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Abstract The main approach to inference for multivariate extremes consists in
approximating the joint upper tail of the observations by a parametric family arising
in the limit for extreme events. The latter may be expressed in terms of componen-
twise maxima, high threshold exceedances or point processes, yielding different but
related asymptotic characterizations and estimators. The present paper clarifies the
connections between the main likelihood estimators, and assesses their practical per-
formance. We investigate their ability to estimate the extremal dependence structure
and to predict future extremes, using exact calculations and simulation, in the case of
the logistic model.
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1 Introduction

Under mild conditions, multivariate extreme-value distributions provide models suit-
able for the stochastic fluctuations of componentwise maxima. The limiting distribu-
tion of linearly renormalized componentwise maxima of independent and identically
distributed (i.i.d.) random vectors, provided it exists and is non-degenerate, is neces-
sarily a multivariate extreme-value distribution (Resnick 1987, Chapter 5). Although
these distributions have parametric generalized extreme-value (GEV) margins, their
dependence structure is non-parametric. A standard approach to inference for mul-
tivariate extremes consists in approximating the distribution of componentwise
finite-block maxima by flexible parametric asymptotic submodels, proposed among
others by Gumbel (1961), Tawn (1988), Hiisler and Reiss (1989), Coles and Tawn
(1991), Joe et al. (1992), Demarta and McNeil (2005) and Segers (2012). In order
to increase computational and statistical efficiency, Stephenson and Tawn (2005)
proposed a refined approach which uses the extra information of occurrence times
of extreme events, a biased-corrected version of which is proposed by Wadsworth
(2015). In high dimensions, composite likelihoods (Lindsay 1988; Varin et al. 2011)
may also reduce the computational burden, while retaining fairly high efficiency.
Non-parametric estimation procedures have also been considered (see, e.g., Pickands
1981; Deheuvels and Tiago de Oliveira 1989; Deheuvels 1991; Smith et al. 1990;
Capéraa et al. 1997; Hall and Tajvidi 2000; Boldi and Davison 2007), but in the
present paper we focus on parametric approaches.

An alternative approach, the point process characterization of extremes (Coles and
Tawn 1991), enables efficient inference by incorporating additional data, which are
lower than block maxima in a sense to be made precise below, but sufficiently large
to provide useful information about extremal characteristics. Loosely speaking, in
practice this approach consists of fitting a non-homogeneous Poisson process to high
threshold exceedances. In the univariate framework, this is essentially the same as
fitting a generalized Pareto distribution (GPD) to exceedances (Davison and Smith
1990; Smith 1989), and it extends to higher dimensions through the multivariate GPD
(Falk and Reiss 2005; Rootzén and Tajvidi 2006; Buishand et al. 2008). In the mul-
tivariate framework, the notion of exceeding a given threshold may be interpreted in
various ways, thereby yielding different threshold-based estimators (see, e.g., Coles
and Tawn 1991; Resnick 1987; Beirlant et al. 2004; Fougeres 2004). Alternatively,
noticing that the dependence structure of high threshold exceedances is essentially
the same as that of componentwise maxima, Ledford and Tawn (1996) and Smith
et al. (1997) proposed a censored likelihood, decreasing the contribution of points
that are “not extreme enough”; see also Bortot et al. (2000), Thibaud et al. (2013)
and Huser and Davison (2014).

Although all the aforementioned estimators are closely linked to each other, in
the sense that they may be viewed as stemming from the same asymptotic result,
they nevertheless have different properties in practice. In general, block maximum
approaches may be expected to be relatively unbiased but rather variable, whereas
threshold-based approaches are commonly thought to be more efficient, but more
biased. However, as far as we know, no quantitative study of their performance has
yet been performed, though Zheng et al. (2014) is a related recent contribution.
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Likelihood estimators for multivariate extremes 81

The goal of the present paper is to clarify the connections between the main like-
lihood estimators for multivariate extremes, and to provide a quantitative assessment
of their performance. We focus on the estimation of the dependence structure, rather
than the marginal distributions, and the logistic extreme-value model is considered
for its simplicity and tractability in high dimensions. In Section 2, an overview of
classical results in multivariate extreme-value theory is given, and the symmetric and
asymmetric logistic families are presented. In Section 3, likelihood estimators are
described, and in Section 4, their performance is assessed using analytical calcula-
tions and simulation based on the logistic model. Finally, Section 5 contains some
discussion.

Vector notation Throughout the paper, bold symbols denote D-dimensional ran-
dom or deterministic real vectors. For example, Y = x1,....¥p)T, a, =
(an, ..., an,D)T, 0 is a D-dimensional vector of zeros, oo is a vector of infini-
ties, etc. All vector operations are componentwise: y < u means y; < ug
for all d = 1,..., D, ay is a vector with dth component agyq4, Inax?:1 Y, =
(maxg’=1 Yit,..., maxl’.’=1 Y;, D)T, etc. Furthermore, y f u indicates that there exists
at least one d = 1,..., D such that y; > uy. If a comparison or an operation is
done between a vector and a scalar, it holds for each component of the vector: ay is
a vector with components ay,, etc. When sets are involved, [a, b) is the product set
lai, b1) x --- x [ap, bp).

2 Multivariate extremes
2.1 Asymptotic theory and upper-tail approximations

This section summarizes some of the main results of multivariate extreme-value the-
ory. More detailed surveys may be found in Resnick (1987), Coles (2001), Fougeres
(2004), Beirlant et al. (2004), Segers (2012), Davison and Huser (2015) and the
references therein.

Let Y denote a D-dimensional random vector with joint distribution function
F(y) and margins F;(y) (d = 1, ..., D). Moreover, let Y; (i = 1,2, ...) denote a
sequence of i.i.d. replicates of Y and consider the vector of componentwise maxima
M, = max?_, Y;. A key goal of multivariate extreme-value theory is to characterize
the family of asymptotic distributions that arise as limits for M,,, when suitably renor-
malized by location and scale sequences. Hence, assume that sequences a,, € }RJDF and
b, € RP may be found such that as n — oo the sequence of renormalized maxima
a, 1 (M,, — b,,) converges in distribution to a random vector Z with joint distribution
G(z) and non-degenerate margins G4(z) (d = 1,..., D). If such sequences exist,
we say that Y is in the max-domain of attraction of Z, and the limiting distribution
function may be expressed as

G(z) = exp[-V{1(2)}] )]

and is called a multivariate extreme-value distribution. The function V' on the right-
hand side of Eq. 1, called the exponent measure, is homogeneous of order —1, i.e.,
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82 R. Huser et al.

V(sz*) = s~'V(z*) for any s > 0 and any z* > 0, and satisfies the marginal
constraints V (z*, oo, ..., 00) = 1/z* for any permutation of the D arguments. The
function ¢ (z) : RP — R_e in Eq. 1 is a marginal transformation which, provided a,,
and b,, are suitably chosen, maps the vector z to {¢t1(z1), ..., tp(z D)}T, where

() = (1 + 82, d=1,...,D, )

with a4 = max(0, a), and £; € R. This implies that for large n, the marginal distri-
butions of M,, are approximately GEV with location parameter b, 4, scale parameter
an,q4 and shape parameter &4, i.e., writing ¢, 4(z) = t4{(z — bn.4)/an.a},

Pr(M, 4 < z) ~ Gd<z_b”’d> = exp{—1/tn.a(2)}

Apn.d

—b —1/&4
=exp{—<l+$dza—dn'd) , d=1,....,D. (3)
n,

+

Since the variates Z); = t4(Zy) all have unit Fréchet distributions, meaning that
Pr(Z}; < z*) = exp(—1/z*), z* > 0, the functions in Eq. 2 may be used to transform
the data to a common scale, thereby enabling separate treatment of the margins and
the dependence structure. A key point for the proof of Eq. 1 is that the class of mul-
tivariate extreme-value distributions coincides exactly with max-stable distributions
G (z) with non-degenerate margins, meaning that there exist a; € Rf and by € RP
such that
Gragz +by) = G(z), k=1,2,....

Hence, G (z) is also max-infinitely divisible: it can be viewed as the distribution of the
maximum of k i.i.d. random variates for any positive integer k. Therefore, according
to Balkema and Resnick (1977) and Beirlant et al. (2004, p.255), there must exist a
unique measure v concentrated on Q2 = [¢, 00) \ ¢ for some ¢ € [—00, 00), such that

G(z) =exp{—v(Ay)}, z€, 4)

where A, denotes the complement of the set [—o0, z) in [—00, 00). Since the limiting
marginal distributions are necessarily GEV (Fisher and Tippett 1928), the measure v,
transformed using Eq. 2, yields a measure v; on [0, 00) \ {0} such that

V(A7) = vifAi)} = V{t(@)}, )

thereby recovering Eq. 1. Moreover, the homogeneity of V is a direct consequence
of the max-stability of G(z).
Deeper insight may be obtained by considering extreme events from a point
process perspective. Assuming that Eq. 1 holds, consider the point process
Y;—b
pn:{ l ":i:l,...,n}. ©)

a,

According to Resnick (1987, p.154), as n — oo, P, converges to a non-homogeneous
Poisson process P on 2 with mean measure v, as defined in Eq. 4. Thanks to Eq. 5,
if the measure v is absolutely continuous, the corresponding intensity measure is
v(dy) = —|J:(¥)|V1:p{t(y)}dy, where V|.p is the derivative of the function V with
respect to all arguments, and J;(y) is the Jacobian associated to the transformation

@ Springer



Likelihood estimators for multivariate extremes 83

t(y). By the Poisson property, one has that for any Borel set B C 2 with compact
closure and zero mass on its boundary (Beirlant et al. 2004, p.280),

Pr(P, c Q\ B) - Pr(P C Q\ B) =exp{—Vv(B)}, n— oo, @)

and by choosing B = A, = [—00, 00) \ [—00, Z], for z > ¢, Eq. 7 combined with
Eq. 5 yields (1). Furthermore, Y is in the max-domain of attraction of G(z) if and
only if

Y —b,

vy (B) = nPr( a € B) — v(B), n— o0, 8)
n

for any Borel set B C 2 defined in Eq. 7. As a result, replacing the convergence in

Eq. 8 by equality for large n, letting u € 2 be a high threshold (typically of the form

u = a,u’° + b, for some fixed u®) and choosing B = Ay = [—-00, 00) \ [—00, Y],

one obtains the upper tail approximation

y_bn

ap

FW)%I—%V{I< >}=1—VM&@HQGWPJW&WHL y>u (9)
Here we have used the homogeneity of the exponent measure, Eq. 5, and a
first-order Taylor expansion of the exponential function, and 7,(y) = nt,(y) =
{nt,.1(y1), ...,ntn,d(yd)}T denotes the marginal transformation defined in Eqs. 2
and 3 with modified location and scale parameters; specifically, the dth location
parameter is b, 4 + ad,,,(n_gd — 1)/&4, the dth scale parameter is ad,nn_gd, but the
shape parameter &; remains unchanged. Hence, whenever Eq. 1 holds, the upper
tail of the distribution of Y may be approximated by a multivariate extreme-value
distribution with essentially the same dependence structure as maxima.

It is useful to represent a random variate Z distributed according to Eq. 1 in terms
of pseudo-polar coordinates,

D D
v 1(Z)
R = Zy = ti(Zy), W=—=—-—.

Here R represents the radial part, i.e., the overall magnitude of Z on the unit Fréchet
scale, and W denotes the vector of relative magnitudes of each component. One can
show (Beirlant et al. 2004, p.258) that the limiting intensity measure factorizes as

v(dy) = v(dr, dw) = Dr2dr H(dw), (10)

where H is a probability measure on the (D — 1)-dimensional simplex .p = {w €
[0,11° : 25):1 wy = 1}, satisfying the mean constraints fYD wg H(dw) = D! for
d =1,...,D. The measure H is called the spectral measure, and if it is absolutely
continuous, then its Radon—Nikodym derivative & (w) is called the spectral density.
Relation (10) implies that the angular and radial components are asymptotically inde-
pendent. Furthermore, it follows from Eqgs. 5 and 10 that the exponent measure may
be expressed as

V(z") = viA-1) = /

/OO Dd—;H(dw) = D/ max (z*) H(dw).
D <D z

min(z*/w) T
(11)
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84 R. Huser et al.

Similarly, considering the extreme set A™ = {z € Q : Zfl):l t4(zq)/ro.a > 1}, one
has

D

(A™) / foo pY Haw) = D i “LHEw) =Y b
v = _ — W) = _— W) = ro’d,
Ip {Z(?=1 wd/ro.d} b2 b gy 104 d=1

(12)

which, unlike (11), does not depend on H.

A consequence of the point process characterization is that the multivariate exten-
sion of the GPD is the limiting distribution for threshold exceedances. Specifically,
assume that Eq. 1 holds and let u® € 2 denote some threshold vector on the
renormalized scale. From Eqs. 5 and 8, one can show that, as n — oo,

Y —b, Y —b, o Vmin{z(y), 1 (u*)}] — V{t(y)}
Pr( ) ‘ a P ) - Vi) W
the right-hand side of which may be rewritten using G(y) = exp [—V{z(y)}] as
B 1 G(y) o
O = TGy [G{min(y, u°>}] - VEW 1

known as a multivariate GPD with reference vector u® (Falk and Reiss 2001, 2002,
2003a, b, 2005; Rootzén and Tajvidi 2006; Buishand et al. 2008). If the density of

O(y) exists, then it equals g(y) = —|J;(M|Vi.p{t()}/V{r@®)} (y £ u°), where
Vi.p(y) = aPV(y)/dy;---dyp, and J;(y) is the Jacobian of the marginal trans-
formation 7(y). It can be verified that if a random vector Y = (Y1,...,Yp)T is

distributed according to Q(y) in Eq. 14, then the dth conditional marginal distribution
of exceedances may be expressed as

o\ —1/&a
—Uu
Y ‘1) L oysuS, (15

Pr(YdSled>M§)=1—<1+€d -
d

+

where Ty = 1+&4u; > 0; (15) is a univariate GPD with location parameter u, scale
parameter t; and shape parameter &;. In addition, using the law of total probability,
(13) yields the following tail approximation, for large n and large thresholds u,

F(y)y~1=Vinn @y}, y>u, (16)

which coincides with the middle approximation in Eq. 9. This shows that multivari-
ate extreme-value and multivariate GPD approximations to the upper tail of F(y)
only differ by an asymptotically vanishing first-order term. Furthermore, (13) may
be combined with the empirical distribution function F (y) of Y1, ..., Y, to provide
an approximation to the full distribution of F(y), namely

F{min(y, w)} + V[min{z,(y), i} — V{i (0}, ¥y £ u,

A 17

Fy) = {
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These approximations may be used with the probability integral transform to con-
vert the data to the unit Fréchet scale as, e.g., in Coles and Tawn (1994), Joe et al.

(1992) and Huser and Davison (2014). Specifically, defining 7(y) : R? — RP as the
p y gy

function such that 7(y) = {f(y1), . ., ip(yp)}7 with
ia(y) =—1/log{Fs(y)}, d=1,...,D, (18)

and letting Fy denote the dth marginal approximation in Eq. 17, one has that 7 (y) =
fy(y) fory > u, and Pr{f;(Y;) < y} =~ exp(—1/y), y > 0.

2.2 The logistic model

Although the marginal distributions in Egs. 3 and 15 depend on a finite number of
parameters, the multivariate extreme-value and multivariate GPD distributions (1)
and (14) are non-parametric because the underlying exponent measure V (z) may
be expressed in terms of a spectral measure taking almost any form; recall (11).
In other words, there exists an infinite number of possible dependence structures
for extremes. Classical inference relies on parametric families of exponent measures
(see, e.g., Tawn 1988, Hiisler and Reiss 1989, Joe 1990, Coles and Tawn 1991, Joe et
al. 1992, Boldi and Davison 2007, Ballani and Schlather 2011, Segers 2012, Sabourin
and Naveau 2014), and this section describes a well-established example, the logistic
model, which we use in Section 4 to provide insight into the performance of different
estimation procedures.
The logistic model originates from Gumbel (1961) and puts

D o
V() = (Zz;”“> . ae 11 (19)
d=1

The case @ = 1 corresponds to independence, whereas the limiting case « — 0 corre-
sponds to perfect dependence. In practice, this model suffers from a lack of flexibility,
especially for large D, because the dependence structure is symmetric and summa-
rized by a single parameter. A generalization that can capture non-exchangeability is
the asymmetric logistic model proposed by Tawn (1988) and Coles and Tawn (1991),
studied by Stephenson (2009), and used by Ferrez et al. (2011) among others. The
exponent measure may be expressed as

. RN
V(z):Z Z( ) , (20)

0
Ec& \deE Ed

where & is the set of all non-empty subsets of 2 = {1, ..., D}. The dependence
parameters must satisfy «g € (0, 1] for all sets E € & with |E| > 1, and 6g 4 €
[0, 1] with ZEeé"(d) Oea =1 =1,...,D), where gy = {E € & : d € E}.
Whenag =a,0p 4 =1and O g =0foralld =1,..., D, E € &\ 2, the model
(20) reduces to Eq. 19. As Stephenson (2009) pointed out, the full form of Eq. 20 is
over-parametrized, but in practice simpler sub-models may be of interest. For exam-
ple, Reich and Shaby (2012) have shown that a model closely related to (though not
a restriction of) Egs. 19 and 20 describes the finite-dimensional distributions of a
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particular max-stable spatial process, which they fit to precipitation extremes from a
regional climate model. Furthermore, Reich and Shaby’s model converges in a cer-
tain sense to the Smith (1990) model, which has been widely applied in the spatial
extremes literature. Hence, although the model (19) is too rigid in most applications,
it is closely related to more realistic settings, and, as such, is used as a model of
reference in the present paper.

Generating data from models (19) and (20) can be easily and quickly performed
in any dimension, thanks to their useful representations in terms of «-stable variates
(Stephenson 2009).

In the following section, we present the main approaches to parametric inference
based on the asymptotic results of Section 2.1.

3 Inference

We now introduce several block maximum or threshold likelihood estimators that we
shall compare in Section 4. Suppose that the assumptions of result (1) hold, and that
n = LN independent observations yi, ..., Yy, distributed as the random vector Y
have been recorded. The classical approach to inference is to form N blocks of length
L with corresponding componentwise maxima my, ..., my and to approximate the
joint distribution of the latter by a parametric family of multivariate extreme-value
distributions G(z) = exp[—V{t.(z); ¥}], where ¥y € ¥ C RY denotes the vector
of unknown marginal and dependence parameters. Here it is implicitly assumed that
the transformation #7 (z), defined in Eqgs. 2 and 3, involves location, scale and shape
parameters to be estimated. This yields the log-likelihood function

N
Max 1 (¥) =) log ( > Ve twmy); ¢}])—v {rL.(m;); ¥}+log | J;, (my)],
i=1 PePEeP

(21)
where & is the collection of all partitions of 2 = {1, ..., D}, Vg denotes the partial
derivative of the function V with respect to the variables whose indices liein E C &,
and J;, (z) is the Jacobian associated with the transformation #; (z). Since the size of
the set & grows at a combinatorial rate as D increases, Stephenson and Tawn (2005)
proposed an alternative likelihood, which uses the extra information of occurrence
times of maxima. More precisely, for each i = 1,..., N, let P; C & denote the
partition that classifies block maxima m; = (m; 1, ..., m;, )T according to their
occurrence times, e.g., for D = 3, if m; | and m; 2> occurred simultaneously, but
separately from m; 3, then P; = {{1, 2}, {3}}. The Stephenson—-Tawn log-likelihood
may be written as

N
EMax2(P) =Y Y log [— Vi {tr.(my); g =V {1 (my); g}+log |y, (my)], (22)

i=1 EeP;
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thereby dramatically decreasing the number of terms in the log-likelihood. Recently,
Wadsworth (2015) proposed a second-order bias correction of the Stephenson—Tawn
likelihood, which may be written as

[T 1=Ve {temi): g {1

EEPI'

R 1)}

L (23)

N
EMaX,3('/’) = Z IOg
i=1

1
o > [T [=Va e 1] | = V e my): ¢} + log |, (my)],

P<P; EcP

where | P;| is the cardinality of the partition P;, and P < P; denotes a sub-partition
P € 2 of P; with cardinality |15| = |P;| — 1. This reduces the bias, while retain-
ing a fairly small number of likelihood terms compared to Eq. 21, at least in weak
dependence scenarios. Another way to reduce the computational burden of Eq. 21 is
through composite likelihoods; see, e.g., Lindsay (1988), Varin and Vidoni (2005),
or Varin et al. (2011). In particular, pairwise likelihoods are constructed by multi-
plying all bivariate contributions, possibly weighted, under the working assumption
of mutual independence. A log-pairwise likelihood based on block maxima may be
written as

N
Ovax pair (W) = D Y log {g (miay. miay: ¥)} . (24)

i=1dy<dy
where g(z1, z2; ¥) denotes the bivariate density stemming from G(z) (Padoan et al.
2010; Davison and Gholamrezaee 2012). Maximum composite likelihood estimators
and classical maximum likelihood estimators share similar asymptotic properties:
Under comparable regularity conditions, both are strongly consistent, asymptotically
Gaussian and converge at rate J/N. However, the former are more variable than the
latter, and require a special treatment of uncertainty (Cox and Reid 2004; Padoan
et al. 2010; Davis and Yau 2011; Huser and Davison 2013).

More efficient inference can be performed using threshold methods. These pri-
marily differ in the way threshold exceedances are defined and how they enter into
the likelihood function. The first approach, developed by Coles and Tawn (1991),
consists in choosing a high marginal threshold u € Rf and building a likelihood
from the Poisson process approximation (6) for events falling in the extreme set
Ay = [—00, 00) \ [—00, 1], i.e., whenever at least one variable exceeds its marginal
threshold. If the threshold u is extreme enough, then exceedances over u should
be approximately distributed according to a Poisson point process with intensity
v(dy) = —|J;,, W Vi.pita (y); ¥}dy, where J;, (y) is the Jacobian associated with the
transformation #,(y) defined in Eqs. 2 and 3. Let yi € Au, i = 1,..., Ny, denote
these exceedances. The corresponding Poisson log-likelihood is

Ny
Crea () = =V s ¥} + Y log[Vip {1 v): w ]| + logl, 01 29)
i=1
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88 R. Huser et al.

A second approach is to define extreme events as the observations y' € A", i

1,..., N', whose radial part exceeds a specific high diagonal threshold vector r =
(r1,...,rp)T. Thanks to Eq. 12, the corresponding Poisson log-likelihood is
Nr
erma () = Y tog [<Viop [ w) | + 10g 1,00, 6)
i=1

where = means equality up to an additive constant. A third approach is to use a
likelihood constructed from the asymptotic multivariate GPD characterization; recall
(13). Given a high marginal threshold u with corresponding exceedances y' € Ay,
i =1,..., Ny, the log-likelihood function based on Eq. 14 is

Ny
Cre 3 (9) = —Nulog [Vt (W ¥} + Y log [=Viep {1 v): | |+ log 14, ().
i=l1

27
For large u, the variable N, should be approximately distributed as a Poisson ran-
dom variable with mean V {t, (u); ¥}. If so, it turns out that £1pr 1 (¥) = L1 3 (V) +
£y, (W) for any ¥ € ¥, where £y, (¥) is the log-likelihood for Ny. This implies that
the corresponding Fisher information matrices satisfy Ithe, 1 (¥) = IThe 3(¥) +In, >
Ithe3(¥), so that inference based on the log-likelihood (25) is more efficient than
using Eq. 27. In fact, (25) treats the number of exceedances as random, whereas
(27) conditions upon it. However, the improvement of Eq. 25 over (27) is slight
as n — 00. Michel (2009) proposed alternative efficient likelihood procedures for
multivariate GPD data.

The likelihoods (25), (26) and (27) require that all the mass of the exponent mea-
sure is distributed on the interior of its domain of definition (as for the logistic model),
and are unsuitable if some positive mass lies on the boundary faces or edges (as for
the asymmetric logistic model); see Thibaud and Opitz (2015).

A fourth approach, which works also for models with mass on boundary faces or
edges, is to approximate the joint distribution F (y) by using Egs. 9 or 16 and to adopt
a censored approach to account for misspecification below a high marginal thresh-
old u. To be more precise, let §; € {0, 1} (i = 1, ..., n) denote indicator variables
reporting whether y; 4 > ug (8ig = 1) or yi.q < ug (6;, ¢« = 0). Each observation y;
can then be split into a vector of exceedances, yl.> , and a vector of non-exceedances,
yl.s. The censoring scheme that we consider supposes that the available set of obser-
vations is composed of (§;, yl.>) (i = 1,...,n). Further, define the vectors ul.> and
uf, containing the elements of the threshold vector u corresponding to exceedances
and non-exceedances. Then, if F(y) is a suitable model for y > u, the contribution
to the likelihood of a censored observation (4;, y;") is
uy
pulyis ¥) = / dF (yi)dy; = Fs, (bi), (28)
—00
where the vector b; has components b; ; = max(y; 4, 4q), and where Fjs, (y) denotes
partial differentiation of the distribution F(y) with respect to the variables corre-
sponding to 8; 4 = 1 (d = 1,..., D). Approximations p},(yi; ¥) and pﬁ(yi; v)
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Likelihood estimators for multivariate extremes 89

to Eq. 28 may be obtained by replacing the distribution F' by the tail approxima-
tions in the right-most expression of Eqs. 9 and 16, respectively. Summing up all
log-censored contributions, we get the log-likelihood functions

ema) = Y log{pdois W}, s =Y log [2ai W] @)

i=1 i=1

The censored likelihood £y 4(¥) was proposed by Ledford and Tawn (1996) and
applied in the bivariate case by Bortot et al. (2000) and Coles (2001, p.155), while
L1nr,5(¥) was advocated by Smith et al. (1997) and recently extended to the spatial
framework by Wadsworth and Tawn (2014) and Thibaud and Opitz (2015), albeit
with a slight modification for the points falling in [—oo, u]. When the exponent
measure or its partial derivatives are not available for D > 2, and to reduce the com-
putational burden, Thibaud et al. (2013) and Huser and Davison (2014) propose a
censored pairwise likelihood similar to

Crnepar¥) = Y Y log { paiars viuar ¥ (30)

i=1dy<dy

where plll(yl, y2; ¥) is the bivariate counterpart of plll(y; ¥); see also Bacro and
Gaetan (2014). Alternatively, a partially censored pairwise likelihood was proposed
by Wadsworth and Tawn (2012). The domains of these different threshold-based
estimators are illustrated in Fig. 1.

The notation 1/7] = argmaxyew ¢ ;, %,‘Pair = arg maxycw £. pair i used here-
after to denote maximum likelihood estimators and maximum pairwise likelihood
estimators, respectively. In Section 4, we compute their asymptotic relative efficien-

cies for the logistic model when D = 2, and assess their empirical performance for
D >2.

N //\ N N //\ //\
Ythr,1/ YThr3 Ythr2 g Ythra ! Ythrs ! YThr,Pair

Y2
Y2
2
|
Y2

I

Uz
Uz

o : - S

0 Uy oo 0 8] oo Uy oo
Y, Y, Yy

o

Fig. 1 Schematic view of the different threshold-based approaches to inference, illustrated for D = 2
and with unit Fréchet margins. Left: Poisson likelihood with marginal thresholds and multivariate GPD
approach; middle: Poisson likelihood with diagonal threshold; right: censored likelihood approaches. Data
points lying in the grey areas contribute to the likelihood, and censoring is indicated with shaded lines
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4 Performance assessment of estimators
4.1 Two-dimensional case

Asymptotic relative efficiencies Since under standard regularity conditions, max-
imum (composite) likelihood estimators are asymptotically unbiased (see, e.g.,
Davison 2003, p.122—125, and Varin et al. 2011), their asymptotic relative efficiency,
i.e., the ratio of variances as n — 00, is a natural measure of performance. In
dimension D = 2, maximum pairwise likelihood estimators coincide with their full
likelihood counterparts, whose variance equals the reciprocal Fisher information, as
n — oo. The latter was worked out for the multivariate logistic model with unknown
marginals by Shi (1995). Furthermore, Stephenson and Tawn (2005) investigated the
asymptotic relative efficiency of 'ﬁMax , with respect to rlfMax | based on Egs. 22
and 21 for the bivariate logistic model with known margins; the same calculations
apply to the second-order bias reduction approach 1} Max,3- However, nobody has yet
assessed the asymptotic variance of threshold estimators based on the Poisson like-
lihood or the censored likelihood. Here, we compute it theoretically for 1/}Thr,4 and
'}Thr,s (see the Appendix for the details) and by simulation for &Thr,l, '}Thr,z and
'/A,Thr,3 in the case of the bivariate logistic model with known unit Fréchet margins,

i.e., with marginal transformations (3) and (18) satisfying t,(z) = #,(z) = 7 (z) = z.
Accordingly, the notation &, with subscripts consistent with Section 3, will be used
instead of 1} Block maximum estimators assume a block length L = 100, while
threshold estimators are defined in terms of the threshold probability p: the marginal
threshold u(p) is chosen as the vector of p-quantiles, while the diagonal threshold
r(p) =1{r(p),..., r(p)}T is such that there are 100 x (1 — p) % exceedances over
it on average. Table 1 reports the (theoretical or simulation-based) root asymptotic
relative efficiencies of the estimators with respect to the censored likelihood esti-
mator &rhr 4. Results obtained by simulation are based on 10° independent datasets
simulated from the logistic model with sample size n = 50000.

As expected, threshold-based estimators outperform block maximum estimators.
But, more interestingly, the former are less variable than the latter even when the
same number of “useful” observations is available for both estimation procedures
(L = 100 and p = 0.99). Surprisingly, this discrepancy increases as « approaches
unity, where data are closer to independence, and so are more likely to be censored
using Qthr 4. By contrast, the effect of censoring in &thr 4 is striking when consid-
ering the relative efficiency with respect to non-censored threshold estimators Gtpy, 1
and Qtpr 2. The latter, which use the actual values of additional data points close to
the axes (recall Fig. 1), increasingly outperform the censored likelihood estimator
as « — 1. For example, when o = 0.9, the asymptotic standard deviation of the
censored estimator &tpr 4 is almost three and a half times that of &t at the 99 %
threshold. This suggests that censoring discards non-negligible information when
the data are nearly independent. However, at sub-asymptotic regimes with finite n,
the biases and robustness of these estimators should also be taken into account. In
particular, if block sizes (respectively thresholds) are not large enough, the approx-
imation of block maxima (respectively threshold exceedances) by their asymptotic
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Table 1 Root asymptotic relative efficiencies (%) of the different estimators of « introduced in Section 3
with respect to the censored estimator &4 With threshold probability p = 0.95 (first four rows) and
p = 0.99 (last four rows), for the bivariate logistic model (19) and different values of the dependence
parameter o

Estim. Lorp Dependence parameter o

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

amax,1* L =100 42.6 40.4 38.1 358 333 30.7 28.0 24.8 20.8
amax2® L =100 442 43.8 43.5 433 43.1 43.0 43.1 434 453
G, 1P p=095 108.0 117.0 128.0 145.0 167.0 199.0 237.0 2750 291.0
G 2? p =0.95 99.0  100.0 103.0 111.0 1240 1460 177.0 2150 248.0

Amax,1® L =100 95.2 90.1 84.9 79.4 73.6 67.5 60.7 52.7 41.9
amax2® L =100 98.8 97.8 96.9 96.1 95.3 94.5 93.5 92.2 91.3
e 1® p=0.99 107.0 116.0 126.0 139.0 158.0 188.0 232.0 293.0 348.0
Ghr.2? p =0.99 99.0 100.0 102.0 108.0 118.0 137.0 168.0 218.0 278.0

In this bivariate setting, @Max, Pair = @Max,1 and &Thr air = ¥Thr,4. Moreover, &max,3 is asymptotically as
efficient as &max 2, and similarly for dn,3 with respect to &rnyr, 1, and &rny,5 with respect to &rny 4. For
block maximum estimators, the number of observations per block is set to L = 100

2Numbers calculated theoretically

®Numbers calculated by simulation from 10 estimates of & obtained from bivariate logistic samples of
size 50000

distribution might induce some misspecification bias. We assess this by simulation
in dimension D = 2.

Estimation ability In order to assess the practical performance of the different
methods introduced in Section 3 in terms of bias and efficiency, we conducted a sim-
ulation study, in which data were generated in the max-domain of attraction of the
logistic model (19). For different values of « ranging from very strong dependence
(o = 0.05) to independence (¢ = 1), we simulated R = 10* independent datasets of
size n = 10* from an Archimedean copula with generator @(¢) = (t* + D! (known
as the outer power Clayton copula, see Hofert et al. 2015 and Nelsen 2006) and zero-
truncated Student ¢ marginals. In other words, the joint distribution function F(y) of
our simulated observations is

F® =o[o” (RO} + -+ +97 (Fo(m)} ] (1)

where for each d = 1, ..., D, the marginal distributions satisfy F;(0) = 0.5 and
Fq(y) =0.540.5T5(y), y > 0, with T5(y) denoting the ¢ distribution function with
5 degrees of freedom. The simulated data are positive, with a positive mass at zero,
and heavy-tailed, which are common features of rainfall data, for example (Huser
and Davison 2014). The presence of the point mass at zero could be problematic for
non-censored estimators. The distribution (31) is known to be in the max-domain
of attraction of the logistic model with GEV margins (3) with shape parameters
&1 = 02 (d = 1,..., D); see Fougeres (2004) and Beirlant et al. (2004, p.59).
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For this simulation study, we focus on the bivariate case with D = 2. In order to
estimate the dependence parameter o, we consider a two-step approach: First, once
block maxima (respectively threshold exceedances) are identified, the GEV distri-
bution (respectively the GPD (15)) is fitted to each margin separately. Second, the
limiting logistic model is fitted using the different estimators of Section 3, treat-
ing the estimated marginals as fixed. One-step estimators are also considered in the
Supplementary Material. To quantify estimation ability, the R replicates of each esti-
mator considered are then used to compute its empirical bias, standard error and
root mean squared error (RMSE). More precisely, denoting independent replicates of

some estimator & fora by &, (r = 1, ..., R), we define
1/2
PN . Lt
Bias(®) = @ —«a, SE(@) = _1 z; (ar — a) ,
r=
) s 12
RMSE(4) = [{Blas(ot)} + {SE@)) ] , 32)
where @ = R~ Zle ar. As above, the block maximum estimators use block
size L = 100, so that N = 100 maxima are available for fitting. In prac-

tice, this setting could correspond to 100 summer maxima of data recorded on
a daily basis. For threshold estimators, we consider threshold probabilities p =
0.9, 0.95, 0.98, 0.99, 0.995. The results are reported in Fig. 2.

Overall, the relative efficiencies are consistent with their asymptotic counterparts
in Table 1, though with some slight differences due to the estimation of margins.
However, this simulation study offers new insight for finite n: all estimators tend to
overestimate the strength of dependence, and this overestimation increases as the data
become more independent, i.e., as « approaches unity. As expected, block-maximum
estimators have a limited bias and huge variability, though &max.2 and Gmax,3 out-
perform &pmax, 1- In this bivariate setting, the bias-reduction estimator &yjax 3 behaves
very similarly to its counterpart &max2 but offers a slightly better performance
close to independence. The former is comparable to the censored estimator &tpr 4
at the 99 % level, where the number of exceedances is the same as the number
of block maxima (using a block size L = 100). Regarding threshold estimators
with p = 0.9,0.95, 0.98, the best performance overall according to the RMSE is
attained by the censored estimator Gtpr,4, Whose increased variability compared to
QThr,1> ®Thr,2, @Thr,3 1S compensated by a well-controlled bias. For higher thresh-
olds, with p = 0.99, 0.995, estimators based on Poisson likelihoods perform slightly
better when o < 0.7, which was expected since the limiting model is likely to fit
better. Non-censored threshold-based estimators are fairly reliable for very high p
and small «, a situation rarely encountered in practice, but perform very badly at
moderate thresholds or when the data are nearly independent. They suffer from a
pronounced bias owing to their sensitivity to model misspecification close to the
axes, whereas censored or block-maximum estimators are more robust. Interestingly,
although block maximum estimators with L = 100 use about five times less data than
non-censored estimators with p = 0.95, the former nevertheless have lower RMSEs
than the latter when @ > 0.5.
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Fig. 2 Empirical bias (left), standard error (middle) and root mean squared error (right) of the dif-
ferent estimators introduced in Section 3, to assess the dependence strength of the limiting bivariate
logistic model, plotted against the true dependence parameter o and for threshold probabilities p =
0.9, 0.95,0.98, 0.99, 0.995 (top to bottom rows). Block-maximum estimators correspond to black curves
(@Max.1 solid, Gnax.2 dashed, dnax,3 dotted), while Poisson likelihood or multivariate GPD-based estima-
tors are in blue (Qthr,1 solid, &thr,2 dashed, &tny,3 dotted), and censored estimators are in red (GThr 4 solid,
QThr,5 dashed). Estimators &th,1 and @ty are almost indistinguishable, and similarly for &max,2 and
@Max,3- In this bivariate setting, &max Pair = @Max.1 and &Thr pair = *Thr.4. R = 10* independent replicates
were used to compute these values. Standard errors and RMSE are displayed on a logarithmic scale

To summarize, at extreme levels often considered in practice and for a large range
of dependence strengths, censored estimators, and especially &, 4, seem to offer the
best compromise between robustness (small bias) and efficiency (low variability).
Table 2 summarizes the results of an extended simulation study, showing that the esti-
mator &thr 4 is always found to be best, when the comparison is done across a wide
range of threshold probabilities p and block lengths L. Interestingly, as dependence
decreases, the threshold considered should increase. This provides strong support
for the use of the censored estimator 'ty 4 in practice, and can guide the choice of
the threshold probability. Similar results (not shown) were found for sample sizes
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Table 2 Best estimator overall in terms of RMSE for different dependence strengths

Dependence parameter o

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Estim.  &Th4  OThe4  OThe4  OThe4  OThe4  OThed  OThed  OThed  OThed  OThed
P 0.9 0.9 0.9 0.95 0.95 0.95 0.96 0.97 0.98 0.999

The results are based on a simulation study with sample size n = 10* and dimension D =
2, and the comparison is performed across several block maximum estimators with block length
L = 20,50, 100,200,500, 1000, and threshold-based estimators with threshold probability p =
0.9, 0.95,0.96, 0.97,0.98, 0.99, 0.995, 0.999. For more details, see Sections 3 and 4.1

n = 2000 and n = 50000. In the Supplementary Material, we also show that when
marginal and dependence parameters are estimated simultaneously, similar conclu-
sions hold, though the diagonal threshold estimator &pr2 has an overall decreased
performance.

We now investigate the predictive ability of these estimators in a similar setting.

Prediction In applications of extreme-value statistics, it is common to attempt to
predict the largest event that might occur in a long future period, based on limited
data. In order to assess how the estimators of Section 3 can predict the probabilities
of such future extreme events, we conducted an additional simulation study in dimen-
sion D = 2, based on the logistic model. In order to mimic a realistic setting, we
simulated independent datasets from model (31) with n = 20 x 100 = 2000, which
could be thought of as daily observations recorded during 20 summers. For strong
(¢ = 0.3), mild (@ = 0.6), weak (¢ = 0.9) and very weak («¢ = 0.95) dependence,
we estimated the dependence parameter « using the estimators previously described,
and derived by simulation the return levels for the risk variable Y1 + Y> based on
the fitted value of o and the true marginals. Zheng et al. (2014) investigated alterna-
tive risk functions. We consider return periods ranging from 1 up to 500 years, which
corresponds to an exceedance probability of 2 x 107, i.e., once every 50000 obser-
vations on average. We use annual block-maximum estimators (i.e., L = 100) and
set p = 0.98 for threshold estimators, so that the latter use approximately twice as
much data as the former. Repeating this procedure R = 10* times, we then compile
the independent replicates to compute the empirical mean, bias, standard error, and
RMSE of the return levels; recall (32). The results are reported in Fig. 3.

Although these results do not reflect the real bias and uncertainty of return level
estimators (because the latter were computed using the true marginals), we can use
them to compare the performance of the different estimators in various dependence
cases. For all estimators, the standard error increases drastically with the return
period, as expected. The absolute bias also seems to increase, albeit at a slower
rate. For strong to mild dependence scenarios with @ = 0.3, 0.6, all estimators per-
form quite well overall, though block maximum estimators are more variable than
threshold estimators, and some slight positive (respectively negative) bias is observed
for Poisson likelihood (respectively block-maximum) methods. In terms of RMSE,
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Fig. 3 Empirical mean, bias, standard error and RMSE (left to right columns) for return levels of the sum
Y1 + Y, of a vector Y in the max-domain of attraction of the bivariate logistic model, displayed against the
corresponding return periods (on a logarithmic scale), for strong dependence (top row), mild dependence
(second row), weak dependence (third row) and near independence (bottom row) scenarios. The thick green
curves represent the true return levels, while the other curves are obtained from R = 10* independent
estimates using various approaches. Block-maximum estimators correspond to black curves (&max.1 solid,
AMax.2 dashed, dyax 3 dotted), while Poisson likelihood or multivariate GPD-based estimators are in blue
(Qhr,1 solid, Ghr,2 dashed, &t 3 dotted), and censored estimators are in red (Gethr,4 solid, &tnr,5 dashed)

threshold-based estimators perform similarly, though Poisson likelihood methods are
slightly better than censored methods, and they all outperform block-maximum esti-
mators, especially dmax,1- From weak dependence to near independence cases with
a = 0.9, 0.95, Poisson likelihood estimators are strongly positively biased, hence not
reliable, block maximum estimators are very variable and slightly negatively biased,
and censored estimators have good properties overall. When o = 0.95, block maxi-
mum estimators outperform Poisson likelihood estimators in terms of RMSE, though
the latter use twice as much data as the former, and this improvement is likely to
be more pronounced as « — 1. Overall, the predictive ability of censored methods
is much better than their competitors, especially in low dependence cases, and this
improvement should be even more marked at lower thresholds.

4.2 Performance in higher dimensions

In Section 4.1, we explored the performance of the different estimators of Section 3
for the bivariate logistic model. In order to understand how estimators compare in
higher dimensions, we conducted an additional simulation study. In order to be con-
sistent with Section 4.1, we generated independent 30-dimensional datasets of size
n = 10* from the model (31). We consider the cases of strong dependence (¢ = 0.3),
mild dependence (@« = 0.6), weak dependence (¢ = 0.9) and near independence
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(¢ = 0.95), and for each scenario we estimate the dependence parameter o with the
different two-step estimators based on the D = 2, ..., 30 first components from the
simulated data. As mentioned in Section 3, the exact computation of &nax,1 and &ty 4
is very demanding in high dimensions; the same is true for &max,3 when the depen-
dence strength is strong. Monte Carlo approximations to the corresponding likelihood
functions may be obtained for the logistic model based on the generation of a large
number of «-stable random variates (Stephenson 2009; Fougeres et al. 2009; Huser
2013), but this approach is difficult to apply in practice. Hence, for simplicity, we
restrict ourselves to D = 2, ..., 10 in these cases. As above, block lengths are set
to L = 100 and threshold probabilities to p = 0.98. We repeated this procedure
R = 10* times, in order to compute the empirical bias, standard error and RMSE for
the different estimators considered; see Eq. 32. The results are reported in Fig 4.

For the estimators &max,2, @Max,3» ®Thr.4 and &tnr 5 (i.e., Stephenson-Tawn-based
and censored estimators), the absolute bias tends to increase with dimension, while

| | | | 11 | | | | | | | | |
Bias (x100) Standard error (x100 RMSE (x100)

0.5

-2

Dependence parameter o
o
|

25 10 15 20 25 30 25 10 15 20 25 30 25 10 15 20 25 30
Dimension D

Fig. 4 Empirical bias (left), standard error (middle) and root mean squared error (right) of the different
estimators of the dependence parameter « = 0.3, 0.6,0.9,0.95 of the limiting logistic model, plotted
against the dimension D. Block-maximum estimators correspond to black/grey curves (Gmax,1 black-solid,
AMax,2 black-dashed, Gmax,3 black-dotted, Gmax pair grey-solid), while the results for the Poisson likelihood
or multivariate GPD-based estimators are in blue (Grtnr,1 solid, &t 2 dashed, Gty 3 dotted), and those for
censored estimators are in red/purple (Gthr 4 red-solid, Grtnr,5 red-dashed, Githe pair purple-solid). Block
lengths were set to L = 100 and threshold probabilities to p = 0.98. R = 10* independent replicates
were used to compute these values. Standard errors and RMSEs are displayed on a logarithmic scale
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the standard errors decrease. By contrast, for &thr,1, @hr2 and &thr,3 (i-e., point
process or multivariate GPD-based estimators), the absolute bias decreases sharply
as a function of D when o = 0.6, 0.9, 0.95. Regarding pairwise likelihood esti-
mators, their bias is more or less constant and their standard error decreases more
slowly than for their full-likelihood counterparts. In terms of RMSE, the best esti-
mator overall appears to be the censored pairwise likelihood estimator Qhy, pair for
weak dependence (¢ = 0.9,0.95) or mild dependence in moderate dimensions
(¢ = 0.6, D < 15) and the point process estimator with marginal threshold &ty
for strong dependence (o = 0.3) or mild dependence in large dimensions (o = 0.6,
D > 15). While the performance of the censored pairwise likelihood estimator
appears reasonable for any dependence strength and dimension, point process esti-
mators have a very poor performance in low dependence cases for any dimension. To
counteract the very strong bias of the latter, one should consider a higher threshold
or use pairwise likelihood estimators, which are robust against misspecification of
high-order interactions. Interestingly, block maximum estimators (especially &max.3)
also seem to perform rather well when dependence is weak, but do poorly when
a <0.9.

A by-product of this simulation study is the relative efficiencies of pairwise like-
lihood estimators in an extreme-value context. This has already been investigated in
different frameworks by Cox and Reid (2004), Renard et al. (2004), Hjort and Varin
(2008) and Davis and Yau (2011), among others. Table 3 summarizes the results from
the above simulation setting. Although the efficiencies are highly dependent across
columns and are specifically based on model (31), they still give some insight into
the performance of pairwise likelihood estimators for asymptotically dependent dis-
tributions. Complementary results are provided by Huser (2013, p.148 and p.181)

Table 3 Root asymptotic relative efficiencies (%) of the two-step pairwise likelihood estimator dnax, pair
(respectively Gy, pair) Of o introduced in Section 3 with respect to éivax, 1 (respectively &rnyr 4), for the lim-
iting D-dimensional logistic model with D = 2, ..., 10 and different values of the dependence parameter
o

Dimension D

Estim. o 2 3 4 5 6 7 8 9 10

AMax.Pair 0.3 1000 972 96.0 95.4 95.2 95.0 95.1 95.0 94.9
0.6 100.0 95.4 92.7 91.2 90.3 89.5 89.0 88.6 88.3
0.9 100.0  93.0 87.9 83.4 80.3 71.7 75.6 74.0 72.4
0.95 100.0  96.0 91.3 86.7 82.1 78.7 75.8 73.5 71.4

Q'Thr, Pair 0.3 100.0 999 100.2 100.6  101.0 1013 101.8 102.1 102.3
0.6 100.0  96.4 93.4 91.4 89.8 88.5 87.5 86.6 85.7
0.9 100.0 94.4 88.5 83.3 79.8 76.7 73.9 71.5 69.6
0.95 100.0  99.2 95.4 90.9 86.7 83.1 80.0 713 74.8

The data were simulated according to model (31), and the efficiencies computed based on R = 10*
replicates
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and Huser and Davison (2014). The efficiency of pairwise likelihood estimators
decreases as D increases but remains fairly high in moderate dimensions. For larger
D, Huser (2013) suggests that the loss can be substantial. Moreover, the largest loss
in efficiency seems to occur for o &~ 0.9.

It is natural to wonder whether our results remain valid for other dependence struc-
tures, and future research is needed to explore asymmetric and non-Archimedean
models. However, thus far it seems that estimator performance is most affected by the
censoring scheme considered and overall dependence. In particular, for the asymmet-
ric logistic model, or other models which put mass on the boundary faces or edges,
non-censored methods cannot be used unless subtle adjustments are made.

5 Discussion

We have compared several likelihood estimators for the multivariate extreme-value
logistic distribution. Our study shows that their performance is mainly influenced
by the level of dependence, and by the “weight” attributed to each contribution to
the likelihood function. Specifically, in moderate to weak dependence scenarios,
threshold-based estimators tend to overestimate dependence, resulting in an over-
estimation of joint return levels. Non-censored estimators perform worst overall
(except in strong dependence cases), but censored ones usually have a much bet-
ter balance between bias and efficiency. The choice of the threshold is also crucial,
since there is a trade-off between bias and variance. Our results suggest that higher
thresholds should be considered when the dependence weakens. In high dimen-
sions, where the bias is generally more pronounced, pairwise likelihood estimators
behave best, because they are less sensitive to model misspecification. Interest-
ingly, block maximum estimators also perform quite well in high dimensions when
dependence is weak, but if the block size is constrained to be large, the smaller
number of block maxima available results in higher variability, which might spoil
the estimator. Although our results concern the logistic model, some preliminary
investigations with the asymmetric logistic model suggest that the censored esti-
mator works well more broadly. Further research is needed to explore cases in
which a smoothness parameter must be estimated (but see Thibaud and Opitz 2015)
and those where the dependence is strong between some variables but weak or
nearly inexistent between others; such cases would be of particular interest for
spatial applications. Finally, it would also be worth investigating cases where the
speed of convergence to the limiting distribution is different to that used in our
analysis.
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Appendix A: Asymptotic relative efficiencies

We detail below how the theoretical asymptotic relative efficiencies, reported in
Table 1, are calculated. They are computed with the ratio of Fisher information quan-
tities, i.e., assuming that block sizes and threshold probabilities are fixed, whereas
the sample size n — oo. Throughout, (Y1, Y>)7 is supposed to be logistic dis-
tributed with unit Fréchet margins, i.e., Pr(Y] < y1, Y2 < y) = exp{—V (y1, y2)}
with V(y1, y2) = (yl_l/a + yz_l/a)“ for some o € (0, 1], while subscripts of
the function V denote partial differentiation with respect to the corresponding vari-
ables, e.g., Vi = 90V/dy1, Viag = 83V/8y18y28a, etc. Similarly, the function
G = exp(—V) denotes the logistic joint distribution, and G; = —Vjexp(—V),
Gy, = —Vaexp(—V), g = (ViVo — Vip)exp(—V) are its partial derivatives. The
notation & (with various subscripts) refers to the different estimators of «.

A.1 Fisher information for block maximum estimators &nfax, 1, Max,2, ®Max,3

The Fisher information i(«) for the logistic model was derived by Shi (1995). For
n = LN independent observations and blocks of size L, the total Fisher informa-
tion of &max,1 is Ni(), and the average information per observation is invax,1 () =
Ni(a)/n = i(x)/L. The Fisher information i*(«) for the logistic model when
occurrence times of maxima are considered was derived by Stephenson and Tawn
(2005). Similarly, one obtains that the Fisher information per observation for &ax 2
i8S iMax,2 (o) = i*(er) /L. For the bias-reduction approach (23) of Wadsworth (2015),
one can see that as the sample size n and block size L increases, the second-order
likelihood term vanishes. This implies that the Fisher information inax 3 () of &max 3
is approximately equal to ipax,2(ct) for large L.

A.2 Fisher information for the threshold estimator &rpr,4 and &rpr,s With
marginal thresholds u = (u, u)T

For &tpr 4, by definition of the censored contribution pbll (»v1, y2; ¥), the Fisher
information of a single observation is

ithr,4 () = igo(a) +io1(a) +iro(a) +ip1(a)

82 00 82
—WlogG(u,u) G(u,u)+/ ——— log Ga(u, y2) ¢ Ga(u, y2)dy»
u

da?

o0 82
+/ — 2 log Gy (1, w) § Gy (v, w)dy,
u da

oo poo 32
+[ / ~5g2 108801, y2) ¢ 81 y2)dyidys. (33)
u u (24
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By symmetry, one has i1g(ct) = ip1(e), and variants of Bartlett’s identities then
yield

igo(ar) = V2 exp(—V)|(uiu),

ior () = (Vlf - Vaz) exp(=V)

i10(a)

(u,u)

o Vla 2
4 / T V) VeV dw, (34)
u ! @ y2)
i) = — (V0,2 - Vaz)exp(—V) .
00 P00 Y Vo4 ViVag — V) 2
+/ / a2 ¥ Ve = 22y ) (v - Viexp(—V)|  dyidyn.
u  Ju Viva— Vi
1,¥2)
(35)

The integral in Eq. 34 can be transformed into a definite integral by the change of
variable v = V (u, y2). After some calculations, one finds that this integral equals

/iqufl ix_zu [(1 — v)v'/%(logu + log v)—{l +a(l —v) (Ul/a - u—l/a>} log {—l + (uv)l/“}]zdv.
j (36)

Finite difference or standard Monte Carlo methods can then be used to compute
(36) with high accuracy. The double integral in Eq. 35 can be markedly simplified
by considering the change of variables vi = V(y1, y2), v2a = {m1V (1, yz)}’l/"‘.
The program Mathematica can then help in computing this integral analytically
with respect to vy, and a finite integration with compact support can be used to
approximate the remaining complicated integral with respect to vj.

To compute the Fisher information of the estimator &ty 5, minor changes may
be applied to the decomposition in Eq. 33, and calculations may then be done fol-
lowing the same lines. In particular, the same transformations of variables may be
used to produce definite integrals that can be computed efficiently. In practice, if
the threshold u is large enough, then the tail approximations exp{—V (y1, y»)} and
1-V(y1, ¥2), y1, ¥2 > u are essentially similar (thanks to a first-order Taylor expan-
sion of the exponential), and therefore the Fisher informations ithr 4(cr) and itnr,5(cx)
are approximately equal for large u.
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