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Abstract The core of the classical block maxima method consists of fitting an
extreme value distribution to a sample of maxima over blocks extracted from an
underlying series. In asymptotic theory, it is usually postulated that the block max-
ima are an independent random sample of an extreme value distribution. In practice
however, block sizes are finite, so that the extreme value postulate will only hold
approximately. A more accurate asymptotic framework is that of a triangular array of
block maxima, the block size depending on the size of the underlying sample in such
a way that both the block size and the number of blocks within that sample tend to
infinity. The copula of the vector of componentwise maxima in a block is assumed
to converge to a limit, which, under mild conditions, is then necessarily an extreme
value copula. Under this setting and for absolutely regular stationary sequences, the
empirical copula of the sample of vectors of block maxima is shown to be a con-
sistent and asymptotically normal estimator for the limiting extreme value copula.
Moreover, the empirical copula serves as a basis for rank-based, nonparametric esti-
mation of the Pickands dependence function of the extreme value copula. The results
are illustrated by theoretical examples and a Monte Carlo simulation study.
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1 Introduction

The block maximum method for extreme value analysis essentially consists of the
following procedure: partition a long series of data into blocks; for each block, com-
pute the maximum; fit an extreme value distribution to the sample of block maxima.
Often, the blocks correspond to months or years of data, whence the name ‘annual
maxima series’. The fitted distribution can then be used to compute tail quantiles or
‘T -year return levels’. The approach was developed and popularized in the classic
monograph of Gumbel (1958). The method is applicable even when the individ-
ual ‘daily’ observations are unavailable or when the time series exhibits seasonality,
as long as the block size is a multiple of the period length. The procedure can be
extended to multivariate series too: compute or just observe block maxima for each
of variables separately, and fit a multivariate extreme value distribution to the sample
of vectors of componentwise block maxima.

The method is justified by the extremal types theorem: under broad conditions,
the only possible limits of affinely normalized block maxima, as the block length
tends to infinity, are the extreme value distributions. The conditions allow for tem-
poral dependence, provided certain mixing conditions hold; see Leadbetter et al.
(1983) for the univariate case and Hsing (1989) and Hüsler (1990) for the multivariate
case.

Unlike their univariate counterparts, multivariate extreme value distributions do
not constitute a parametric family. In statistical applications, a parametric form is
often assumed, an early example being Gumbel and Mustafi (1967). In general,
the dependence structure or copula should be max-stable. Several representations of
max-stable or extreme value copulas exist; see Beirlant et al. (2004, Chapter 8) for an
overview. The representation proposed in Pickands (1981) is a popular one and has
led to the concept of a Pickands dependence function.

In the large-sample theory for the block maximum method, the data generating
process is nearly always specified as independent random sampling from the limit-
ing extreme value distribution. Seminal papers to this view are Prescott and Walden
(1980) for the univariate case and Tawn (1988, 1990) and Deheuvels (1991) for the
multivariate case. However, in the light of the above description, this set-up does
not correspond to reality for at least two reasons: first, the block maxima are only
approximately extreme value distributed, and second, they are only approximately
independent.

A first contribution to the mathematical validation of the block maximum method
in a more realistic setting is Dombry (2013). The starting point is a single series of
independent and identically distributed univariate random variables whose distribu-
tion is in the domain of attraction of an extreme value distribution. Consistency is
shown for the maximum likelihood estimator for the extreme value index applied to
the sample of block maxima extracted from the full sample. The block size tends to
infinity so that the extremal types theorem can come into force; at the same time,
the block size is of smaller order than the sample size, so that the number of blocks,
which determines the size of the sample of block maxima, tends to infinity. In the
same set-up, the asymptotic distribution of the probability-weighted moment esti-
mator was addressed by Laurens de Haan at the 8th Conference on Extreme Value
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Analysis (Fudan University, Shanghai, July 8–12, 2013), see also the recent working
paper Ferreira and de Haan (2013).

For multivariate time series, nothing has been done in this direction yet, up to
the best of our knowledge. The present paper tries to fill this gap. We focus on the
estimation of the limit copula of the vector of componentwise block maxima when
the block size tends to infinity. The data generating process is a stationary, multivari-
ate time series. Under weak dependence conditions, the limit copula must then be an
extreme value copula (Hsing 1989). No parametric assumptions are made regarding
this extreme value copula. It can be estimated by the empirical copula of the vec-
tors of block maxima. Moreover, the empirical copula can be used as a basis for the
nonparametric estimation of the Pickands dependence function of the extreme value
copula. For simplicity, we focus on the minimum distance estimator of Bücher et al.
(2011) and Berghaus et al. (2013), although alternative procedures could have been
considered as well (Gudendorf and Segers 2011; Peng et al. 2013).

We study the sequence of empirical copula processes constructed from the trian-
gular array of vectors of block maxima as the block size and the number of blocks
tend to infinity. We find that if the underlying series is absolutely regular, the limit
process is the same Gaussian process as if the block maxima were sampled inde-
pendently from a distribution whose copula is already equal to the limiting extreme
value copula. This result carries over to the estimation of the Pickands dependence
function, where we find the same limit process as in Berghaus et al. (2013). This
does not mean that the temporal dependence can be neglected, however: because of
serial dependence, the limiting extreme value copula is in general different from the
extreme value attractor of the copula of the stationary distribution of the series. The
results are illustrated by means of Monte Carlo simulations.

The structure of the paper is as follows. The objects of interest are described
mathematically in Section 2. The main results on the convergence of the block max-
ima empirical copula process and the minimum distance estimator for the Pickands
dependence function form the subject of Section 3. Section 4 then contains a number
of theoretical examples, whereas Section 5 reports on the result of a simulation study.
Section 6 concludes. All proofs are collected in the Sections 7 and 8.

2 Preliminaries, notations, and assumptions

Consider a d-variate stationary time series Xt = (Xt,1, . . . , Xt,d), t ∈ Z. For sim-
plicity, assume that the univariate stationary margins are continuous. A sample of
size n is divided into k blocks of length m, so that k = �n/m�, the integer part of
n/m, and possibly a remainder block of length n − km at the end. The maximum of
the ith block in the j th component is denoted by

Mm,i,j = max{Xt,j : t ∈ (im−m, im] ∩ Z}.

Let Mm,i = (Mm,i,1, . . . ,Mm,i,d ) be the vector of maxima over the d variables in
the ith block. For fixed block length m, the sequence of block maxima (Mm,i)i is a
stationary process too.
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The distributions functions of the block maxima are denoted by

Fm(x) = P[Mm,1 ≤ x], Fm,j (xj ) = P[Mm,1,j ≤ xj ],

for x ∈ R
d and j ∈ {1, . . . , d}. Observe that F1 is the distribution function of X1. If

the random vectors Xt are serially independent, we have Fm = Fm
1 . In the general,

stationary case, the relation between Fm and F1 is more complex.
The margins of X1 being continuous, the margins of Mm,1 are continuous as well.

Let Cm be the (unique) copula of Fm, which, in the serially independent case, can
be written as Cm(u) = {C1(u

1/m
1 , . . . , u

1/m
m )}m, u = (u1, . . . , ud) ∈ [0, 1]d . In the

present context, the domain-of-attraction condition reads as follows.

lim
m→∞Cm(u) = C∞(u) (u ∈ [0, 1]d).

Typically, the limit C∞ will be an extreme value copula (Hsing 1989; Hüsler
1990). Below we will assume that the time series (Xt )t is absolutely regular or β-
mixing, which, by Theorem 4.2 in Hsing (1989), is already sufficient for the latter
statement. However, C∞ will in general be different from the extreme value attractor
of C1; see for instance Section 4.1. If the copula C∞ in Condition 2.1 is an extreme
value copula, it admits the representation

C∞(u) = exp

⎧
⎨

⎩

⎛

⎝
d∑

j=1

loguj

⎞

⎠A∞

(
logu2

∑d
j=1 loguj

, . . . ,
logud

∑d
j=1 loguj

)⎫
⎬

⎭
(2.1)

for u ∈ [0, 1]d . Here A∞ : �d−1 → [0, 1] is called the Pickands dependence
function of C∞. It is a convex function defined on the unit simplex �d−1 = {t =
(t1, . . . , td−1) ∈ [0, 1]d−1 : t1 + · · · + td−1 ≤ 1} and satisfying the bounds
max{1− t1−· · ·− td−1, t1, . . . , td−1} ≤ A∞(t) ≤ 1; see, e.g., Gudendorf and Segers
(2010).

Applying the probability integral transform to the block maxima yields

Um,i,j = Fm,j (Mm,i,j ), Um,i = (Um,i,1, . . . , Um,i,d). (2.2)

The random variables Um,i,j are uniformly distributed on (0, 1) and the distribu-
tion function of the random vector Um,i is the copula Cm. The empirical distribution
function of the (unobservable) sample Um,1, . . . , Um,k is

Ĉ◦
n,m(u) =

1

k

k∑

i=1

I (Um,i ≤ u), (2.3)

where I (A) denotes the indicator variable of the event A.

Condition 2.1 There exists a copula C∞ such that



Extreme value copula estimation based on block maxima of a multivariate stationary time series 499

Since the marginal distributions Fm,j are unknown, we replace them in Eq. 2.2 by
their empirical versions F̂n,m,j : for x = (x1, . . . , xd) ∈ R

d ,

F̂n,m(x) = 1

k

k∑

i=1

I (Mm,i ≤ x), F̂n,m,j (xj ) = 1

k

k∑

i=1

I (Mm,i,j ≤ xj ). (2.4)

The resulting ‘pseudo-observations’ are

Ûn,m,i,j = F̂n,m,j (Mm,i,j ), Ûn,m,i = (Ûn,m,i,1, . . . , Ûn,m,i,d).

In analogy to Eq. 2.3, the empirical copula is then defined as

Ĉn,m(u) = 1

k

k∑

i=1

I (Ûn,m,i ≤ u). (2.5)

In practice, it is customary to divide by k + 1 rather than by k in Eq. 2.4; asymp-
totically, this does not make a difference. An alternative definition of the empirical
copula is via

Ĉalt
n,m(u) = F̂n,m

(
F̂←
n,m,1(u1), . . . , F̂

←
n,m,d(ud)

)
(2.6)

where H← denotes the left-continuous generalized inverse function of a distribution
function H , defined as

H←(p) =
{

inf{x ∈ R : H(x) ≥ p} if p ∈ (0, 1],
sup{x ∈ R : H(x) = 0} if p = 0.

In the independent case, it is not difficult to see that the difference between Ĉn,m and
Ĉalt
n,m is bounded in absolute value by d/k almost surely. This difference is asymptot-

ically negligible in view of the Op(1/
√
k) rate of convergence of Ĉn,m that will be

established in Theorem 3.5. However, in the case of serial dependence, the situation
is more complicated, because with positive probability, there may be ties among the
block maxima, even if their distribution is continuous; see for instance the random-
repetition process in Section 4.2. Nevertheless, we will show in Proposition 3.2 that
the difference between Ĉn,m and Ĉalt

n,m is still op(1/
√
k).

The serial dependence in the series (Xt )t is controlled via mixing coefficients. For
two σ -fields F1 and F2 of a probability space (�,F , P), let

α(F1,F2) = sup
A∈F1,B∈F2

| P(A ∩ B)− P(A) P(B)|,

β(F1,F2) = sup
1

2

∑

i,j∈I×J

| P(Ai ∩ Bj)− P(Ai) P(Bj )|,

where the latter supremum is taken over all finite partitions (Ai)i∈I and (Bj )j∈J of
� consisting of events that are F1 and F2 measurable, respectively. The α- and β-
mixing coefficients of a time series (Xt )t∈Z, not necessarily stationary, are defined,
for n ≥ 1, as

α(n) = sup
t∈Z

α(F t−∞,F∞
t+n), β(n) = sup

t∈Z
β(F t−∞,F∞

t+n), (2.7)
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where, for −∞ ≤ �1 < �2 ≤ ∞, F�2
�1

denotes the sigma-field generated by those Xt

with t ∈ [�1, �2] ∩ Z.
Recall that m is the block size and k = �n/m� is the number of blocks. In an

asymptotic framework, we consider a block size sequence mn and the associated
block number sequence kn = �n/mn�.

(i) mn → ∞ and mn = o(n);
(ii) �n → ∞ and �n = o(mn);

(iii) kn α(�n) = o(1) and (mn/�n) α(�n) = o(1);
(iv)

√
kn β(mn) = o(1).

A sufficient condition for (iii)–(iv) is that (kn + mn/�n) β(�n) = o(1). We will
occasionally simplify notation by writing m = mn, k = kn and � = �n.

3 Main results

The central result of the paper is Theorem 3.5 in Section 3.2, claiming weak
convergence of the empirical copula process

Cn,m = √
k(Ĉn,m − Cm). (3.1)

To arrive at this result, the case of known margins needs to be treated first; this is
done in Section 3.1. Weak convergence of Cn,m is applied in Section 3.3 to find
a functional central limit theorem for a rank-based, nonparametric estimator of the
Pickands dependence function of the limit copula C∞.

3.1 Block maxima empirical process

Weak convergence of the empirical copula process Cn,m will follow from the
functional delta method provided we have a weak convergence result for the process

C
◦
n,m = √

k(Ĉ◦
n,m − Cm),

where Ĉ◦
n,m is defined in Eq. 2.3. If the random variables Um,i were serially indepen-

dent, then the weak convergence of C◦
n,m would easily follow from Theorem 2.11.9

in van der Vaart and Wellner (1996). The case of serial dependence is reduced to the
independence case by a blocking technique and a coupling argument.

C
◦
n,m � C

◦ in �∞([0, 1]d),

Condition 2.2 There exists a positive integer sequence �n such that the following
statements hold:

Theorem 3.1 (Block maxima empirical process) Let (Xt )t∈Z be a stationary mul-
tivariate time series with continuous univariate margins. If Conditions 2.1 and 2.2
hold, then
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where C
◦ denotes a centered Gaussian process on [0, 1]d with continuous sample

paths and covariance structure

E[C◦(u)C◦(v)] = C∞(u ∧ v)− C∞(u) C∞(v).

Interestingly, the limiting process C◦ is a C∞-Brownian bridge: the serial depen-
dence between the block maxima has disappeared. The proof of Theorem 3.1 is given
in Section 7.1.

3.2 Block maxima empirical copula process

Recall the two versions of the empirical copula, Ĉn,m in Eq. 2.5 and Ĉalt
n,m in Eq. 2.6.

By the following proposition, the difference between the two versions is asymptoti-
cally negligible. The proofs of Proposition 3.2 and the other results in this section are
given in Section 7.2.

sup
u∈[0,1]d

∣
∣Ĉalt

n,m(u)− Ĉn,m(u)
∣
∣ = op(1/

√
k).

It follows that in the definition of the empirical copula process in Eq. 3.1, we can
replace Ĉn,m by Ĉalt

n,m, yielding

C
alt
n,m = √

k(Ĉalt
n,m − Cm)

at the cost of an op(1) term:

sup
u∈[0,1]d

∣
∣Calt

n,m(u)−Cn,m(u)
∣
∣ = op(1).

Now, let us transfer the weak convergence result on C
◦
n,m to Cn,m. Let D� denote

the set of all cdfs on [0, 1]d whose marginals put no mass at zero. Defining

� : D� → �∞([0, 1]d) : H �→ H(H←
1 , . . . , H←

d ) (3.2)

as the copula mapping, we can write

C
alt
n,m = √

k{�(Ĉ◦
n,m)−�(Cm)}.

Weak convergence of Cn,m and C
alt
n,m can be shown by the functional delta

method (van der Vaart and Wellner 1996, Section 3.9), provided certain smooth-
ness assumptions on the copulas Cm and C∞ are made, to be introduced
next.

For the limit process to have continuous trajectories, the following condition
(Segers 2012) is unavoidable and will be assumed throughout.

Proposition 3.2 Under the conditions of Theorem 3.1, we have

Condition 3.3 For any j = 1, . . . , d , the j th first order partial derivative Ċ∞,j =
∂C∞/∂uj exists and is continuous on {u ∈ [0, 1]d : uj ∈ (0, 1)}.
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As mentioned right after Condition 2.1, the β-mixing condition on the underlying
time series in Condition 2.2 implies that C∞ is an extreme value copula (Hsing 1989).
For such copulas, Condition 3.3 has been worked out in Example 5.3 of Segers
(2012), see in particular formula (5.1) therein. In the bivariate case, it is sufficient
to assume that the Pickands dependence function is continuously differentiable on
(0, 1). This is the case for many of the common families of extreme value copulas,
as, e.g., the Gumbel, Galambos or Hüsler–Reiß family.

In addition to Condition 3.3, some qualification of the convergence of Cm to C∞
will be needed. We will impose either (a) or (b) of the following condition. Roughly
speaking, (a) says that this convergence is sufficiently fast, every subsequence of√
k(Cm − C∞) containing a further subsequence that converges uniformly, whereas

(b) requires locally uniform convergence of the partial derivatives. For Cm, these
partial derivatives are not supposed to exist, however; instead, we will work with the
functions

Ċm,j (v) = lim sup
h↘0

h−1{Cm(v + hej )− Cm(v)},

with ej the j th canonical unit vector in R
d , functions which are always defined

and which satisfy 0 ≤ Ċm,j ≤ 1 as a consequence of monotonicity and Lipschitz-
continuity of Cm, its margins being standard uniform. Let C([0, 1]d) denote the space
of all real-valued, continuous functions on [0, 1]d .

(a) The sequence
√
k(Cm − C∞) is relatively compact in C([0, 1]d).

(b) For every δ ∈ (0, 1/2),

max
j=1,...,d

sup
u∈[0,1]d :
uj∈[δ,1−δ]

∣
∣Ċm,j (u)− Ċ∞,j (u)

∣
∣→ 0 (n → ∞).

The partial derivatives Ċ∞,j are defined as 0 for uj ∈ {0, 1}. For u ∈ [0, 1]d and
j ∈ {1, . . . , d}, write u(j) = (1, . . . , 1, uj , 1, . . . , 1), with uj appearing at the j th
coordinate.

Cn,m = C
alt
n,m + op(1)� C

in �∞([0, 1]d), where, for u ∈ [0, 1]d ,

C(u) = C
◦(u)−

d∑

j=1

Ċ∞,j (u)C
◦(u(j)).

In Theorem 3.5, the empirical copula process was defined by centering around
Cm. Of course, one may also want to center around the limit, C∞.

Condition 3.4

Theorem 3.5 (Block maxima empirical copula process) Let (Xt )t∈Z be a stationary
multivariate time series with continuous univariate margins. Assume Conditions 2.1,
2.2 and Condition 3.3. If either Condition 3.4(a) or (b) is satisfied, then
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lim
n→∞

√
k(Cm − C∞) = � in �∞([0, 1]d), (3.3)

then, in �∞([0, 1]d) and with C as in Theorem 3.5,

√
k(Ĉn,m − C∞) = √

k(Ĉalt
n,m − C∞)+ op(1) � C+ �.

Note that the limit � in Eq. 3.3 is continuous, being the uniform limit of a sequence
of continuous functions. In Section 4.3 below, we work out an example for which
Eq. 3.3 is satisfied with a non-trivial limit function �.

3.3 Estimating the Pickands dependence function

For strongly mixing sequences, the limit copula C∞ is an extreme value cop-
ula (Hsing 1989, Theorem 4.2). Inference on the Pickands dependence function
A∞ in Eq. 2.1 can then be based on the empirical copula Ĉn,m of the block
maxima.

Rank-based inference for the Pickands dependence function based on i.i.d. sam-
ples whose underlying distribution has an extreme value copula has drawn some
attention recently (Genest and Segers 2009; Bücher et al. 2011; Gudendorf and
Segers 2012; Berghaus et al. 2013; Peng et al. 2013). What the estimators have in
common is that they can all be written as weighted integrals with respect to the empir-
ical copula. The asymptotic behavior of all these estimators can then be derived from
the weak convergence of the usual empirical copula process. In the following we
will exemplarily extend the results on the minimum-distance estimator to the present
setting of estimation from block maxima.

For the definition of the estimator, note that, for any probability density p on (0, 1)
such that the following integral exists, we have

A∞(t) =
∫ 1

0
log{C∞(yt )} p(y)

log(y)
dy,

where we used the notation yt = (y1−t1−...−td−1, yt1, . . . , ytd−1). The last display
suggests to estimate A∞ by the sample analogue

Ân,m (t) =
∫ 1

0
log{C̃n,m(y

t )} p(y)

log(y)
dy, (3.4)

where C̃n,m = max{k−γ , Ĉn,m(u)} with some γ > 1/2 to be specified later; the latter
modification is needed to avoid the logarithm of zero. For the case of i.i.d. samples,
the estimator in Eq. 3.4 is exactly as defined in Bücher et al. (2011) and Berghaus
et al. (2013), where it is motivated as a minimum distance estimator.

Corollary 3.6 (Centering by the limit copula) Let (Xt )t∈Z be a stationary multivari-
ate time series with continuous univariate margins. Assume Conditions 2.1, 2.2 and
Condition 3.3. If also



504 A. Bücher, J. Segers

,

∫ 1

0
y−λ p(y)

| log(y)| dy < ∞ for some λ > 1, (3.5)

then, for any γ ∈ ( 1
2 ,

λ
2 ), in the space �∞(�d−1) equipped with the supremum

distance,

An = √
k(Ân,m −A∞) � A∞,

where the limiting process A∞ on �d−1 can be represented as

A∞(t) =
∫ 1

0

C(yt )+ �(yt )

C∞(yt )

p(y)

log(y)
dy.

In fact, in Section 7.3 and at no additional cost, we will show a more general result
that allows for weight functions inside the integral in Eq. 3.4 that may also depend
on t , see Theorem A.3. In the i.i.d. case in Berghaus et al. (2013), this result proved
useful for the development of a test for extreme value dependence.

A useful class of weight functions is given by pκ(y) = (κ + 1)2 × yκ × | log(y)|
for some κ > 0, see Example 2.5 in Bücher et al. (2011). Equation 3.5 is obviously
satisfied for any κ > 0.

As it is the case for most of the available estimators for Pickands depen-
dence functions, Ân,m is itself not a Pickands dependence function. A unifying
approach to enforce the necessary and sufficient shape constraints has been proposed
in Fils-Villetard et al. (2008) and Gudendorf and Segers (2012). A simple addi-
tive boundary correction will be employed in the simulation Section 5, see
formula 5.2.

4 Examples

This section is devoted to the verification of Conditions 2.1, 2.2 and 3.4 in specific
models. Regarding Condition 3.3, please see the paragraph right after the statement
of that condition.

With respect to Condition 2.1 note that, for multivariate Gaussian time series
whose cross-correlation function satisfies a certain summability condition, Amram
(1985) and Hsing (1989) show that the limit C∞ is the independence copula. For
most of the common time series models, however, it is already hard to obtain con-
venient expressions for the copula C1 of the stationary distribution, let alone for the
one of the block maximum distribution, Cm, and for the limit C∞. Sections 4.1 and
4.2 deal with two particular examples where Conditions 2.1 and 2.2 are satisfied.

Theorem 3.7 (Asymptotic normality) Let (Xt)t∈Z be a stationary multivariate time
series with continuous univariate margins. Suppose that Condition 2.1, 2.2 and 3.3
are met and that

√
k(Cm−C∞) → �, uniformly. If the weight function p : (0, 1) →

[0,∞) satisfies
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Section 4.3 investigates Condition 3.4 (a), and in particular its strengthening in
Eq. 3.3, in a special i.i.d. situation.

4.1 Moving maxima

Consider the discrete-time, d-variate moving maxima process (Ut )t∈Z of order p ∈
N = {1, 2, . . .} given by

Utj = max
i=0,...,p

W
1/aij
t−i,j (t ∈ Z; j = 1, . . . , d). (4.1)

Here (Ws)s∈Z is an iid sequence in (0, 1)d , the d-variate distribution of Ws being the
copula D. Further, the coefficients aij (i = 0, . . . , p; j = 1, . . . , d) are nonnegative
and satisfy the constraints

p∑

i=0

aij = 1 (j = 1, . . . , d). (4.2)

If a = 0 and w ∈ (0, 1), then w1/a = 0 by convention. As the notation suggests,
the random variables Utj are uniformly distributed on (0, 1). A model with arbitrary
continuous margins can be considered by defining Xtj = ηj (Utj ), where η1, . . . , ηd
are strictly increasing functions from (0, 1) into R.

Since σ(Ut : t ≤ 0) and σ(Ut : t ≥ p + 1) are independent, Condition 2.2 (iii)
and (iv) are trivially satisfied.

Let Cm be the copula of the vector of component-wise maxima Mm =
(Mm,1, . . . ,Mm,d) given by Mm,j = max(U1j , . . . , Umj ) for j ∈ {1, . . . , d}.

For m ∈ N, consider the copula, Dm, of the vector of componentwise maxima of
m independent random vectors with common distribution D:

Dm(u) =
(
D(u

1/m
1 , . . . , u

1/m
d )
)m

.

We say that D is in the copula domain of attraction of the extreme value copula D∞ if

lim
m→∞Dm(u) = D∞(u) (u ∈ (0, 1]d). (4.3)

The limit, D∞, of Cm is in general different from the copula extreme value attractor
of C1; see Eq. 8.3.

lim
m→∞Cm(u) = D∞(u). (4.4)

The proof of Proposition 4.1 is given in Section 8.1. By a refinement of the proof
of Proposition 4.1, it is actually also possible to derive rates of convergence in Eq. 4.4
given a rate of convergence in Eq. 4.3. For the sake of brevity, we omit the details.

Proposition 4.1 Consider the moving maximum process in Eqs. 4.1–4.2. If Eq. 4.3
holds, then
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4.2 Random repetition

Consider independent and identically distributed d-dimensional random vectors
X0, ξ1, ξ2, . . . and, independently of these, iid indicator random variables I1, I2, . . .;
write P(It = 1) = θ ∈ (0, 1]. For t = 1, 2, . . ., define

Xt =
{
ξt if It = 1,

Xt−1 if It = 0.

Then X0, X1, . . . is a stationary sequence. The process is a simplified version of
the doubly stochastic model in Smith and Weissman (1994, Section 3). By station-
arity, we can assume without loss of generality that the process is defined for all
t ∈ Z.

Because of the random repetition mechanism, the process (Xt )t is β-mixing and
the mixing coefficients β(n) are of the order O((1−θ)n) as n → ∞; see Lemma 8.1.

Let Mm = (Mm,1, . . . ,Mm,d) with Mm,j = max(X1,j , . . . , Xn,j ). Further, put
Fm(x) = P[Mm ≤ x] and Fm,j (xj ) = P[Mm,j ≤ xj ]. Assume the margins Fm,j are
continuous and let Cm be the copula of Fm.

Cm(u)

= {1+o(1)}
[

1− θ + θC1

(

1+ log(u1)+ o(1)

θ(m− 1)
, . . . , 1+ log(ud)+ o(1)

θ(m− 1)

)]m−1

.

Consequently, if C1 is in the copula domain of attraction of an extreme value copula
C∞, then also Cm → C∞ as m → ∞.

The proof of Proposition 4.2 is given in Section 8.2.

4.3 Rate of convergence in the i.i.d. case

For θ > 0 and β ≥ 1, the outer power transform of a Clayton copula is defined as

Cθ,β(u, v) = [1 + {(u−θ − 1)β + (v−θ − 1)β}1/β]−1/θ . (4.5)

The copula of the pair of componentwise maxima of an i.i.d. sample of size m from
a continuous distribution with copula Cθ,β is equal to

{
Cθ,β(u

1/m, v1/m)
}m = Cθ/m,β(u, v).

As m → ∞, this copula converges to the Gumbel–Hougaard copula with shape
parameter β ≥ 1,

C0,β(u, v) := lim
m→∞Cθ/m,β(u, v) = exp[−{(− logu)β + (− log v)β}1/β], (4.6)

Proposition 4.2 For u ∈ (0, 1]d and as m → ∞,
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see Charpentier and Segers (2009). The following result shows that the rate of
convergence in Eq. 4.6 is O(1/m); its proof is being given in Section 8.3.

lim
m→∞m {Cθ/m,β(u, v)− C0,β(u, v)} = θ �β(u, v),

where

�β(u, v) = 1

2
exp{−(xβ + yβ)1/β} {(xβ + yβ)2/β − (xβ + yβ)1/β−1(xβ+1 + yβ+1)}

with x = − logu and y = − log v. The convergence is uniform in (u, v) ∈ [0, 1]2.

As a consequence, if m � n1/3, then
√
k = o(m) and Eq. 3.3 is satisfied with

� ≡ 0. If m ∼ cn1/3 for some positive constant c, then
√
k/m → c−3/2 and hence

Eq. 3.3 is satisfied with �(u, v) = c−3/2θ�β(u, v). If m = o(n1/3), then the block
sizes are too small and Condition 3.4 (a) and Eq. 3.3 fail.

By similar arguments as used in the proof of Proposition 4.3, it can be shown that
the partial derivatives of Cθ,β converge to those of C0,β , uniformly on the relevant
subsets in Condition 3.4 (b).

5 Numerical results

In this section, we investigate the finite-sample performance of the minimum-
distance estimator for the Pickands dependence function A∞ by means of a small
simulation study.

The setup. As a time series model, we consider the bivariate moving maximum
process (Ut,1, Ut,2)t∈Z of order 1 as introduced in Section 4.1, i.e.,

Ut,1 = max(W 1/a
t,1 ,W

1/(1−a)

t−1,1 ), Ut,2 = max(W 1/a
t,2 ,W

1/(1−b)

t−1,2 ), (5.1)

where (a, b) ∈ (0, 1)2 and (Wt,1,Wt,2)t∈Z is a bivariate iid sequence whose marginal
distributions are uniform on (0, 1) and whose joint cdf is denoted by D. In this
section, we present results for two different choices for D:

1. D = Cθ,β , the outer power transform of a Clayton copula with parameters θ > 0
and β ≥ 1 as defined in Eq. 4.5. From the results presented in Section 4.3,
independently of θ > 0, the max-attractor copula D∞ is the Gumbel–Hougaard
copula, whose Pickands dependence function is given by

A∞(t) = {tβ + (1 − t)β }1/β, β ≥ 1.

In the simulations, we fixed θ = 1.

Proposition 4.3 We have
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2. The t-copula with ν > 0 degrees of freedom and correlation parameter ρ ∈
(−1, 1), given by

D(u, v)=
∫ t−1

ν (u)

−∞

∫ t−1
ν (v)

−∞
1

πν|P |1/2

�(ν2 +1)

�(ν2 )

(

1 + x ′P−1x

ν

)−ν/2+1

dx2 dx1,

where tν denote the cdf of the univariate t-distribution with ν degrees of freedom
and where P denotes the 2 × 2 correlation matrix with off-diagonal element ρ.
The t-copula lies in the max-domain of attraction of the t-extreme value copula
characterized by the Pickands dependence function

A∞(t) = t × tν+1(zt )+ (1 − t)× tv+1(z1−t ),

where zt = (1 + ν)1/2
[
{t/(1 − t)}1/ν − ρ

]
(1 − ρ2)−1/2,

see, e.g., Demarta and McNeil (2005). Throughout the simulations we fixed
ν = 4.

The remaining parameter of the two models (β and ρ, respectively) are chosen in
such a way that the coefficient of upper tail dependence of D varies in the set
{0.25, 0.5, 0.75}. For a and b in Eq. 5.1 we consider all possible combinations such
that (a, b) ∈ {0.25, 0.5, 0.75}2. Regarding the choice of n, k and m, we either fix
n = 1, 000 and consider parameters m ∈ {1, 2, . . . , 30}, or we fix m = 30 (a month,
say) and consider block numbers k ∈ {12, 24, 36, . . . , 240} (corresponding to one up
to 20 years).

The estimators. In addition to the estimator Ân,mn defined in Section 3.3, we will
also consider a simple (additive) boundary correction defined as

Âabc
n,m(t) = Ân,m(t)− (1 − t){Ân,m(0)− 1} − t{Ân,m(1)− 1}. (5.2)

Due to the fact that the second and the third summand on the right-hand side of this
display are deterministic functions of order o(k−1/2), the corrected estimator has the
same asymptotic distribution as the uncorrected one.

The estimator Ân,m depends on a tuning parameter γ and a weight function p. We
follow the proposals in Bücher et al. (2011) and consider the choices γ = 2/3 (the
estimator is quite robust with respect to this or larger choices) and p = pκ(y) =
(κ + 1)2yκ | log(y)| with κ = 0.5, see Example 2.5 in Bücher et al. (2011). The latter
choice yields a good compromise between good finite sample behavior and analytical
tractability.

The target values. Our simulation study aims at investigating the performance of
Ân,m and Âabc

n,m as estimators for A∞. For that purpose, we choose 21 points tj =
j/20 in the unit interval, j = 0, 1, . . . , 20, and estimate the summed squared bias

B(sum) :=
19∑

j=1

{E[Ân,m(j/20)−A∞(j/20)]}2,
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Fig. 1 Simulation results on B(sum), Var(sum) and MSE(sum) for fixed n = 1, 000 and varying number
of blocks. From top to bottom: tail dependence coefficient 0.25, 0.5 and 0.75; left: outer power Clayton
copula; right: t4-copula.
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the summed variance

Var(sum) :=
19∑

j=1

Var{Ân,m(j/20)}

and the summed mean squared error MSE(sum) := B(sum) + Var(sum) by averaging
out over N = 1, 000 repetitions (analogously for Âabc

n,m).

Results and discussion. The results are reported only partially. Figure 1 is concerned
with a fixed sample size n = 1, 000. We plot B(sum), Var(sum) and MSE(sum) against
the number of blocks kn (on a logarithmic scale) for the estimator Âabc

n,m and for both
copula models mentioned above with tail dependence coefficients in {0.25, 0.5, 0.75}
and with fixed a = 0.25 and b = 0.5. For the sake of brevity, we do not show
any results for Ân,m (they are slightly worse than those for Âabc

n,mn
in most cases)

or for different choices of a and b (they do not reveal any additional qualitative
insight compared to the case a = 0.25 and b = 0.5). From the pictures we see
that, as expected, the variance of the estimator is decreasing in k, while the bias is
increasing. For k = n = 1, 000, which corresponds to m = 1, i.e., to not form-
ing blocks at all, it can be shown that the estimators are actually consistent for the
function

A�
1(t) =

∫ 1

0
log{C1(y

t )}p0.5(y)

log(y)
dy = 9

4

∫ 1

0

√
y | log{C1(y

t )}| dy, (5.3)

The latter fact may serve as an explanation for the different magnitude of the bias
at the right end of the pictures in Figure 1. More precisely, Table 1 states the L2-
distances between A�

1 and A∞, which exactly resemble the ordering of the value
of the summed squared bias at kn = 1, 000 over the respective pictures in Fig. 1.
Regarding the summed MSE, we observe a rather good and robust performance
for values of kn between 150 and 250, corresponding to block lengths between 4
and 7.

Finally, in Fig. 2, we present simulation results on MSE(sum) in the case of a fixed
m = 30 and with varying kn ∈ {12, 24, . . . , 240}, corresponding to monthly blocks
over daily data for 1 up to 20 years. The shape of the functions are as expected;
in particular we see that MSE(sum) approximately halves when the number of years
doubles. Moreover, the pictures reveal a better performance for increasing strength
of dependence. The latter may be explained by the fact that, in the extreme case of
perfect dependence, the empirical copula is a deterministic function converging at
rate k−1

n rather than k
−1/2
n .

Table 1 L2-distances between A∞ and A∗
1, the latter being defined in Eq. 5.3.

Tail dependence coefficient 0.25 0.5 0.75

Outer power Clayton copula 4.62 × 10−2 1.62 × 10−2 1.20 × 10−2

t4-copula 2.86 × 10−2 2.26 × 10−2 0.80 × 10−2
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Fig. 2 Simulation results for MSE(sum), with fixed m = 30. Left: outer power transform of a Clay-
ton copula, right: t4-copula, both with parameter chosen in such a way that the coefficient of upper tail
dependence is given by 0.25 (solid lines), 0.5 (dashed lines) or 0.75 (dotted lines).

6 Conclusion and discussion

The block maxima method is a time-honoured method in extreme value analysis.
In the asymptotic theory, the block maxima are usually modelled as being sam-
pled randomly from an extreme value distribution. In practice, however, the maxima
are computed over blocks of finite length. The block length then becomes a tun-
ing parameter, much like the threshold in the peaks-over-threshold method. For large
block lengths, the extreme value approximation is accurate, but there are few blocks,
leading to large sample variation. Taking smaller blocks augments the number of
blocks and thereby reduces the variance of the estimators but at the cost of a potential
bias stemming from a bad fit of the extreme value distribution.

The issue is investigated in the context of the nonparametric estimation of the
limiting extreme value copula of vectors of componentwise block maxima. The
underlying series is supposed to be an absolutely regular, stationary multivariate time
series. The sample is partitioned into blocks in such a way that both the block length
and the number of blocks tend to infinity. Functional central limit theorems state
the asymptotic normality of the empirical copula process and of a rank-based, non-
parametric minimum-distance estimator of the Pickands dependence function. The
results are illustrated numerically for bivariate moving maximum processes, where
the bias-variance trade-off is clearly visible.

The paper leaves ample opportunity for further research into the large-sample the-
ory for the block maxima method for vectors of maxima over blocks of increasing
length. We just mention a few possibilities:

• The set-up being nonparametric, a convenient way to calculate standard errors
would be via bootstrapping the empirical copula process of block maxima. See
for instance Bücher and Dette (2010) for a review of resampling methods for
empirical copula processes.
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• Often, the extreme value copula is modelled parametrically. In combination with
extreme value distributions for the margins, this leads to a parametric model
for the block maxima (Tawn 1988, 1990). The asymptotic theory of estimators
for the parameters based on a triangular array of block maxima could then be
investigated as well.

• The minimum distance estimator of the Pickands dependence function is itself
not a Pickands dependence function. A way of enforcing the proper shape
constraints in arbitrary dimensions is via L2-projection on a parametric sieve
(Gudendorf and Segers 2012).

• Apart from estimation, there are many interesting hypothesis tests that can be
investigated: the goodness-of-fit of a parametric model (Genest et al. 2011),
the max-stability hypothesis (Kojadinovic et al. 2011), symmetry or other shape
constraints (Kojadinovic and Yan 2012), etc.

• In Section 4.3, we worked out Condition 3.4 and formula Eq. 3.3 in a particular
i.i.d. situation. We suspect that the convergence rate O(1/m) holds true for more
general i.i.d. models.

Within a time series setting, the moving maximum and the random repetition
process considered in the paper are a bit artificial. What can one say about the
copulas Cm and C∞ for more common time series models? For GARCH type
models, even the computation of the copula, C1, of the stationary distribution is
challenging, and the derivation of convergence rates as in Condition 3.4 is even
more so.

7 Proofs for Section 3

7.1 Proofs for Section 3.1

P{Fm,j (M�,1,j ) > u} = O(�/m), n → ∞.

Proof The result is univariate, so we suppress the index j from the notation. Con-
sider the maxima of consecutive subblocks of size � contained within the first block
of length m:

M�,1, . . . ,M�,�m/��.
Of these blocks, only keep the ones with an odd index. Since the distribution of Mm,1
is continuous (all variables Xt having a continuous distribution), we find

0 < u = P{Fm(Mm,1) ≤ u} ≤ P

{

max
1≤i≤�m/��
i is odd

Fm(M�,i) ≤ u

}

.

The odd blocks are separated by a lag �. Therefore, by induction,
∣
∣
∣
∣P

{

max
1≤i≤�m/��
i is odd

Fm(M�,i) ≤ u

}

−
∏

1≤i≤�m/��
i is odd

P{Fm(M�,i) ≤ u}
∣
∣
∣
∣ ≤ (m/�) α(�).

Lemma 7.1 If � = o(m) and (m/�) α(�) → 0, then for every j ∈ {1, . . . , d} and
every u > 0,
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The number of indices i in the product is at least equal to �m/��/2. By stationarity,
we obtain

[1 − P{Fm(M�,1) > u}]�m/��/2 ≥ u+ o(1), n → ∞.

But m/� → ∞, and thus

lim sup
n→∞

m

�
P{Fm(M�,1) > u} < ∞,

as required.

Proof of Theorem 3.1 We first consider convergence of the finite-dimensional distri-
butions of C◦

n,m. Let � = �n ∈ N be some sequence of integers as in Condition 2.2.
In each block, we clip off smaller blocks of length �:

M
[�]
m,i,j = max{Xt,j : t ∈ (im−m, im− �] ∩ Z}

L
[�]
m,i,j = max{Xt,j : t ∈ (im− �, im] ∩ Z}.

Clearly, Mm,i,j = max{M [�]
m,i,j , L

[�]
m,i,j }. Since � = o(m), the pieces clipped off,

L
[�]
m,i,j , can be expected to be small. On the other hand, since � → ∞, the clipped

blocks M [�]
m,1,j , . . . ,M

[�]
m,k,j should be approximately independent. Set

U
[�]
m,i,j = Fm,j (M

[�]
m,i,j ), U

[�]
m,i = (U

[�]
m,i,1, . . . , U

[�]
m,i,d ),

and define

Ĉ◦,[�]
n,m (u) = 1

k

k∑

i=1

I (U
[�]
m,i ≤ u), C[�]

m (u) = P(U [�]
m,1 ≤ u)

and C
◦,[�]
n,m(u) = √

k{Ĉ◦,[�]
n,m (u) − C[�]

m (u)}. Note that C[�]
m is not a copula in general.

First, we are going to show that, for any u ∈ [0, 1]d ,

|C◦
n,m(u)− C

◦,[�]
n,m(u)| = oP (1), n → ∞. (7.1)

We have

(C◦,[�]
n,m − C

◦
n,m)(u)

= 1√
k

k∑

i=1

[{I (U [�]
m,i ≤ u)− I (Um,i ≤ u)} − {C[�]

m (u)− Cm(u)}]. (7.2)

By the definitions of Cm and C[�]
m , the previous expression is centered. Hence it

suffices to show that its variance converges to zero. Write

�
[�]
m,i = I (U

[�]
m,i ≤ u)− I (Um,i ≤ u).

Since U
[�]
m,i ≤ Um,i componentwise, we have

�
[�]
m,i = I (U

[�]
m,i ≤ u �≤ Um,i).
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By stationarity,

Var[(C◦
n,m −C

◦,[�]
n,m)(u)] = Var

[
− 1√

k

k∑

i=1

�
[�]
m,i

]

= 1

k

k∑

i1=1

k∑

i2=1

Cov[�[�]
m,i1

, �
[�]
m,i2

]

= Var[�[�]
m,1] + 2

k−1∑

h=1

(1 − h/k) Cov[�[�]
m,1, �

[�]
m,h+1]

Since �
[�]
m,i is an indicator variable, its variance is bounded by its expectation. We

find, taking the term h = 1 out of the sum,

Var[(C◦
n,m − C

◦,[�]
n,m)(u)] ≤ 3 E[�[�]

m,1] + 2k α(m).

The second term on the right-hand side converges to 0 by assumption (iii). Moreover,

�
[�]
m,i =
∣
∣
∣I (U

[�]
m,i ≤ u)− I (Um,i ≤ u)

∣
∣
∣

=
∣
∣
∣
∣

∏d

j=1
I (U

[�]
m,i,j ≤ uj )−

∏d

j=1
I (Um,i,j ≤ uj )

∣
∣
∣
∣

≤
d∑

j=1

∣
∣
∣I (U

[�]
m,i,j ≤ uj )− I (Um,i,j ≤ uj )

∣
∣
∣ =

d∑

j=1

I (U
[�]
m,i,j ≤ uj < Um,i,j )

≤
d∑

j=1

I {Fm,j (L
[�]
m,i,j ) > uj }.

Therefore, E[�[�]
m,i ] can be bounded by

d∑

j=1

P{Fm,j (L
[�]
m,i,j ) > uj } = O(�/m) = o(1),

in view of Lemma 7.1 and Condition 2.2(ii)–(iii); note that L
[�]
m,i,j is equal in

distribution to M�,1,j . The assertion in Eq. 7.1 is proved.
Now, let u1, . . . , uq be a finite collection of vectors in [0, 1]d . For the fidi-part of

the proof, we have to show that

(C◦
n,m(u1), . . . ,C

◦
n,m(uq)) � (C◦(u1), . . . ,C

◦(uq)),

which, by Eq. 7.1, follows if we prove that

(C◦,[�]
n,m(u1), . . . ,C

◦,[�]
n,m(uq)) � (C◦(u1), . . . ,C

◦(uq)).

By the Cramér–Wold device, the latter is equivalent to

Zn =
q∑

ν=1

cνC
◦,[�]
n,m(uν) �

q∑

ν=1

cνC
◦(uν) = Z,
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for any c1 . . . , cq ∈ R. Write Zn =∑k
i=1 Zi,n, where

Zi,n = 1√
k

q∑

ν=1

cν{I (U [�]
m,i ≤ uν)− C[�]

m (uν)}.

For t ∈ R, let ψi,n(t) = exp(−itZi,n) with i the imaginary unit. Note that the charac-

teristic function of Zn can be written as t �→ E
{∏k

i=1 ψi,n(t)
}

. Now, for any t ∈ R,

we can write
∣
∣
∣
∣E

{∏k

i=1
ψi,n(t)

}

−
∏k

i=1
E{ψi,n(t)}

∣
∣
∣
∣

≤
∣
∣
∣
∣E

{∏k

i=1
ψi,n(t)

}

− E{ψ1,n(t)}E

{∏k

i=2
ψi,n(t)

}∣
∣
∣
∣

+ ∣∣E{ψ1,n(t)}
∣
∣

∣
∣
∣
∣E

{∏kn

i=2
ψi,n(t)

}

− E{ψ2,n(t)}E

{∏k

i=3
ψi,n(t)

}∣
∣
∣
∣

+ . . .

+
∣
∣
∣
∣

∏k−2

i=1
E{ψi,n(t)}

∣
∣
∣
∣

∣
∣
∣
∣E

{∏k

i=k−1
ψi,n(t)

}

−
∏k

i=k−1
E{ψi,n(t)}

∣
∣
∣
∣ .

Applying k − 1 times Lemma 3.9 of Dehling and Philipp (2002), we obtain
∣
∣
∣
∣E

{∏k

i=1
ψi,n(t)

}

−
∏k

i=1
E{ψi,n(t)}

∣
∣
∣
∣

≤ 2πk max
1≤i≤k

α

(

σ
{
ψi,n(t)

}
, σ

{∏k

i ′=i+1
ψi ′,n(t)

})

.

Since the maxima M
[�]
m,i,j over different blocks i �= i ′ are based on observations that

are at least � observations apart, the right-hand side of the last display is of the order
k α(�). The latter converges to zero by Condition 2.2. Hence, we have shown that the
finite-dimensional distributions of C◦,[�]

n,m show the same asymptotic behavior (with
respect to weak convergence) as those of the process

C̃
◦,[�]
n,m(u) =

√
k{C̃◦,[�]

n,m (u)− C[�]
m (u)},

with

C̃◦,[�]
n,m (u) = 1

k

k∑

i=1

I (Ũ
[�]
m,i ≤ u)

and where

Ũ
[�]
m,i = (Ũm,i,1, . . . , Ũm,i,d ), Ũ

[�]
m,i,j = Fm,j (M̃

[�]
m,i,j )

and M̃
[�]
m,i,j = max{X̃t,j : t ∈ (im − m, im − �] ∩ Z} is based on a sequence

X̃1, . . . , X̃n such that

(X̃1, . . . , X̃m), (X̃m+1, . . . , X̃2m), . . . , (X̃(k−1)m+1, . . . , X̃km), (X̃km+1, . . . , X̃n)

are independent and such that each of the (k+ 1) brackets is equal in law to the same
bracket in the original sequence without the tilde. Again applying Eq. 7.1 (which is
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also valid for the corresponding tilde version based on independent blocks; the proof
is even simpler), we obtain that the fidis of C̃◦,[�]

n,m converge to the same limit as those
of C̃

◦
n,m, which is defined analogously to C

◦
n,m, but with X1, . . . , Xn replaced by

X̃1, . . . , X̃n. Assembling everything, the fidis ofC◦
n,m asymptotically behave as those

of C̃◦
n,m based on independent blocks. Weak convergence of the latter can easily be

deduced from the classical central limit theorem for row-wise independent triangular
arrays.

Now, let us prove asymptotic tightness of C
◦
n,m. Recall β(n) in Eq. 2.7. By

Berbee’s coupling Lemma (Berbee 1979; Doukhan et al. 1995), we can con-
struct inductively a sequence (X̄im+1, . . . , X̄im+m)i≥0 such that the following three
properties hold:

1. (X̄im+1, . . . , X̄im+m)
d= (Xim+1, . . . , Xim+m) for any i ≥ 0;

2. both (X̄2im+1, . . . , X̄2im+m)i≥0 and (X̄(2i+1)m+1, . . . , X̄(2i+1)m+m)i≥0 are i.i.d.
sequences;

3. P{(X̄im+1, . . . , X̄im+m) �= (Xim+1, . . . , Xim+m)} ≤ β(m).

Let C̄◦
n,m and Ūm,i be defined analogously to C

◦
n,m and Um,i , respectively, but with

X1, . . . , Xn replaced by X̄1, . . . , X̄n. Now, write

C
◦
n,m(u) = C̄

◦
n,m(u)+ {C◦

n,m(u)− C̄
◦
n,m(u)}. (7.3)

We will show below that the term in brackets on the right-hand side is oP (1), uni-
formly in u ∈ [0, 1]d . Then, in order to show asymptotic tightness of C

◦
n,m, it

suffices to show that C̄◦
n,m is asymptotically tight. Write C̄

◦
n,m = C̄

◦,even
n,m + C̄

◦,odd
n,m ,

where C̄
◦,even
n,m and C̄

◦,odd
n,m are defined as sums over the even and odd sum-

mands of C̄
◦
n,m, respectively. Since both of these sums are based on independent

summands by property (ii), they are asymptotically tight by Theorem 2.11.9 in
van der Vaart and Wellner (1996).

It remains to consider the term in brackets on the right-hand side of Eq. 7.3. We
have

|C̄◦
n,m(u)− C

◦
n,m(u)| ≤

1√
k

k∑

i=1

∣
∣I (Ūm,i ≤ u)− I (Um,i ≤ u)

∣
∣

≤ 1√
k

k∑

i=1

I {(X̄im+1, . . . , X̄im) �= (Xim+1, . . . , Xim)}.

Hence, by Markov’s inequality and property (iii), for any ε > 0,

P

{

sup
u∈[0,1]d

|C̄◦
n,m(u)− C

◦
n,m(u)| > ε

}

≤
√
kβ(m)

ε
.

By Condition 2.2(iv), we obtain that the second summand on the right-hand side of
Eq. 7.3 is oP (1) as n → ∞, uniformly in u ∈ [0, 1]d .
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7.2 Proofs for Section 3.2

Proposition 3.2 is in fact a corollary to Theorem 3.1 and Lemma 7.2 below. We prefer
to state the lemma independently of the block maxima set-up, as it might be useful
in other contexts involving empirical copulas for serially dependent random vectors.
To formulate the lemma, we need a bit of notation.

Let (Yk,i = (Yk,i,1, . . . , Yk,i,d) : i = 1, . . . , k)k∈N be a triangular array of row-
wise stationary, d-dimensional random vectors with continuous marginal distribution
functions Gk,1, . . . , Gk,d . Put Uk,i = (Uk,i,j )

d
j=1 with Uk,i,j = Gk,j (Yk,i,j ). Let

Ĝk,j (y) = 1

k

k∑

i=1

I (Yk,i,j ≤ y), Ĝk(y) = 1

k

k∑

i=1

I (Yk,i ≤ y),

be the marginal and joint empirical distribution functions, respectively, of the sample
Yk,1, . . . , Yk,k . Let Ûk,i = (Ûk,i,j )

d
j=1 with Ûk,i,j = Ĝk,j (Yk,i,j ). Finally, let Ck be

the copula of Yk,1 and consider the following empirical versions:

Ĉ◦
k (u) =

1

k

k∑

i=1

I (Uk,i ≤ u),

Ĉk(u) = 1

k

k∑

i=1

I (Ûk,i ≤ u),

Ĉalt
k (u) = Ĝk

(
Ĝ←

k,1(u1), . . . , Ĝ
←
k,d(ud)

)
.

sup
u∈[0,1]d

∣
∣Ĉalt

k (u)− Ĉk(u)
∣
∣ = op(1/

√
k).

Proof We have

∣
∣Ĉalt

k (u)− Ĉk(u)
∣
∣
(1)≤

d∑

j=1

1

k

k∑

i=1

∣
∣I {Yk,i,j ≤ Ĝ←

k,j (uj )} − I {Ĝk,j (Yk,i,j ) ≤ uj }
∣
∣

(2)=
d∑

j=1

1

k

k∑

i=1

∣
∣I {Yk,i,j = Ĝ←

k,j (uj )} − I {Ĝk,j (Yk,i,j ) = uj }
∣
∣

(3)≤
d∑

j=1

1

k

k∑

i=1

I {Yk,i,j = Ĝ←
k,j (uj )}.

Explanations:

(1) Write out the definitions of the two versions of the empirical copula and use
the inequality |∏j aj −

∏
j bj | ≤

∑
j |aj − bj | for numbers aj , bj ∈ [0, 1].

Lemma 7.2 Consider the set-up in the previous paragraph. If
√
k(Ĉ◦

k − Ck) con-
verges weakly in �∞([0, 1]d) to a stochastic process with continuous trajectories,
then
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(2) Split both indicators into the indicator of a strict inequality and the indicator of
an equality. The indicators for the strict inequality are equal, since x < H←(u)

if and only if H(x) < u for any distribution function H .
(3) If Ĝk,j (Yk,i,j ) = uj , then Yk,i,j = Ĝ←

k,j (uj ). Hence, the second indicator is
not larger than the first one.

Fix j ∈ {1, . . . , d}. Let Ĉ◦
k,j be the j th margin of Ĉ◦

k in Eq. 2.3, that is,

Ĉ◦
k,j (uj ) =

1

k

k∑

i=1

I (Uk,i,j ≤ uj ).

Then we can continue the chain of (in)equalities started in the beginning of the proof
by

∣
∣Ĉalt

k (u)− Ĉk(u)
∣
∣ ≤

d∑

j=1

1

k

k∑

i=1

I {Uk,i,j = Gk,j (Ĝ
←
k,j (uj ))}

≤
d∑

j=1

sup
x∈[0,1]

1

k

k∑

i=1

I {Uk,i,j = x}

≤
d∑

j=1

sup
x∈[0,1]

{Ĉ◦
k,j (x)− Ĉ◦

k,j (x − 1/k)}

≤ d√
k
ωk(1/k)+ d

k

where ωk is the modulus of continuity of C◦
k = √

k(Ĉ◦
k − Ck), i.e.

ωk(δ) = sup
(x,y)∈([0,1]d)2

maxj |xj−yj |≤δ

∣
∣C◦

k(x)−C
◦
k(y)
∣
∣,

and where the term d/k comes from the fact that Ck,j is the identity on [0, 1]. As C◦
k

converges weakly in �∞([0, 1]d) to a process with continuous trajectories, it follows
that ωk(1/k) = op(1).

Proof of Proposition 3.2 By Theorem 3.1, we can apply Lemma 7.2 to Yk,i = Mm,i .

Proof of Theorem 3.5 We are going to apply the extended continuous mapping theo-
rem (van der Vaart and Wellner 1996, Theorem 1.11.1). Recall the copula mapping,
�, in Eq. 3.2, with domain D�. Let Dn denote the space of all αn ∈ �∞([0, 1]d) for
which Cm + k−1/2αn ∈ D� and define

gn(αn) =
√
k{�(Cm + k−1/2αn)−�(Cm)}.

Define

D0 = {f : [0, 1]d → R | f continuous and f (u) = 0 for u = (1, . . . , 1)

or if at least one coordinate of u is equal to 0}. (7.4)
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Since C
◦ ∈ D0 and since

√
k(Ĉalt

n,m − Cm) = gn{
√
k(Ĉ◦

n,m − Cm)},
the assertion will follow from the extended continuous mapping theorem, provided
we can show that gn(αn) → g(α) for any αn → α ∈ D0, where g : D0 →
�∞([0, 1]d) is defined by

(g(α))(u) = α(u)−
d∑

j=1

Ċ∞,j (u) α(u
(j)).

Note that g = �′
C∞ , the Hadamard derivative of � at C∞.

Write In(u) = (In1(u1), . . . , Ind(ud)) where

Inj (uj ) = (id[0,1] + k−1/2αnj)
←(uj )

with αnj(uj ) = αn(1, . . . , 1, uj , 1 . . . , 1) and with id[0,1] the identity function on
[0, 1]. Since

�(Cm + k−1/2αn) = (Cm + k−1/2αn)(In) = Cm(In)+ k−1/2αn(In)

we can decompose

gn(αn) =
√
k{�(Cm + k−1/2αn)−�(Cm)} =

√
k{Cm(In)+ k1/2αn(In)− Cm}

= √
k{Cm(In)− Cm} + αn(In). (7.5)

It follows from Vervaat’s Lemma, see also formula (4.2) in Bücher and Volgushev
(2013), that

sup
uj∈[0,1]

∣
∣
√
k{Inj (uj )− uj } + α(1, . . . , 1, uj , 1, . . . , 1)

∣
∣→ 0. (7.6)

In particular, by uniform convergence of αn to α and by uniform continuity of α,
this implies that the second term on right-hand side of Eq. 7.5 converges to α,
uniformly.

It remains to be shown that the first term on the right-hand side of Eq. 7.5
converges to the proper limit, i.e., that

sup
u∈[0,1]d

∣
∣
∣
∣

√
k{Cm(In(u))− Cm(u)} +

d∑

j=1

Ċ∞,j (u) α(u
(j))

∣
∣
∣
∣ = 0. (7.7)

The proof of Eq. 7.7 depends on whether we assume Condition 3.4(a) or (b).
First, we prove Eq. 7.7 under Condition 3.4(a). Put

�n = √
k(Cm − C∞).

We have
√
k{Cm(In(u))− Cm(u)}

= √
k{C∞(In(u))− C∞(u)} + {�n(In(u))−�n(u)}.
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It is then sufficient to show that

sup
u∈[0,1]d

∣
∣
∣
∣

√
k{C∞(In(u))− C∞(u)} +

d∑

j=1

Ċ∞,j (u) α(u
(j))

∣
∣
∣
∣→ 0, (7.8)

sup
u∈[0,1]d

∣
∣�n(In(u))−�n(u)

∣
∣→ 0. (7.9)

Convergence in Eq. 7.8 essentially follows from Condition 3.3, marginal conver-
gence in Eq. 7.6, the fact that 0 ≤ Ċ∞,j ≤ 1, and α ∈ D0 with D0 as defined in
Eq. 7.4; the proof is in fact the same as the proof for Eq. 7.7 under Condition 3.4(b)
for the special case m = ∞. The left-hand side of Eq. 7.9 is bounded by ω(δn),
where, for δ > 0,

ω(δ) = sup
n∈N

sup

{
∣
∣�n(u)−�n(v)

∣
∣ : (u, v) ∈ ([0, 1]d)2, max

j=1,...,d
|uj − vj | ≤ δ

}

,

and with
δn = max

j=1,...,d
sup

uj∈[0,1]
|Inj (uj )− uj |.

By Eq. 7.6, δn → 0 as n → ∞. Since the set {�n : n ∈ N} is relatively compact
by Condition 3.4(a), the functions �n are uniformly equicontinuous by the Arzelà–
Ascoli theorem, which means that ω(δn) → 0 as n → ∞.

Next, we prove Eq. 7.7 under Condition 3.4(b). The margins of Cm being uniform
on (0, 1), the function Cm is Lipschitz; more precisely,

|Cm(u)− Cm(v)| ≤
d∑

j=1

|uj − vj |, (u, v) ∈ ([0, 1]d)2.

As a consequence, the function

f : [0, 1] → [0, 1] : s �→ Cm

(
vn(u, s)

)
,

where vn(u, s) = (1−s)u+sIn(u), is absolutely continuous, a version of its Radon–
Nikodym derivative being

f ′(s) =
d∑

j=1

Ċm,j

(
vn(u, s)

) {Inj (uj )− uj }.

It follows that√
k{Cm(In(u))− Cm(u)} =

√
k{f (1)− f (0)}

= √
k

∫ 1

0
f ′(s) ds

=
d∑

j=1

√
k{Inj (uj )− uj }

∫ 1

0
Ċm,j

(
vn(u, s)

)
ds.

Fix j = 1, . . . , d . We need to show that

sup
u∈[0,1]d

∣
∣
∣
∣

√
k{Inj (uj )− uj }

∫ 1

0
Ċm,j

(
vn(u, s)

)
ds + α(u(j)) Ċ∞,j (u)

∣
∣
∣
∣→ 0

as n → ∞.
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Given ε > 0, the supremum over those points u ∈ [0, 1]d such that uj ∈ [0, δ] ∪
[1−δ, 1] can be made smaller than ε for sufficiently large n by choosing δ sufficiently
small, using the fact that 0 ≤ Ċm,j ≤ 1 and 0 ≤ Ċ∞,j ≤ 1 together with uniform
convergence in Eq. 7.6 and the assumption that α ∈ D0. In the following, fix such a δ.

Regarding the supremum over u ∈ [0, 1]d such that uj ∈ [δ, 1 − δ], note that
∫ 1

0
Ċm,j

(
vn(u, s)

)
ds = Ċ∞,j (u)

+
∫ 1

0

{
Ċ∞,j

(
vn(u, s)

)− Ċ∞,j (u)
}

ds

+
∫ 1

0

{
Ċm,j

(
vn(u, s)

)− Ċ∞,j

(
vn(u, s)

)}
ds.

All integrands on the right-hand side converging to zero uniformly over s ∈ [0, 1]
and u ∈ [0, 1]d such that uj ∈ [δ, 1 − δ], the proof is complete.

Proof of Corollary 3.7 As convergence in Eq. 3.3 implies relative compactness,
Condition 3.4(a) is fulfilled. By Theorem 3.5 and Slutsky’s lemma,

√
k(Ĉn,m − C∞) = Cn,m +√

k(Cm − C∞) � C+ �, n → ∞,

as required.

7.3 Proofs for Section 3.3

For the proof of Theorem 3.8, we introduce the notation

Wn,ω (t) = √
k

∫ 1

0
log

{
C̃n,m(y

t )

C∞(yt )

}

ω (y, t) dy,

for a measurable weight function ω : [0, 1]×�d−1 → R that may depend on y and t .

∫ 1

0
ω (y) y−λdy < ∞ for some λ > 1.

Then, for any γ ∈
(

1
2 ,

λ
2

)
,

Wn,ω �W∞,ω in �∞ (�d−1) ,

as n → ∞, where the limiting process is given by

W∞,ω (t) =
∫ 1

0

C(yt )+ �(yt )

C∞(yt )
ω (y, t) dy.

Theorem 7.3 Suppose that Conditions 2.1, 2.2 and 3.3 are met and that
√
k(Cm −

C∞) → �, uniformly. Assume that there exists a bounded, measurable function ω :
[0, 1] → R such that |ω (y, t) | ≤ ω (y) for all y ∈ [0, 1] and all t ∈ �d−1 and such
that
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Proof of Theorem 7.3. For q ∈ N, let

Wn,ω,q (t) =
√
k

∫ 1

1/q
log

{
C̃n,m(y

t )

C∞(yt )

}

ω (y, t) dy,

W∞,ω,q (t) =
∫ 1

1/q

C(yt )+ �(yt )

C∞(yt )
ω (y, t) dy.

By Lemma B.1 in Bücher et al. (2011) it suffices to show the following three
claims:

(i) Wn,ω,q �W∞,ω,q in �∞(�d−1) as n → ∞;
(ii) W∞,ω,q �W∞,ω in �∞(�d−1) as q → ∞;

(iii) ∀ε > 0 : lim
q→∞ lim sup

n→∞
P
{

sup
t∈�d−1

|Wn,ω,q (t)−Wn,ω(t)| > ε
} = 0.

The proof of all three assertions follows exactly along the lines of the proof of
Theorem 6.1 in Berghaus et al. (2013) and is based on the fact that√

k(Ĉn,m − C∞) � C+ �

in �∞([0, 1]d) by Corollary 3.6. The details are omitted for the sake of brevity.

Proof of Theorem 3.8 Setting ω(y, t) = p(y)/ log(y), the result is a simple corollary
of Theorem 7.3.

8 Proofs for Section 4

8.1 Proofs for Section 4.1

The cumulative distribution function, Fm, and the copula, Cm, of Mm are given by

Fm(u) =
m∏

s=1−p

D
(
(u

αmjs
j )dj=1

)
, Cm(u) =

m∏

s=1−p

D
(
(u

βmjs
j )dj=1

)
,

for u ∈ (0, 1]d , where

αmjs = max{aij : i = max(1 − s, 0), . . . ,min(m− s, p)},

αmj• =
m∑

s=1−p

αmjs,

βmjs = αmjs

αmj•
.

The proof is straightforward by direct computation.
For m = 1, we have α1js = a1−s,j and thus

α1j• =
1∑

s=1−p

a1−s,j =
p∑

i=0

aij = 1
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by Eq. 4.2. We find that

C1(u) = F1(u) =
p∏

i=0

D
(
(u

aij
j )dj=1

)
(8.1)

In particular, the random variables Utj are uniformly distributed on (0, 1).

Proof Proposition 4.1 Eq. 4.4 is a direct consequence of the next sandwich inequality
for Cm: For m ∈ N such that m > p, we have

(
Dm−p(u)

)m+p
m−p ≤ Cm(u) ≤

(
Dm+p(u)

)m−p
m+p . (8.2)

We prove Eq. 8.2. For j = 1, . . . , d , put

Aj = max{aij : i = 0, . . . , p}.
Since all aij are nonnegative and because of Eq. 4.2, we have 0 < Aj ≤ 1. Note
that

αmjs = Aj (s = 1, . . . , m− p),

whereas for the other s, we still have αmjs ≤ Aj . It follows that

(m− p)Aj ≤ αmj• ≤ (m+ p)Aj .

In particular, for all s = 1 − p, . . . , m,

βmjs = αmjs

αmj•
≤ Aj

(m− p)Aj

= 1

m− p
.

We find

Cm(u) ≥
m∏

s=1−p

D(u
1/(m−p)

1 , . . . , u
1/(m−p)

d )

= (D(u
1/(m−p)

1 , . . . , u
1/(m−p)

d )
)m+p

= (Dm−p(u)
)m+p
m−p .

On the other hand,

βmjs ≥ Aj

(m+ p)Aj

= 1

m+ p
(s = 1, . . . , m− p),

from which

Cm(u) ≤
m−p∏

s=1

D(u
1/(m+p)

1 , . . . , u
1/(m+p)
d ) = (Dm+p(u)

)m−p
m+p ,

proving also the lower bound. This completes the proof of Eq. 8.2.
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The limit D∞ in Proposition 4.1 is in general different from the extreme value
attractor of C1. Indeed, if Eq. 4.3 holds, then by Eq. 8.1,

(
C1(u

1/m
1 , . . . , u

1/m
d )
)m =

p∏

i=0

{
D
(
(u

aij /m

j )dj=1

)}m

→
p∏

i=0

D∞
(
(u

aij
j )dj=1

)
, m → ∞. (8.3)

8.2 Proofs for Section 4.2

Define the φ-mixing coefficient of (Xt )t as

φ(n) = sup
t∈Z

sup
{| P(A | B)− P(A)| : B ∈ F t−∞, A ∈ F∞

t+n, P(B) > 0
}

and note that β(n) ≤ φ(n) (Bradley 2005). Because of the random repetition mech-
anism, the process (Xt )t is φ-mixing and the mixing coefficients φ(n) decay to 0
geometrically.

| P(A | B)− P(A)| ≤ 2(1 − θ)n.

Proof Consider the event Q that n consecutive repetitions occur at times t +
1, . . . , t + n, that is,

Q =
⋂n

i=1
{It+i = 0}.

Note that Q is independent of A and B and that P(Q) = (1 − θ)n. We have

| P(A | B)− P(A)| ≤ P(A ∩Q | B)+ P(A ∩Q)+ | P(A ∩Qc | B)− P(A ∩Qc)|
≤ 2 P(Q) = 2(1 − θ)n.

The inequality follows from the independence of Q and B and the independence of
A ∩Qc and B .

Proof Proposition 4.2 For an integer m ≥ 2, partition the event {Mm ≤ x} into two
pieces, according to whether Im is equal to 1 or not:

Fm(x) = P[Mm ≤ x]
= P[Mm−1 ≤ x, Xm ≤ x]
= P[Mm−1 ≤ x] P[ξm ≤ x] θ + P[Mm−1 ≤ x] (1 − θ)

= Fm−1(x) {θ F1(x)+ 1 − θ}.
By induction, we find

Fm(x) = F1(x) [1 − θ{1 − F1(x)}]m−1.

Lemma 8.1 Let t ∈ Z and n ∈ N, and let B ∈ F t−∞ with P(B) > 0 and A ∈ F∞
t+n.

Then
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For the marginal distributions, we find accordingly

Fm,j (xj ) = F1,j (xj ) [1 − θ{1 − F1,j (xj )}]m−1

for j = 1, . . . , d .
For uj ∈ (0, 1] and m ≥ 2, we have

uj = Fm,j

(
F←
m,j (uj )

)

= F1,j (F
←
m,j (uj )) [1 − θ{1 − F1,j (F

←
m,j (uj ))}]m−1

≤ [1 − θ{1 − F1,j (F
←
m,j (uj ))}]m−1,

and thus

F1,j
(
F←
m,j (uj )

) ≥ 1 − θ−1(1 − u
1/(m−1)
j )

≥ 1 + 1

θ(m− 1)
log uj → 1 (m → ∞).

Combining the previous two displays, we find

uj = {1 + o(1)} [1 − θ{1 − F1,j (F
←
m,j (uj ))}]m−1

from which

F1,j
(
F←
m,j (uj )

) = 1 − θ−1(1 − [uj {1 + o(1)}]1/(m−1))

= 1 + 1

θ(m− 1)
{log(uj )+ o(1)} (m → ∞).

Writing
F←
m (u) = (F←

m,1(u1), . . . , F
←
m,d(ud)

)
,

we have, for u ∈ (0, 1]d ,

F1
(
F←
m (u)
) ≥ 1 −

d∑

j=1

{
1 − F1,j

(
F←
m,j (uj )

)}→ 1 (m → ∞).

The copula, Cm, of Fm in u ∈ (0, 1]d is given by

Cm(u) = Fm

(
F←
m (u)
)

= F1
(
F←
m (u)
)[

1 − θ + θF1
(
F←
m (u)
)]m−1

= {1+o(1)}
[

1−θ+θC1

(

1+ log(u1)+o(1)

θ(m− 1)
, . . . , 1+ log(ud)+o(1)

θ(m− 1)

)]m−1

.

If C1 is in the copula domain of attraction of an extreme value copula C∞ with stable
tail dependence function L, then

lim
h↘0

h−1{1 − C1(1 − hx1, . . . , 1 − hxd)} = L(x1, . . . , xd)

locally uniformly in (x1, . . . , xd) ∈ [0,∞)d . It follows that

Cm(u) → exp{−L(− log u1, . . . ,− logud)} = C∞(u) (m → ∞)

as required.
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8.3 Proofs for Section 4.3

For the proof of Proposition 4.3, we need two lemmas, the proofs of which are
elementary and omitted for the sake of brevity.

lim
k→∞ k{(1 + x/k)−k − e−x} = e−x x

2

2
.

lim
k→∞ k {k (u−1/k − 1)+ logu} = 1

2
(logu)2.

Proof Proposition 4.3 It is sufficient to show that

lim
θ↓0

θ−1{Cθ,β(u, v)− C0,β (u, v)} = �β(u, v). (8.4)

Note that

Cθ,β(u, v) =
[

1 + θ

{(
u−θ − 1

θ

)β

+
(
v−θ − 1

θ

)β}1/β]−1/θ

.

Define an ‘intermediate’ function

Dθ,β(u, v) = exp

[

−
{(

u−θ − 1

θ

)β

+
(
v−θ − 1

θ

)β}1/β]

to be interpreted as 0 if min(u, v) = 0. Write

Cθ,β(u, v)− C0,β(u, v) = {Cθ,β(u, v)−Dθ,β(u, v)} + {Dθ,β(u, v)− C0,β(u, v)}.
We will treat the two parts on the right-hand side separately.

First, by Lemma 8.2, as θ ↓ 0,

θ−1 {Cθ,β(u, v)−Dθ,β(u, v)}=Dθ,β(u, v)
1

2

{(
u−θ − 1

θ

)β

+
(
v−θ − 1

θ

)β}2/β

+o(1),

(8.5)
the o(1) term being uniformly in (u, v) ∈ [0, 1]2. The right-hand side in Eq. 8.5
converges uniformly in (u, v) ∈ [0, 1]2 to

C0,β(u, v)
1

2
{(− logu)β + (− log v)β }2/β,

to be interpreted as 0 if min(u, v) = 0. Uniform convergence on compact subsets of
(0, 1]2 follows from Lemma 8.3, and uniform convergence on the whole of [0, 1]2
follows from the fact that (u−θ − 1)/θ ≥ − logu for u ∈ (0, 1] and θ > 0 and thus

Dθ,β(u, v) < C0,β (u, v) ≤ min(u, v).

Lemma 8.2 Uniformly in x ≥ 0,

Lemma 8.3 Uniformly in u belonging to compact subsets of (0, 1],
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Second, consider the function

fβ(x, y) = exp{−(xβ + yβ)1/β}, (x, y) ∈ [0,∞]2,
taking the value 0 if max(x, y) = ∞. We have

θ−1{Dθ,β(u, v)−C0,β(u, v)}=θ−1
{

fβ

(
u−θ − 1

θ
,
v−θ − 1

θ

)

−fβ(− log u,− log v)

}

.

(8.6)
Further,

∂

∂x
fβ(x, y) = −fβ(x, y) (x

β + yβ)1/β−1 xβ−1,

and similarly for ∂fβ(x, y)/∂y. In view of Lemma B.3, we obtain that the expression
in Eq. 8.6 converges, as θ → 0, to

∂

∂x
fβ(x,− log v)

∣
∣
∣
∣
x=− logu

1

2
(log u)2 + ∂

∂y
fβ(− logu, y)

∣
∣
∣
∣
y=− log v

1

2
(log v)2.

This expression can be further simplified to

−C0,β(u, v)
1

2
{(− log u)β + (− log v)β }1/β−1 {(− logu)β+1 + (− log v)β+1}

Uniform convergence on [0, 1]2 follows from similar arguments as before.
Collect terms to conclude.
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