure 7.2.6 in
Steinkohl (2013). Hence, we perform the PMLE for maximum spatial and temporal
lags up to 4 and 2, respectively, thus also assuring identifiability of all parameters
according to Table 1. The results are summarised in Table 2. Setting r1, r2 or p

equal to 1 results in non-identifiability of the corresponding parameters α1, α2 or α3,
respectively; cf. Table 1. Therefore, they are not shown in Table 2.

The combination of a rather large estimate for Ĉ3 and a rather small estimate for
α̂3 indicates that there is only little extremal temporal dependence, see Steinkohl
(2013), Section 7.2. Asymptotic 95 %-confidence intervals are based on asymptotic
normality of the parameter estimates and estimated using subsampling methods (cf.
Section 4).

5.4 Isotropic versus anisotropic model

Using the results of Section 4, we want to apply the test (4.1) for spatial isotropy to
the hypothesis

H0 : {C1 = C2 and α1 = α2} versus H1 : {C1 �= C2 or α1 �= α2}.
For the block maxima of the precipitation data we have d = 2, M = 12 and T =

732. This corresponds to the situation of a fixed spatial domain with τT = √
732.

We use the spatial PMLEs based on maximum lags 2-4, which can be read off
from Table 2. We obtain the rejection areas from Theorem 6. We choose b1 = b2 = 5,
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Table 3 Test results for parameters C1 and C2

max. lag τT Ĉ2 − Ĉ1 τT (Ĉ2 − Ĉ1) Rej(T )

θ̂C
97.5 %-CI for C2 − C1 Reject C1 = C2

2 27.055 0.098 2.651 [−2.400, 2.400]c [0.010, 0.187] yes

3 27.055 0.101 2.738 [−2.392, 2.392]c [0.013, 0.190] yes

4 27.055 0.104 2.808 [−2.393, 2.393]c [0.015, 0.192] yes

All values are rounded to three positions after decimal point

thus ensuring that the full range of spatial dependence is contained in the subsamples
and simultaneously achieving that their number is large. Concerning the number of
time points in each subsample, we take b3 = 600. Here we choose a large number to
ensure that Theorem 6, where T → ∞, is applicable. This results in τb3 = √

b3 =√
600. In order to obtain a large number of subsamples, we further choose e1 = e2 =

e3 = 1 as the degree of overlap.
Tables 3 and 4 present the results of the two tests at individual confidence levels

β = 2.5 % giving a test for Eq. 4.1 at a confidence level 2β = 5 % by Bonferroni’s
inequality. The differences (Ĉ2 − Ĉ1) and (̂α2 − α̂1) can be obtained from Table 2.

Since we can reject the individual hypothesis that C1 = C2 at a confidence level
of 2.5 %, we can reject the overall hypothesis H0 of Eq. 4.1 at a confidence level
of 5 % and conclude that our data originate from a spatially anisotropic max-stable
Brown-Resnick process. Further note the interesting fact that, although the asymp-
totic confidence interval for the difference C2 −C1 does not include 0, the individual
intervals for C1 and C2 overlap, see Table 2. This is due to the fact that the individual
confidence bounds are estimated independently of each other, whereas the estimated
bounds for the difference reflect how far the parameter estimates lie apart in one fixed
particular (sub)sample.

5.5 Model check

Finally, having fitted the Brown-Resnick space-time model (2.1) to the precipitation
data, we want to assess the quality of the fit. We take inspiration from Section 5.2
of Davison et al. (2012) and compare maxima taken over subsets of the space-time
precipitation data with simulated counterparts.

Table 4 Test results for parameters α1 and α2

max. lag τT α̂2 − α̂1 τT (̂α2 − α̂1) Rej(T )

θ̂α
97.5 %-CI for (α2 − α1) Reject α1 = α2

2 27.055 0.008 0.216 [−2.162, 2.162]c [−0.072, 0.088] no

3 27.055 −0.008 −0.216 [−2.130, 2.130]c [−0.087, 0.071] no

4 27.055 −0.018 −0.477 [−2.342, 2.342]c [−0.104, 0.069] no

All values are rounded to three positions after decimal point
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Similarly as in Section 5.2, we consider subsets of the observations on a regular
grid for L spatial locations and for time points 1, . . . , B1,

D = {(s()
1 , s

()
2 , 1), . . . , (s

()
1 , s

()
2 , B1) :  = 1, . . . , L}.

We follow the procedure as in Eq. 5.7 to extract R independent realisations of
{η1(sss, t) : (sss, t) ∈ D} from the standard Gumbel transformed space-time observa-
tions (5.2). This yields in turn R independent realisations of ηD = max{η1(sss, t) :
(sss, t) ∈ D}, which we summarise in the ordered vector ηdata := (η

(1)
D , . . . , η

(R)
D ).

Now we simulate a corresponding vector, denoted by η̂sim := (̂η
(1)
D , . . . , η̂

(R)
D ). To

this end we need reliable Monte Carlo values as elements of η̂sim. We obtain them
by simulating empirical order statistics as follows. We simulate m · R independent
copies of the Brown-Resnick space-time process on D with dependence structure
δ as in Eq. 2.4 with the PMLEs from Table 2, where we take the estimates based
on maximum lag 4 (for the spatial parameters) and 2 (for the temporal parameters),
which are the maximum lags, where dependence is still present. We transform the
univariate margins to standard Gumbel. This results in corresponding m · R indepen-
dent simulations of ηD and we consider them as m blocks of size R. We order the R

values in each block and define η̂
(i)
D as the mean of all simulated ith order statistics

for i = 1, . . . , R, which gives η̂sim := (̂η
(1)
D , . . . , η̂

(R)
D ).

The vectors ηdata and η̂sim are compared by qq-plots. If the fit is good, the points
in the plots lie approximately on the bisecting line. Pointwise 95 %-confidence bands
are determined by the 2.5 % and the 97.5 % quantiles of the simulated order statistics.
As in Section 5.3, we choose B1 = 2. The number of simulations is N = m·R = 100·
244 = 24400. Figure 5 presents the results for four exemplary groups of locations.
The plots reveal a good model fit.

We carried out the simulations using the exact method recently suggested in Dombry
et al. (2016), Sections 3.3 and 5.2. For an overview and comparison of different
simulation methods for Brown-Resnick processes we refer to Leber (2015).

5.6 Application: conditional probability fields

Based on the fitted model, we want to answer questions like: Given there is extreme
rain at some space-time reference point (s


1, s

2, t
) ∈ {1, . . . , 12}2 × {1, . . . , 732},

what is the estimated probability of extreme rain at some prediction space-time point
(s

p

1 , s
p

2 , tp)? In other words, we want to estimate the probabilities

P
(
η̃((s

p

1 , s
p

2 ), tp) > z | η̃((s

1, s


2), t
) > z

)
, (5.8)

where {η̃((s1, s2), t) : s1, s2 = 1, . . . , 12, t = 1, . . . , 732} are the stationary obser-
vations (5.1) and z and z
 are prediction and reference rainfall levels, respectively.
Denote by �μ,σ the Gumbel distribution with location and scale parameters μ and
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Fig. 5 Goodness of fit qq-plots for different spatial locations and different L. Top left: L = 2: (1,1) and
(1,2). Top right: L = 3: (1,1), (1,2) and (3,1). Bottom left: L = 4: (1,1), (1,2), (3,1) and (3,2). Bottom
right: L = 5: (1,1), (1,2), (3,1), (3,2) and (2,1). PMLEs underlying the simulations are based on maximum
spatial and temporal lags 4 and 2, respectively. Dashed blue lines mark 95 % pointwise confidence bounds.
Solid red lines correspond to no deviation

σ (cf. Section 5.1) and set μ̂p := μ̂(s
p

1 , s
p

2 ), σ̂ p := σ̂ (s
p

1 , s
p

2 ), μ̂
 := μ̂(s

1, s


2)

and σ̂ 
 := σ̂ (s

1, s


2), which are the marginal Gumbel parameter estimates. Simple
computations show that Eq. 5.8 can be estimated by

1

1 − �μ̂
,̂σ 
(z
)

(
1 − �μ̂
,̂σ 
(z
) − �μ̂p,̂σp (z)

+ exp
{

− V̂D

(
− 1

log
{
�μ̂p,̂σp (z)

} , − 1

log
{
�μ̂
,̂σ 
(z
)

}
)})

,
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Fig. 6 Predicted conditional probability fields based on daily maxima for reference space-time points
(1,1,1), (5,6,1), (8,10,1) and (10,7,1) and rainfall levels z = z
 = 2.5 (clockwise from the top left to the
bottom right)

where V̂D is the estimate of the exponent measure (3.2) obtained by plugging in

the PMLEs of the parameters of the dependence function δ. Figure 6 shows four
predicted conditional probability fields for the reference points (1, 1, 1), (5, 6, 1),
(8, 10, 1) and (10, 7, 1) and for high empirical rainfall levels z = z
 = 2.5. Because
of the little temporal dependence in the daily maxima, we only consider equal time
points for spatial predictions.
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Appendix A: An auxiliary lemma

Lemma A.1 The following two bounds hold true for r ≥ 1, α ∈ (0, 2] and C > 0:

∞∫
y

ure−Cuα
du ∼ 1

Cα
yr−α+1e−Cyα

, y → ∞, (A.1)

∞∫

1

( ∞∫
y

ure−Cuα
du
) 1

3
dy < ∞. (A.2)

Proof First note that integrals of the form
∫∞

0 ure−Cuα
du are finite for every r >

−1, α ∈ (0, 2], and C > 0, since they are transformations of the gamma function
�(x) = ∫∞

0 tx−1e−t dt , which exists for positive x. We prove (A.1) by an application
of l’Hôpital’s rule:

lim
y→∞

∫∞
y

ure−Cuα
du

1
Cα

yr−α+1e−Cyα
= lim

y→∞
−yre−Cyα

(
−yr + r−α+1

Cα
yr−α

)
e−Cyα

= lim
y→∞

yr

yr
(

1 − r−α+1
Cα

y−α
) = 1.

In order to prove (A.2) first note that it follows from (A.1) that for every ε > 0 there
exists y0 = y0(ε) such that for all y ≥ y0,

( ∞∫

y

ure−Cuα

du
) 1

3 ≤ (1 + ε)
( 1

Cα

) 1
3
y

r−α+1
3 e− C

3 yα

. (A.3)

Now we split the double integral of (A.2) up into

y0∫

1

( ∞∫

y

ure−Cuα

du
) 1

3
dy +

∞∫

y0

( ∞∫

y

ure−Cuα

du
) 1

3
dy =: I1 + I2.

For I1 we obtain

I1 ≤
y0∫

1

( y0∫

y

ure−Cuα

du
) 1

3
dy +

y0∫

1

( ∞∫

y0

ure−Cuα

du
) 1

3
dy =: I

(1)
1 + I

(2)
1 .

I
(1)
1 is obviously finite, and to bound I

(2)
1 we use (A.3), which yields

I
(2)
1 ≤ (y0 − 1)(1 + ε)

( 1

Cα

) 1
3
y

r−α+1
3

0 e− C
3 yα

0 < ∞.

Concerning I2, note that

I2 ≤ (1 + ε)
( 1

Cα

) 1
3

∞∫

y0

y
r−α+1

3 e− C
3 yα

dy,

which is finite by finiteness of the gamma function.
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