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Abstract We consider the functional regular variation in the space D of càdlàg func-
tions of multivariate mixed moving average (MMA) processes of the type Xt =∫ ∫

f (A, t − s)�(dA, ds). We give sufficient conditions for an MMA process (Xt )

to have càdlàg sample paths. As our main result, we prove that (Xt ) is regularly
varying in D if the driving Lévy basis is regularly varying and the kernel function
f satisfies certain natural (continuity) conditions. Finally, the special case of supOU
processes, which are used, e.g., in applications in finance, is considered in detail.

Keywords Càdlàg sample paths · Functional regular variation · Heavy tails ·
Lévy basis · Mixed moving average process
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1 Introduction

In many applications of stochastic processes, the center of the distributions involved
and related quantities (e.g. sample means, variances etc.) can be modeled quite well.
In view of the central limit theorem, Gaussian distributions play an important role
in that field. However, this needs not to be true for the tail of the distribution which
is of great importance in many areas of application. Possible examples are severe
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crises in stock markets or extreme weather events which can cause huge losses to the
financial industry, insurance companies and also to private people. Therefore, it is of
great importance to model the distribution tail and related quantities (e.g. quantiles,
exceedances, maxima etc.) correctly.

A very well established concept to model extreme values is regular variation. It
has its origin in classical extreme value theory, where limit distributions for sample
maxima are derived. The maximum domains of attraction of two of the three possible
standard extreme value distributions (Fréchet and Weibull) can be described by reg-
ular variation of functions, meaning functions behaving like a power law in the limit,
see also Embrechts et al. (1997) and Resnick (2007).

Moreover, regular variation can intuitively be extended to a multivariate setup. It
is then formulated in terms of vague convergence of measures given by

nP (anX ∈ ·) v−→ μ(·), (1.1)

where X is a multivariate random vector, (an) an increasing sequence and μ is a
Radon measure. Since μ is homogeneous, multivariate regular variation of X can be
interpreted as convergence of the radial part ‖X‖ to a univariate regularly varying
random variable Y and of the spherical part X/‖X‖ to a random variable Z on the unit
sphere, which is independent of Y and can be described by the measure μ. Detailed
introductions to multivariate regular variation can be found in Resnick (2007) and
Hult and Lindskog (2006b).

Finally, Hult and Lindskog (2005) extended the definition Eq. 1.1 to the space of
multivariate stochastic processes with sample paths in the space D of càdlàg func-
tions, i.e. right-continuous functions with limits from the left. The formulation of
regular variation in such generality has the advantage that, in addition to functionals
based on the values of a stochastic process at fixed time points, one can also ana-
lyze functionals acting on the complete sample paths of the process. This is a very
powerful tool for the analysis of extremal properties of a process, especially in com-
bination with methods for weak convergence of point processes which are closely
related to regular variation (see Section 6). Despite the power of this technique, con-
ditions ensuring regular variation in D have so far been given only for few classes of
processes.

In this paper we apply the concept of regular variation on D to multivariate mixed
moving average (MMA) processes with càdlàg sample paths. MMA processes have
been first introduced by Surgailis et al. (1993) in the univariate stable case and are
given as integrals of the form

Xt =
∫

M−
d

∫

R

f (A, t − s)�(dA, ds),

where � is a multivariate Lévy basis. The class of (multivariate) MMA processes
covers a wide range of processes which are well known and extensively used
in applications. Examples include Ornstein-Uhlenbeck processes (cf. Barndorff-
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Nielsen and Shephard 2001 and Pigorsch and Stelzer 2009), superpositions of
Ornstein-Uhlenbeck (supOU) processes (cf. Barndorff-Nielsen 2001 and Barndorff-
Nielsen and Shephard 2011), (fractionally integrated) CARMA processes (cf.
Brockwell 2004; Marquardt 2007) and increments of fractional Lévy processes (cf.
Marquardt 2006; Bender et al. 2012 and references therein).

Regular variation of the finite-dimensional distributions of MMA processes has
already been proved in Moser and Stelzer (2011), given that the underlying Lévy
basis is regularly varying and the kernel function satisfies the integrability condition
f ∈ L

α . In this paper we give additional integrability and continuity conditions on
the kernel function f such that the MMA process is functionally regularly varying
on D. Furthermore, we also analyze the special case of multivariate supOU processes
given by

Xt =
∫

M−
d

t∫

−∞
eA(t−s)�(dA, ds).

The paper is organized as follows. In Section 2.2 we introduce the notion of multi-
variate regular variation and related properties. In Section 2.3 we recall the definition
of MMA processes and the related integration theory. Furthermore, we review the
conditions for existence of MMA processes and for regular variation of their finite
dimensional distributions. The sample path behavior of MMA processes is discussed
in Section 3. We give an overview over the relevant literature and derive new suffi-
cient conditions for MMA processes to have càdlàg sample paths in the case where
the underlying Lévy process is of finite variation. In Section 4 we introduce the notion
of functional regular variation and prove that MMA processes are regularly varying
on D, given certain conditions. In Section 5 we verify these conditions in the spe-
cial case of supOU processes. Finally, in Section 6 we show the connection between
functional regular variation and point process convergence and discuss the relevance
of the results to the extremal analysis of MMA processes.

2 Preliminaries

2.1 Notation

Let R be the real numbers, R+ the positive and R
− the negative real numbers, both

without 0. N is the set of positive integers and Q are the rational numbers. The Borel
sets are denoted by B and Bb are the bounded Borel sets. λ is the Lebesgue measure
on R and Br(x) := {y ∈ R

d : ‖y−x‖ ≤ r} is the closed ball of radius r centered at x.
D is the space of càdlàg (right-continuous with left limits) functions x : [0, 1] → R

d

and SD = {x ∈ D : supt∈[0,1] ‖xt‖ = 1} is the unit sphere in D.
For matrices, Mn,d is the set of all n × d matrices and Md the set of all d × d

matrices. M−
d is the set of all d × d matrices with all eigenvalues having strictly

negative real part. Id is the d × d identity matrix. We write AT for the transposed of
a matrix A and ‖A‖ for the matrix norm induced by the Euclidean norm.
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If random variables, vectors, processes, measures etc. are considered, they
are given as measurable mappings with respect to a complete probability space
(�,F, P ).

Vague convergence is defined in terms of convergence of Radon measures and it

is denoted by
v−→. It is defined on the one-point uncompactification R

d\{0}, which
assures that the sets bounded away from the origin can be referred to as the relatively
compact sets in the vague topology. Similarly, ŵ-convergence is given by the conver-
gence of boundedly finite measures and is defined on D0 = (0, ∞] × SD, which can
be viewed as the one-point uncompactification in D.

2.2 Multivariate regular variation

Regular variation on R
d is expressed in terms of vague convergence of measures

and several different, but equivalent, definitions exist. For detailed and very good
introductions to regular variation we refer to Bingham et al. (1987), Resnick (1987,
2007), and Lindskog (2004).

Definition 2.1 (Multivariate regular variation) A random vector X ∈ R
d is regularly

varying if there exists a sequence (an)n∈N, 0 < an ↗ ∞, and a nonzero Radon

measure μ on B(R
d\{0}) such that μ(R

d\Rd) = 0 and, as n → ∞,

nP (a−1
n X ∈ ·) v−→ μ(·)

on B(R
d\{0}). Similarly, we call a Radon measure ν regularly varying if (an) and μ

exist as above such that, as n → ∞,

n ν(an·) v−→ μ(·).

The limiting measure μ of the definition is homogeneous, i.e. it necessarily
satisfies the condition

μ(tB) = t−αμ(B)

for all B ∈ B(R
d\{0}) and t > 0. Hence, we write X ∈ RV (α, (an), μ) or

ν ∈ RV (α, (an), μ), respectively. In the special case of an infinitely divisible ran-
dom vector X ∈ R

d with Lévy measure ν we know that X ∈ RV (α, (an), μ) if and
only if ν ∈ RV (α, (an), μ) (see Hult and Lindskog 2006a, Proposition 3.1). This
result is very useful throughout this work, since MMA processes are infinitely divis-
ible, just as the driving Lévy bases are. A detailed introduction to infinitely divisible
distributions and Lévy processes can be found in Sato (2002), for instance.

2.3 Multivariate Mixed Moving Average processes

In this section we shortly recall the definition and main properties of multivariate
mixed moving average processes (short MMA processes).
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A multivariate (Rn-valued) MMA process (Xt ) can be defined as an integral over
a measurable kernel function f : M−

d × R → Mn,d with respect to an R
d -valued

Lévy basis � on M−
d × R, i.e.

Xt :=
∫

M−
d

∫

R

f (A, t − s)�(dA, ds).

An R
d -valued Lévy basis � = (�(B)) with B ∈ Bb(M

−
d × R) is a random measure

which is

• infinitely divisible, i.e. the distribution of �(B) is infinitely divisible for all B ∈
Bb(M

−
d × R),

• independently scattered, i.e. for any n ∈ N the random variables �(B1), . . . ,

�(Bn) are independent for pairwise disjoint sets B1, . . . , Bn ∈ Bb(M
−
d ×R) and

• σ -additive, i.e. for any pairwise disjoint sets (Bi)i∈N ∈ Bb(M
−
d × R) with

⋃
n∈N Bn ∈ Bb(M

−
d × R) we have �(

⋃
n∈N Bn) = ∑

n∈N �(Bn) almost
surely.

Thus, Lévy bases are also called infinitely divisible independently scattered ran-
dom measures (i.d.i.s.r.m.). Following the relevant literature (cf. Fasen 2005, 2009;
Fasen and Klüeppelberg 2007; Barndorff-Nielsen and Stelzer 2011 and Moser and
Stelzer 2011) we only consider time-homogeneous and factorisable Lévy bases, i.e.
Lévy bases with characteristic function

E (eiuT �(B)) = eϕ(u)	(B) (2.1)

for all u ∈ R
d and B ∈ Bb(M

−
d ×R), where 	 = π ×λ is the product of a probability

measure π on M−
d (R) and the Lebesgue measure λ on R and

ϕ(u) = iuT γ − 1

2
uT �u +

∫

Rd

(
eiuT x − 1 − iuT x1[−1,1](‖x‖))ν(dx)

is the characteristic function of an infinitely divisible distribution with characteristic
triplet (γ, �, ν). The distribution of the Lévy basis is then completely determined
by (γ, �, ν, π) which is therefore called the generating quadruple. By L we denote
the underlying Lévy process which is given by Lt = �(M−

d × (0, t]) and L−t =
�(M−

d ×[−t, 0)) for t ∈ R
+. For more details on Lévy bases see Rajput and Rosiński

(1989) and Pedersen (2003).
We should stress that the set M−

d in the definition of MMA processes can be
replaced by Md or basically any other topological space. The choice of M−

d is
motivated by the special case of supOU processes, where this is the canonical choice.

Necessary and sufficient conditions for the existence of MMA processes are given
by the multivariate extension of Theorem 2.7 in Rajput and Rosiński (1989).

Theorem 2.2 Let � be an R
d -valued Lévy basis with characteristic function of the

form Eq. 2.1 and let f : M−
d × R → Mn,d be a measurable function. Then f is
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�-integrable as a limit in probability in the sense of Rajput and Rosiński (1989) if
and only if

∫

M−
d

∫

R

∥
∥
∥
∥
∥
∥
∥
f(A,s)γ +

∫

Rd

f(A,s)x
(
1[0,1](‖f (A,s)x‖)−1[0,1](‖x‖))ν(dx)

∥
∥
∥
∥
∥
∥
∥
dsπ(dA)<∞,

(2.2)

∫

M−
d

∫

R

‖f (A, s)� f (A, s)T ‖dsπ(dA) < ∞ and (2.3)

∫

M−
d

∫

R

∫

Rd

(1 ∧ ‖f (A, s)x‖2)ν(dx)dsπ(dA) < ∞. (2.4)

If f is �-integrable, the distribution of X0 = ∫
M−

d

∫
R+ f (A, s)�(dA, ds) is

infinitely divisible with characteristic triplet (γint , �int , νint ) given by

γint =
∫

M−
d

∫

R

⎛

⎜
⎝f (A, s)γ +

∫

Rd

f (A, s)x
(
1[0,1](‖f (A, s)x‖)−1[0,1](‖x‖))ν(dx)

⎞

⎟
⎠dsπ(dA),

�int =
∫

M−
d

∫

R

f (A, s)� f (A, s)T dsπ(dA) and

νint (B) =
∫

M−
d

∫

R

∫

Rd

1B(f (A, s)x)ν(dx)dsπ(dA) for all Borel sets B ⊆ R
n.

However, since our focus is on regularly varying processes, we recall sufficient
conditions derived in Moser and Stelzer (2011) which are intrinsically related to the
conditions needed to ensure regular variation. To this end we define

L
δ(π × λ) :=

⎧
⎪⎪⎨

⎪⎪⎩
f : M−

d × R → Mn,d measurable,

∫

M−
d

∫

R

‖f (A, s)‖δdsπ(dA) < ∞, n ∈ N

⎫
⎪⎪⎬

⎪⎪⎭
.

Theorem 2.3 (Moser and Stelzer 2011, Theorem 2.6) Let � be a Lévy basis
with values in R

d and characteristic quadruple (γ, �, ν, π). Furthermore, let ν be
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regularly varying with index α and let f : M−
d × R → Mn,d be a measur-

able function. Then f is �-integrable in the sense of Rajput and Rosiński (1989)
and Xt is well defined for all t ∈ R, stationary and infinitely divisible with
known characteristic triplet (see Theorem 2.2) if one of the following conditions is
satisfied:

(i) L1 is α-stable with α ∈ (0, 2)\{1} and f ∈ L
α ∩ L

1.
(ii) f is bounded and f ∈ L

δ for some δ < α, δ ≤ 1.
(iii) f is bounded, EL1 = 0, α > 1 and f ∈ L

δ for some δ < α, δ ≤ 2.

Regular variation of Xt for fixed t ∈ R as well as regular variation of the finite
dimensional distributions of the process (Xt ) have been derived in Moser and Stelzer
(2011) under similar conditions.

Theorem 2.4 (Moser and Stelzer 2011, Th. 3.2 and Cor. 3.5) Let � be an R
d -

valued Lévy basis on M−
d × R with generating quadruple (γ, �, ν, π) and let

ν ∈ RV (α, (an), μν). If Xt = ∫
M−

d

∫
R

f (A, t − s)�(dA, ds) exists (in the sense of

Theorem 2.2), f ∈ L
α(π × λ) and μν(f

−1(A, s)(Rn\{0})) = 0 does not hold for
π × λ almost-every (A, s), then X0 ∈ RV (α, (an), μX) with

μX(B) :=
∫

M−
d

∫

R

∫

Rd

1B(f (A, t − s)x)μν(dx)dsπ(dA) ∀B ∈ B(Rn\{0}).

Furthermore, the finite dimensional distributions (Xt1 , . . . , Xtk ), ti ∈ R and k ∈ N,
are also regularly varying with index α and limiting measure

μt1,...,tk (B) :=
∫

M−
d

∫

R

∫

Rd

1B

⎛

⎜
⎝

⎛

⎜
⎝

f (A, t1 − s)
...

f (A, tk − s)

⎞

⎟
⎠ x

⎞

⎟
⎠μν(dx)dsπ(dA) ∀B ∈B(Rnk\{0}).

Comparable necessary conditions for regular variation do also exist, see Moser
and Stelzer (2011), Theorem 3.4, for details. Note in particular that in the one-
dimensional case f ∈ L

α(π × λ) is both sufficient and necessary.
Next we introduce a result which allows to decompose a Lévy basis into a drift, a

Brownian part, a part with bounded jumps and a part with finite variation. This is the
extension of the Lévy-Itô decomposition to Lévy bases.

Theorem 2.5 (Barndorff and Stelzer 2011, Theorem 2.2) Let � be a Lévy basis on
M−

d × R with characteristic function of the form Eq. 2.1 and generating quadruple
(γ, �, ν, π). Then there exists a modification �̃ of � which is also a Lévy basis
with the same characteristic quadruple (γ, �, ν, π) such that there exists an R

d -
valued Lévy basis �̃G on M−

d × R with generating quadruple (0, �, 0, π) and an
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independent Poisson random measure N on R
d × M−

d × R with intensity measure
ν × π × λ such that

�̃(B) = γ (π × λ)(B) + �̃G(B) +
∫

‖x‖≤1

∫

B

x(N(dx, dA, ds) − π(dA)dsν(dx))

+
∫

‖x‖>1

∫

B

xN(dx, dA, ds)

for all B ∈ Bb(M
−
d × R) and ω ∈ �. If, additionally,

∫
‖x‖≤1 ‖x‖ν(dx) < ∞, then

�̃(B) = γ0(π × λ)(B) + �̃G(B) +
∫

Rd

∫

B

xN(dx, dA, ds)

for all B ∈ Bb(M
−
d × R), where γ0 := γ − ∫

‖x‖≤1 xν(dx). Moreover, the Lebesgue
integral exists with respect to N for all ω ∈ �.

Throughout the remainder of this paper we assume that all Lévy bases occur-
ring are already modified such that they have the above Lévy-Itô decomposition.
Moreover, for a Lévy basis � we define two Lévy bases �(1) and �(2) by

�(1)(B) = γ (π × λ)(B) + �̃G(B) +
∫

‖x‖≤1

∫

B

x(N(dx, dA, ds) − π(dA)dsν(dx))

(2.5)

�(2)(B) =
∫

‖x‖>1

∫

B

xN(dx, dA, ds) (2.6)

for all Borel sets B.
If the underlying Lévy process is of finite variation, the integral can be defined ω-

wise. Note that by Theorem 21.9 in Sato (2002) finite variation of (Lt ) is equivalent
to � = 0 and

∫
‖x‖≤1 ‖x‖ ν(dx) < ∞.

Proposition 2.6 (Barndorff and Stelzer 2011, Prop. 2.4) Let � be a Lévy basis on
M−

d × R with characteristic function of the form Eq. 2.1 and generating quadru-
ple (γ, 0, ν, π) such that

∫
‖x‖≤1 ‖x‖ ν(dx) < ∞. Let γ0 and N be as defined in

Theorem 2.5. If f ∈ L
1 and

∫

M−
d

∫

R

∫

Rd

(1 ∧ ‖f (A, s)x‖) ν(dx) ds π(dA) < ∞,
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then

X =
∫

M−
d

∫

R

f (A, s)�(dA, ds) =
∫

M−
d

∫

R

f (A, s) γ0 dsπ(dA)

+
∫

Rd

∫

M−
d

∫

R

f (A, s) x N(dx, dA, ds)

and the integrals on the right hand side exist as Lebesgue integrals for every ω ∈ �.
Moreover, the distribution of X is infinitely divisible with characteristic function

E
(
eiuT X

) = exp

⎛

⎜
⎝iuT γint,0 +

∫

Rd

(
eiuT x − 1

)
νint (dx)

⎞

⎟
⎠ ,

where

γint,0 =
∫

M−
d

∫

R

f (A, s) γ0 ds π(dA) and

νint (B) =
∫

M−
d

∫

R

∫

Rd

1B(f (A, s)x) ν(dx) ds π(dA)

for all Borel sets B ⊆ R
n.

The condition f ∈ L1 is obsolete if γ0 = 0.

3 Sample path behavior

In Section 4 we review the concept of regular variation for càdlàg processes and apply
it to MMA processes. Therefore, we first have to discuss the sample path behavior of
MMA processes.

Many examples of results for MMA processes to have càdlàg sample paths exist
in the special case where the underlying Lévy process has sample paths of finite vari-
ation, i.e. � = 0 and

∫
‖x‖≤1 ‖x‖ ν(dx) < ∞. In this case, the sample path behavior

of the driving Lévy process transfers to the sample paths of the MMA process. For
example, define for any Lévy process Lt the corresponding filtered Lévy process Xt

by

Xt =
t∫

0

f (t, s) dLs (3.1)
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for t ∈ [0, 1]. If Xt exists, Lt is of finite variation and the kernel function f is
bounded and continuous, then Xt has càdlàg sample paths (cf. Hult and Lindskog
(2005), Lemma 28).

Another result for supOU processes is given by Theorem 3.12 in Barndorff-
Nielsen and Stelzer (2011). This result can be extended to the general case of MMA
processes.

Theorem 3.1 Let � be a Lévy basis on M−
d × R with characteristic function of the

form Eq. 2.1 and generating quadruple (γ, 0, ν, π) such that
∫
‖x‖≤1 ‖x‖ ν(dx) < ∞.

Suppose that the kernel function f (A, s) is continuous and differentiable in s for all
s ∈ R\{0} and f (A, 0−) = lims↗0 f (A, s) = C1 ∈ Mn,d as well as f (A, 0+) =
lims↘0 f (A, s) = C2 ∈ Mn,d for all A ∈ M−

d . Set

f ′(A, s) :=
{

d
ds

f (A, s) if s �= 0,

lims↘0
d
ds

f (A, s) if s = 0

and assume that for some δ > 0 and for every t1, t2 ∈ R such that t1 ≤ t2
and t2 − t1 ≤ δ the function supt∈[t1,t2] ‖f ′(A, t − s)‖ satisfies the conditions
of Proposition 2.6, where (γ, 0, ν, π) is replaced by (‖γ ‖, 0, νT , π) and the Lévy
measure νT (·) = ν(T −1(·)) is transformed by T (x) = ‖x‖. If the process Xt =∫
M−

d

∫
R

f (A, t − s)�(dA, ds) exists (in the sense of Proposition 2.6), then setting

Zt := ∫
M−

d

∫
R

f ′(A, t − s)�(dA, ds) we have

Xt = X0 +
t∫

0

Zu du + (C1 − C2) Lt (3.2)

and consequently Xt has sample paths in D which are of finite variation on compacts.

Proof Obviously the process Zt exists (in the sense of Proposition 2.6).
We follow the steps of the proof of Theorem 3.12 in Barndorff-Nielsen and Stelzer

(2011) and begin by showing that Zt is locally uniformly bounded on compacts. Note
that by Proposition 2.6 the processes Xt and Zt can be given as integrals with respect
to a Poisson measure and π × λ. For δ > 0 and every t1, t2 ∈ R such that t1 ≤ t2 and

t2 − t1 ≤ δ we obtain sup
t∈[t1,t2]

‖Zt‖ = sup
t∈[t1,t2]

∥
∥
∥

∫
M−

d

∫
R

f ′(A, t − s)�(dA, ds)

∥
∥
∥ ≤

∫
M−

d

∫
R

sup
t∈[t1,t2]

‖f ′(A, t − s)‖�T (dA, ds), where T : Rd → R is given by T (x) =
‖x‖ and �T is the transformed Lévy basis with characteristic triplet (‖γ ‖, 0, νT , π).
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Existence of the right hand side is covered by Proposition 2.6. Thus Zt is locally
uniformly bounded and it follows by Fubini that

t∫

0

Zudu =
t∫

0

∫

M−
d

u∫

−∞
f ′(A, u − s)�(dA, ds) du

+
t∫

0

∫

M−
d

∞∫

u

f ′(A, u − s)�(dA, ds) du

=
∫

M−
d

t∫

−∞

t∫

0∨s

f ′(A, u − s) du�(dA, ds)

+
∫

M−
d

∞∫

0

t∧s∫

0

f ′(A, u − s) du�(dA, ds)

=
∫

M−
d

t∫

−∞
f (A, u − s)

∣
∣
∣
t

u=0∨s
�(dA, ds)

+
∫

M−
d

∞∫

0

f (A, u − s)

∣
∣
∣
t∧s

u=0
�(dA, ds)

= Xt − X0 + (C1 − C2) Lt .

Remark 3.2

(1) The inclusion of kernel functions with a discontinuity at s = 0 is motivated
by the class of causal MMA processes where the kernel function is of the
form f (A, s)1[0,∞)(s). For example, in the supOU case the kernel function is
eAs 1[0,∞)(s) and the limits at s = 0 can be given directly by C1 = 0 and
C2 = Id yielding (see Theorem 3.12 in Barndorff-Nielsen and Stelzer 2011)

Xt = X0 +
t∫

0

Zu du − Lt .

(2) The result can obviously be extended to the case where f (A, 0−) and f (A, 0+)

exist for all A, but are not independent of A. Then Eq. 3.2 holds with the Lévy

process L̃t := ∫

M−
d

t∫

0
(f (A, 0+)−f (A, 0−))�(dA, ds) in place of (C1−C2) Lt .
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(3) Intuitively a necessary condition for a MMA process X to have càdlàg paths
should be that f (A, ·) is càdlàg for (π almost) all A. In the case of contin-
uous paths the analogous necessary condition follows from (Rosiński 1989,
Theorem 2.4). We conjecture that also in the càdlàg case one can prove this nec-
essary condition by extending the arguments of Cambanis and Rajput (1973),
Rosiński (1989), but this is beyond the scope of the present paper.

(4) The condition on f being differentiable with respect to time everywhere except
at 0 is clearly only sufficient. For example, for any Lévy process L with finite
logarithmic moment

Xt =
∫

R

(
e−(t−s)1R+(t − s) + e−(t−1−s)1R+(t − 1 − s)

)
dLs

is càdlàg as the sum of two OU processes which are càdlàg. Obviously, one
can extend Proposition 3.1 and its proofs to appropriate functions which are
differentiable except at finitely many points and thus cover the above coun-
terexample. However, it seems completely unclear whether one can extend it to
functions which are differentiable except at countably many points.

Note that the references given below for other results on the càdlàg property
usually demand absolute continuity of f in time or something similar and so
the above counterexample also violates their conditions. All particular examples
of MMA processes considered so far in the literature have—to the best of our
knowledge—kernels f discontinuous and non-differentiable at most at 0.

If C1 − C2 = 0 in the above theorem, further properties of the sample paths of Xt

follow directly.

Corollary 3.3 Assume that the conditions of Theorem 3.1 hold. If additionally C1 =
C2, then the paths of Xt = ∫

M−
d

∫
R

f (A, t − s)�(dA, ds) are absolutely continuous

and almost everywhere differentiable.

Remark 3.4 The condition C1 = C2 holds if and only if f (A, s) is continuous in
s = 0 and f (A, 0) is constant for all A ∈ M−

d . This is satisfied, for example, by
two-sided supOU processes which are MMA processes with kernel function

f (A, s) = eAs1[0,∞)(s) + e−As1(−∞,0)(s).

In the case of moving average processes, where π is a one-point measure, the condi-
tion only requires that f is continuous in s = 0. Processes of this class include, for
example, two-sided CARMA and two-sided Ornstein-Uhlenbeck processes.

Similar results for the sample paths of MMA processes, where the driving Lévy
process is not of finite variation, are in general not so easy to obtain. Basse and
Pedersen (2009), Corollary 3.3, give necessary and sufficient conditions for fil-
tered Lévy processes of the form Eq. 3.1 to have càdlàg sample paths of bounded
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variation even if the driving Lévy process itself has sample paths of unbounded
variation. Furthermore, they also study two-sided moving averages of the form

Xt =
t∫

−∞
(f1(t − s) − f2(−s)) dLt , where f1, f2 : R → R are measurable kernel

functions such that f1(s) = f2(s) = 0 for all s ∈ (−∞, 0). They give necessary
and sufficient conditions for such processes to have càdlàg sample paths of finite
variation. These conditions also allow the underlying Lévy process to be of infinite
variation. For MMA processes Basse-O’Connor and Rosiński (2013) gives necessary
and sufficient conditions for finite variation and absolute continuity of sample paths
for underlying Lévy processes of infinite variation. Moreover, Basse and Pedersen
(2009) also consider the special case where the driving Lévy process is symmetric α-
stable with α ∈ (1, 2] (cf. Basse and Pedersen 2009, Lemma 5.2, Proposition 5.3 and
Proposition 5.5). Conditions for α-stable MMA processes, α ∈ (0, 2), to have càdlàg
sample paths are also given in Basse and Rosiński (2012), Section 4.

Additionally, there also exist some results for the stronger property of continuous
sample paths. See Marcus and Rosińsk (2005), Cambanis et al. (1990) and Rosiński
(1989) for results on general MMA processes to have continuous sample paths. For
the special case of α-stable MMA processes, see also Rosiński et al. (1991) and
Rosiński (1986).

4 Functional regular variation

We follow Hult and Lindskog (2005) to introduce the notion of regular variation on D.
Let D be the space of càdlàg (right-continuous with left limits) functions x : [0, 1] →
R

d equipped with the J1 metric (equivalent to the d0 metric of Billingsley 1968) such
that D is a complete and separable metric space. Using the supremum norm ‖x‖∞ =
supt∈[0,1] ‖xt‖ we can then introduce the unit sphere SD = {x ∈ D : ‖x‖∞ = 1},
equipped with the relativized topology of D. Next, we equip (0, ∞] with the metric
ρ(x, y) = |1/x − 1/y| which makes it a complete separable metric space. Then also
the space D0 = (0, ∞] × SD, equipped with the metric max{ρ(x∗, y∗), d0(̃x, ỹ)}, is
a complete separable metric space.

If we use the polar coordinate transformation T : D\{0} → D0, x �→
(‖x‖∞, x/‖x‖∞), we see that the spaces D\{0} and (0, ∞) × SD are homeomor-
phic. Thus, the Borel sets B(D0) of interest can be viewed as the infinite dimensional
extension of the one-point uncompactification that is used to introduce finite dimen-
sional regular variation (cf. Bingham et al. 1987; Embrechts et al. 1997 and Resnick
1987).

Regular Variation on D can then be introduced in terms of the so-called ŵ-
convergence of boundedly finite measures on D0. A measure μ on a complete
separable metric space E is said to be boundedly finite if μ(B) < ∞ for every
bounded set B ∈ B(E). Let (μn)n∈N be a sequence of boundedly finite measures
on E. Then (μn) converges to μ in the ŵ-topology if μn(B) → μ(B) for all

bounded Borel sets B ∈ B(E) with μ(∂B) = 0. We write μn
ŵ−→ μ. Note that for

locally compact spaces E the boundedly finite measures are called Radon measures
and the notions of ŵ-convergence and vague convergence coincide. See Daley and
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Vere-Jones (1988) and Kallenberg (1983) for details on ŵ-convergence and vague
convergence.

We are now able to formulate regular variation for stochastic processes with
sample paths in D.

Definition 4.1 (Regular variation on D) A stochastic process (Xt ), t ∈ [0, 1], with
sample paths in D is said to be regularly varying if there exists a positive sequence
(an), n ∈ N, with an ↗ ∞ and a nonzero boundedly finite measure μ on B(D0) with
μ(D0\D) = 0 such that, as n → ∞,

nP (a−1
n X ∈ ·) ŵ−→ μ(·) on B(D0).

As in the finite dimensional case, direct calculation shows that the measure μ is
homogeneous, i.e. there exists a positive index α > 0 such that μ(uB) = u−αμ(B)

for all u > 0 and for every B ∈ B(D0). Thus, we say that the process (Xt ) is regularly
varying with index α and write X ∈ RV

D0
(α, (an), μ).

Example 4.2 (Lévy Process) Let (Lt ) be a Lévy process. Then by definition (or
Theorem 11.5 in Sato (2002) resp.) (Lt ) has sample paths in D. Furthermore, (Lt )

is also a strong Markov process (cf. Sato (2002), Theorem 10.5 and Corollary
40.11). Now the results of Hult and Lindskog (2005), Section 3, can be applied. If
Lt ∈ RV (α, (an), tμ) for one and thus all t > 0, then it follows by Theorem 13 of
Hult and Lindskog (2005) that (Lt ) ∈ RV

D0
(α, (an), μ̃) for some measure μ̃. For

details we refer to Hult and Lindskog (2005), Example 17.

The next theorem states some necessary and sufficient conditions for regular
variation on D. In the theorem, we use the notation

w(x, T0) := sup
t1,t2∈T0

‖xt1 − xt2‖ and

w′′(x, δ) := sup
0≤t1≤t≤t2≤1; t2−t1≤δ

min {‖xt − xt1‖, ‖xt2 − xt‖}

for x ∈ D, T0 ⊆ [0, 1] and δ ∈ [0, 1].

Theorem 4.3 (Hult and Lindskog 2005, Theorem 10) Let (Xt ) be a stochastic
process with sample paths in D. Then the following statements are equivalent.

(i) X ∈ RV
D0

(α, (an), μ).
(ii) There exists a set T ⊆ [0, 1] containing 0, 1 and all but at most countably many

points of [0, 1], a positive sequence an ↗ ∞ and a collection {μt1,...,tk : ti ∈
T , k ∈ N} of Radon measures on B(R

dk\{0}) with μt1,...,tk (R
dk\Rdk) = 0 and

μt is nonzero for some t ∈ T such that

nP (a−1
n (Xt1 , . . . , Xtk ) ∈ ·) v−→ μt1,...,tk (·) on B(R

dk\{0}) (4.1)
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holds for all t1, . . . , tk ∈ T . Furthermore, for every ε, η > 0, there exist δ ∈
(0, 1) and n0 ∈ N such that, for all n ≥ n0,

nP (a−1
n w(X, [0, δ)) ≥ ε) ≤ η, (4.2)

nP (a−1
n w(X, [1 − δ, 1)) ≥ ε) ≤ η, (4.3)

nP (a−1
n w′′(X, δ) ≥ ε) ≤ η. (4.4)

Remark 4.4 The theorem links regular variation of the process (Xt )t∈[0,1] with
sample paths in D to regular variation of the finite dimensional distributions
(Xt1 , . . . , Xtk ) of the the process. Key to that connection are the relative compact-
ness criteria Eqs. 4.2, 4.3 and 4.4 which restrict the oscillation of the process (Xt )

in small areas. See Hult and Lindskog (2005), Example 11, for a process satisfying
conditions Eqs. 4.2 and 4.3, but not Eq. 4.4.

Now we will extend the finite dimensional regular variation of MMA processes in
the sense of Theorem 2.4 to regular variation in D by applying Theorem 4.3. There-
fore, we need to restrict the MMA process (Xt ) as defined in Section 2.3 to the time
interval [0, 1]. Note that a restriction to any other compact time interval [a, b], a < b,
would not change any of the results. Furthermore, we assume that (Xt ) has sample
paths in the space D of càdlàg functions. See Section 3 for possible conditions ensur-
ing this. We start with the main theorem for functional regular variation of MMA
processes.

In order not to overload the notation we from now on assume always that t, t1, t2
are restricted to the set [0; 1] when taking suprema without writing this explicitly.
Furthermore, we are now using the decomposition Eq. 2.6 of our Lévy basis � into
�(1) and �(2).

Theorem 4.5 Let � be an R
d -valued Lévy bases on M−

d ×R with generating quadru-
ple (γ, �, ν, π) such that ν ∈ RV (α, (an), μν). Assume that the kernel function f

is bounded, càdlàg in time, f ∈ L
α(π × λ), μν(f

−1(A, s)(Rn\{0})) = 0 does not
hold for π × λ almost-every (A, s) and

∫

M−
d

∫

R

∫

‖x‖>1

(1 ∧ ‖f (A, s)x‖) ν(dx) ds π(dA) < ∞. (4.5)

Moreover, suppose that the MMA process Xt = ∫
M−

d

∫
R

f (A, t − s)�(dA, ds) exists

for t ∈ [0, 1] (in the sense of Theorem 2.2) and that the processes Xt and X
(2)
t =∫

M−
d

∫
R

f (A, t − s)�(2)(dA, ds) have càdlàg sample paths. If the function fδ given

by

fδ(A, s) := sup
t1≤t2; t2−t1≤δ

‖f (A, t2 − s) − f (A, t1 − s)‖ 1(t1,t2]c (s) (4.6)
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satisfies Eq. 4.5 for all δ > 0 small enough and, as δ → 0,

∫

M−
d

∫

R

fδ(A, s)α dsπ(dA) → 0, (4.7)

then

(Xt )t∈[0,1] ∈ RV
D0

(α, (an), μ).

The measure μ is uniquely determined by the measures μt1,...,tk in Theorem 2.4, con-
centrated on the càdlàg functions of the form [0; 1] → R

n, s �→ f (A, s − t)x where
A ∈ supp(π), t ∈ R and x ∈ supp(μν) and we have that

μ {f (A, · − t)x : A ∈ A, t ∈ T , x ∈ X } = λ(T )π(A)μν(X ) (4.8)

for measurable sets A ⊆ M−
d , T ⊆ R and X ⊆ R

d .

Before we prove this theorem in Section 4.1 we discuss its intuition and its
assumptions. Let us stress that the aim of this paper is to derive sufficient conditions
for MMA processes to be regularly varying in D which can be reasonably checked
and are useful for the MMA processes typically employed.

Remark 4.6 There is a very simple intuition behind the limiting measure μ. Asymp-
totically in the case of regular variation it is normally the largest event which alone
matters. In our case it is the largest jump in our Lévy basis. The largest jump of
size say xl occurs at a time tl and is “marked” with a matrix Al determining the
function with which it propagates over time. In other words we have the func-
tion s �→ f (Al, s − tl)xl which determines the extremal behaviour. Now by the
time homogeneity of the Lévy basis tl is uniformly chosen from R and by the
factorisability Al has distribution π .

If f is zero on an interval of length at least one, like for (sup)OU processes, μ

has mass at the zero function which is not an extremal event. Our non-degeneracy
condition “μν(f

−1(A, s)(Rn\{0})) = 0 does not hold for π×λ almost-every (A, s)”
ensures that μ is not concentrated on the zero function. For example in the case of
(sup)OU processes (see the upcoming Section 5 for details) for the “true extremal”
events the time tl is chosen uniformly on (−∞, 1]. So for a (sup)OU process the
extremal events are either functions on [0, 1] which decay exponentially or functions
first identical zero, then having a jump and decaying exponentially thereafter.

Turning to the conditions it is clear that we need to demand that the process has
càdlàg paths and in view of Remark 3.2 it is natural to demand f càdlàg in time.
However, in general this is a very problematic assumption, since as discussed in
Section 3 the conditions known to ensure càdlàg paths are much too strong. It is
easy to construct non-càdlàg regularly varying processes as the following example
exhibits.
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Example 4.7 Let L be a compound Poisson process (or a Lévy process of finite
variation) with regularly varying jumps of index α. Then for any λ > 0

Xt =
∫ t

−∞

(
e−λ(t−s)1R+(t − s) + 1{0}(t − s)

)
dLs

exists ω-wise and has finite-dimensional distributions which are regularly varying.
However, it is not càdlàg at all jump times of the underlying Lévy process. Thus
it cannot be regularly varying on D. Note, however, that conditions (4.5) and (4.7)
are satisfied. Moreover, the finite-dimensional distributions are the same as those of∫ t

−∞ e−λ(t−s)1R+(t − s)dLs which is regularly varying on D.
An alternative example of a moving average process with regularly finite dimen-

sional distributions not regularly varying on D is
∫ t

−∞
(
e−λ(t−s)1R+(t − s)+

1(0,1)(t − s)
)
dLs .

The condition f ∈ L
α(π × λ) has already been discussed in Moser and Stelzer

(2011). It is close to necessary in general and necessary in the one-dimensional case.
The boundedness of the kernel function allows us to use results on the regu-

lar variation on D of the underlying Lévy process in the proof. Since f has to be
càdlàg, some local boundedness (in time) is already demanded and in applications no
unbounded kernel functions are used to the best of our knowledge.

Note that an essential part of the proof of the theorem is going to be to show that
under the above assumption it is essentially only

X(2) =
∫

‖x‖≥1

∫

M−
d

∫

R

f (A, t − s) x N(dx, dA, ds)

that matters regarding the extremal behaviour. Condition (4.5) ensures that this inte-
gral is ω-wise well defined. In the proof this is extremely important, because only
the ω-wise existence allows us to bound the probabilities occurring in Theorem 4.3
in the way we do. Intuitively condition (4.5) says that f is integrable with respect to
the big jumps of the Lévy bases. Actually, this is a severe restriction, since to have X

well-defined only square integrability is needed.

Example 4.8 Let L be a stable Lévy process with index α ∈ (1, 2). Then the process

Xt =
∫

R

ei(t−s) − 1

i(t − s)
dLs

is well-defined and its finite dimensional distributions are regularly varying with
index α (follows similarly to Fuchs and Stelzer 2011, Proposition 3.9). However,
condition (4.5) is not satisfied (follows from Fuchs and Stelzer 2011, Proposition 3.9
(i)). In this case condition (4.7) is satisfied due to Lemmata 4.11, 4.13 and Remark
4.12. Moreover, the conditions of Basse and Pedersen (2009, Proposition 5.5) are
easily verified which allows us to take X càdlàg.

So the only problem prohibiting us to show that X is regularly varying on D is
condition (4.5). Since it is essential for our proof to have the ω-wise existence of
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the integral over the big jumps and we cannot think of an alternative approach at the
moment, we do not know whether or not X is regularly varying on D.

Note that this example is related to the spectral representation of a Lévy pro-
cess relevant in continuous time time series models (see Fuchs and Stelzer 2011)
but similar conclusions can always be drawn when the kernel function f has norm
proportional to |t |γ for all t outside a compact set with γ ∈ (1, 2).

We can also give sufficient conditions for a general function f : M−
d ×R → Mn,d

to satisfy condition (4.5).

Lemma 4.9 Let f : M−
d × R → Mn,d be a measurable function. Then condition

(4.5) holds if one of the following two conditions are satisfied:

(i) f ∈ L
1(π × λ) and α > 1.

(ii) f ∈ L
α−ε(π × λ) for one ε ∈ (0, α) and α ≤ 1.

Proof For (i) we calculate

∫

M−
d

∫

R

∫

‖x‖>1

(1 ∧ ‖f (A, s)x‖) ν(dx) ds π(dA)

≤
∫

M−
d

∫

R

‖f (A, s)‖ ds π(dA)

∫

‖x‖>1

‖x‖ ν(dx) < ∞

by Sato (2002), Corollary 25.8, and similarly for (ii) we obtain

∫

M−
d

∫

R

∫

‖x‖>1

(1 ∧ ‖f (A, s)x‖) ν(dx) ds π(dA)

≤
∫

M−
d

∫

R

∫

‖x‖>1

(1 ∧ ‖f (A, s)x‖α−ε) ν(dx) ds π(dA)

≤
∫

M−
d

∫

R

‖f (A, s)‖α−ε ds π(dA)

∫

‖x‖>1

‖x‖α−ε ν(dx) < ∞.

Remark 4.10

(i) The conditions of Lemma 4.9 are only sufficient, not necessary, similar to the
ones of Theorem 2.3. Thus in general we will only demand the weaker condition
(4.5) which is also one of the existence conditions for MMA processes with
driving Lévy process of finite variation in Proposition 2.6.
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(ii) Note that this theorem can be also used to verify the condition of Theorem 4.5
that Eq. 4.5 needs to hold for fδ with δ > 0 small enough.

The condition
∫
M−

d

∫
R

fδ(A, s)α dsπ(dA) → 0 is closely linked to the behaviour

of the function fδ over small intervals. It restricts the amplitude of jumps and
continuous oscillations for arbitrarily small values of δ.

We first show that provided we have fδ ∈ Lα for some δ > 0 only pointwise
convergence needs to be shown.

Lemma 4.11 Let π be a probability measure and f : M−
d × R → Mn,d be a mea-

surable kernel function. Assume that the function fδ(A, s) given by Eq. 4.6 satisfies
fδ ∈ L

α for some δ > 0. Then Eq. 4.7 holds if and only if limδ→0 fδ(A, s) → 0 for
π × λ almost every (A, s).

Proof Let fδ(A, s)→0 for π×λ almost every (A, s). Then
∫

M−
d

∫

R

fδ(A, s)α dsπ(dA)

→ 0 follows by dominated convergence and the assumption fδ ∈ L
α for some δ > 0.

On the other hand, suppose that the set B̃ := {
(A, s) ∈ Bb(M

−
d × R) :

fδ(A, s) → 0 as δ → 0
}

satisfies π × λ (B̃c) = C > 0. Then the mono-
tonicity of fδ in δ implies limδ→0 fδ(A, s) > 0 for every (A, s) ∈ B̃c and thus
lim
δ→0

∫

M−
d

∫

R

fδ(A, s)α dsπ(dA) > 0.

Remark 4.12 From the definition of fδ we see that the condition
limδ→0 fδ(A, s) → 0 for π × λ almost every (A, s) is equivalent to the kernel
function f (A, s) being continuous in s for all s ∈ R\{0}. Now we also see the
importance of the restriction 1(t1,t2]c (s) in the definition of fδ because it allows for
f (A, s) being discontinuous at s = 0. Without such a restriction, condition (4.7)
would be violated by many examples of the class of causal MMA processes which
have a kernel function of the type f (A, s)1[0,∞)(s). Causal MMA processes with
f (A, 0) �= 0 include CARMA and supOU processes as well as other well-known
examples of MMA processes.

Thus we know that as soon as we have the integrability condition ensured for fδ

then the kernel function f needs to be continuous.

Lemma 4.13 Assume f : M−
d ×R → Mn,d is a bounded measurable kernel function

and that there exists a function g : M−
d ×R → R

+ which is monotonically decreasing
on [T , ∞) and monotonically increasing on (−∞, −T ] for some T > 0. If g ∈
Lα(π × λ) and ‖f (A, s)‖ ≤ g(A, s) for all A ∈ M−

d and s ∈ (−∞, −T ] ∪ [T , ∞),
then fδ ∈ Lα(π × λ) for all 0 < δ ≤ 1.

This result can also be used in connection with Lemma 4.9 to verify that Eq. 4.5
holds for fδ with δ > 0 small enough.
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Proof From the definition it is easy to see that we have

‖f1(A, s)‖ ≤

⎧
⎪⎨

⎪⎩

2g(A, −s − 1) for all s ∈ (−∞, −T − 1], A ∈ M−
d

sups∈R ‖fδ(A, s)‖ for all s ∈ (−T − 1, T + 1], A ∈ M−
d

2g(A, −s + 1) for all s ∈ [T + 1, ∞)), A ∈ M−
d

and this concludes as f is bounded and g ∈ Lα(π × λ). Moreover, note that f1 ∈
Lα(π × λ) implies fδ ∈ Lα(π × λ).

From Lemmata 4.11, 4.13 and Remark 4.12 we see that if Eq. 4.7 is violated for
a kernel function f in Lα(π × λ), then f must either be discontinuous at some time
different from zero or of a rather irregular behaviour such that it is in Lα(π × λ) but
we cannot find an ultimately monotone bound in Lα(π ×λ). Thus it seems very hard
to construct a continuous function f for which we know that it satisfies all conditions
of Theorem 4.5 except Eq. 4.7, because the available sufficient conditions for càdlàg
paths available seem to be much too demanding.

However, it s not hard to construct examples with discontinuities.

Example 4.14 For any regularly varying Lévy process L with index α consider

Xt =
∫

R

(
e−(t−s)1R+(t − s) + e−(t−1−s)1R+(t − 1 − s)

)
dLs.

We know from Remark 3.2 that X has càdlàg paths and all other conditions of
Theorem 4.5 except Eq. 4.7 are straightforwardly established. Since the conditions
of Lemma 4.13 are satisfied we can conclude from Remark 4.12 and Lemma 4.11
that Eq. 4.7 is violated due to the discontinuity of the kernel function at one. Intu-
itively, X is the sum of two OU processes which are regularly varying on D and thus
should also be regulary varying on D. Actually, one can establish this by looking at
the details of the proof of Theorem 4.5.

Remark 4.15 By excluding also the other times of discontinuity in Eq. 4.6 and deal-
ing with them as with the discontinuity at time zero in the proof of Theorem 4.5, one
can extend all the previous results to kernel functions f which have discontinuities
at finitely many points in time.

Since this does not really add additional insight and seems not to be relevant in
applications, but becomes notationally very cumbersome, we have decided not to
state the theorem and the proof for this setting.

As soon as we try to extend Example 4.14 to countably many discontinuities
we run into severe problems. For example, it is easy to show that f (A, s) =∑∞

k=1
1
k
e−k(s−k)1[k,∞)(s) is in L1(π × λ), but fδ �∈ L1(π × λ) for any δ > 0. Yet,

the problem is that we do not know whether we can take X to have càdlàg sample
paths in the first place, since we have no sharp enough conditions for this.

4.1 Proof of Theorem 4.5

In this subsection we now gradually prove Theorem 4.5.
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Let (Xt ) be an MMA process as given in Theorem 4.5, i.e. (Xt ) exists for t ∈ [0, 1]
(in the sense of Theorem 2.2), the kernel function f is bounded by C ∈ R

+ and
the regular variation conditions of Theorem 2.4 hold. Then there exists a positive
sequence an ↗ ∞ and a collection {μt1,...,tk : ti ∈ T , k ∈ N} of Radon measures on

B(R
dk\{0}) with μt1,...,tk (R

dk\Rdk) = 0 and μt is nonzero for some t ∈ T such that

nP (a−1
n (Xt1 , . . . , Xtk ) ∈ ·) v−→ μt1,...,tk (·) on B(R

dk\{0}).
Applying Theorem 4.3, it is left to show that the conditions (4.2), (4.3) and (4.4) hold.

Using the Lévy-Itô decomposition we have two independent Lévy bases �(1) and
�(2) such that �(1) has generating quadruple (γ, �, ν1, π) and �(2) has generating
quadruple (0, 0, ν2, π), where ν1 = ν|B1(0) and ν2 = ν|B1(0)c . This yields

Xt = X
(1)
t + X

(2)
t , (4.9)

where

X
(1)
t =

∫

M−
d

∫

R

f (A, t − s)�(1)(dA, ds) (4.10)

and

X
(2)
t =

∫

M−
d

∫

R

f (A, t − s)�(2)(dA, ds). (4.11)

Note that X
(2)
t can be written in the form

X
(2)
t =

∫

‖x‖≥1

∫

M−
d

∫

R

f (A, t − s) x N(dx, dA, ds),

where N is a Poisson random measure with mean measure ν × π × λ. Before we
proceed, we need to ensure the existence of X

(1)
t and X

(2)
t . Therefore, we give con-

ditions for ω-wise existence of X
(2)
t as a Lebesgue integral. Then the existence of

X
(1)
t = Xt − X

(2)
t follows from the existence of Xt and X

(2)
t .

Proposition 4.16 Let X
(2)
t be the process given by Eq. 4.11, where �(2)

is a Lévy basis with generating quadruple (0, 0, ν2, π). If
∫
M−

d

∫
R

∫
Rd (1 ∧

‖f (A, s)x‖) ν2(dx) ds π(dA) < ∞, then X
(2)
t exists as a Lebesgue integral for all

ω ∈ �.

Proof By definition, X
(2)
t has no Gaussian component and

∫
‖x‖≤1 ‖x‖ν2(dx) = 0

and thus we have an underlying Lévy process of finite variation. Now the result
follows as a special case of Proposition 2.6, where the condition f ∈ L

1 is obsolete
due to the absence of a drift.

Like for Xt , we also assumed that X
(2)
t has càdlàg sample paths. Then also X

(1)
t =

Xt − X
(2)
t has càdlàg sample paths. Appropriate conditions for MMA processes to

have càdlàg sample paths have been given in Section 3.
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Now we continue the proof of Theorem 4.5 by verifying the relative compactness
conditions (4.2), (4.3) and (4.4). The essential point is to relate the conditions back
to the analogous conditions on the underlying Lévy process.

For the first condition (4.2) we obtain

sup
t1,t2∈[0,δ)

‖Xt1 − Xt2‖ ≤ sup
t1,t2∈[0,δ)

‖X(1)
t1

− X
(1)
t2

‖ + sup
t1,t2∈[0,δ)

‖X(2)
t1

− X
(2)
t2

‖

and hence

nP
(
a−1
n sup

t1,t2∈[0,δ)

‖Xt1 − Xt2‖ ≥ ε
)

≤ nP
(
a−1
n sup

t1,t2∈[0,δ)

‖X(1)
t1

− X
(1)
t2

‖ ≥ ε/2
)

+ nP
(
a−1
n sup

t1,t2∈[0,δ)

‖X(2)
t1

− X
(2)
t2

‖ ≥ ε/2
)
.

The analogue result for the second condition (4.3) can be obtained likewise. For the
third condition (4.4) we estimate

sup
t1≤t≤t2; t2−t1≤δ

min
{
‖Xt2 − Xt‖, ‖Xt − Xt1‖

}

≤ sup
t1≤t2; t2−t1≤δ

‖X(1)
t1

− X
(1)
t2

‖

+ sup
t1≤t≤t2; t2−t1≤δ

min
{
‖X(2)

t2
− X

(2)
t ‖, ‖X(2)

t − X
(2)
t1

‖
}
,

and

nP
(
a−1
n sup

t1≤t≤t2; t2−t1≤δ

min
{
‖Xt2 − Xt‖, ‖Xt − Xt1‖

}
≥ ε

)

≤ nP
(
a−1
n sup

t1≤t2; t2−t1≤δ

‖X(1)
t1

− X
(1)
t2

‖ ≥ ε/2
)

+ nP
(
a−1
n sup

t1≤t≤t2; t2−t1≤δ

min
{
‖X(2)

t2
− X

(2)
t ‖, ‖X(2)

t − X
(2)
t1

‖
}

≥ ε/2
)
.

For every ε, η > 0 we have to show that there exists n0 ∈ N and δ > 0 such that for
n ≥ n0 these quantities can be bounded by η. Regarding the quantities based on X

(1)
t

we observe

nP
(
a−1
n sup

t1,t2∈[0,δ)

‖X(1)
t1

− X
(1)
t2

‖ ≥ ε/2
)

≤ nP
(
a−1
n sup

t1≤t2; t2−t1≤δ

‖X(1)
t1

− X
(1)
t2

‖ ≥ ε/2
)

and for Eq. 4.3

nP
(
a−1
n sup

t1,t2∈[1−δ,1)

‖X(1)
t1

− X
(1)
t2

‖ ≥ ε/2
)

≤ nP
(
a−1
n sup

t1≤t2; t2−t1≤δ

‖X(1)
t1

− X
(1)
t2

‖ ≥ ε/2
)
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and thus it is sufficient to prove the bound only for the right hand side of the
inequality.

Proposition 4.17 Let �(1) be the Rd -valued Lévy basis on M−
d ×R determined by the

generating quadruple (γ, �, ν1, π), where ν1 = ν|B1(0). Assume that the kernel func-

tion f is bounded, that the MMA process X
(1)
t given by Eq. 4.10 exists for t ∈ [0, 1]

and that X
(1)
t has càdlàg sample paths. Moreover, suppose that ν ∈ RV (α, (an), μν).

Then X
(1)
t satisfies

lim
n→∞ nP

(
a−1
n sup

t1≤t2; t2−t1≤δ

‖X(1)
t1

− X
(1)
t2

‖ ≥ ε
)

= 0

for all δ ∈ (0, 1) and ε > 0.

Proof We start by observing that X
(1)
t is càdlàg and thus also separable and hence

we can estimate sup
t1≤t2; t2−t1≤δ

‖X(1)
t1

−X
(1)
t2

‖ ≤ 2 sup
t∈[0,1]

‖X(1)
t ‖ = 2 sup

t∈[0,1]∩Q
‖X(1)

t ‖.
Due to the equivalence of norms, we can now choose the matrix norm ‖A‖ :=
max{|aij | : 1 ≤ i ≤ n and 1 ≤ j ≤ d} for A ∈ Mn,d and denote by X

(1)
t,i ∈ R,

1 ≤ i ≤ n, the i-th component of X
(1)
t , i.e. X

(1)
t =

(
X

(1)
t,1 , X

(1)
t,2 , . . . , X

(1)
t,n

)T

. Fur-

thermore, define the (countable) set T̃ := {(t, i) : t ∈ [0, 1] ∩ Q and i ∈ {1, . . . , n}} .

Then we obtain supt∈[0,1]∩Q ‖X(1)
t ‖ = supt∈[0,1]∩Q max1≤i≤n ‖X(1)

t,i ‖ =
sups∈T̃ ‖X(1)

s ‖, where sups∈T̃ is a subadditive functional on R
T̃ . Furthermore, by

Theorem 2.2 the processes X
(1)
t,i are infinitely divisible with specified characteristic

triplet (γt,i , �t,i , νt,i ) and Lévy measure

νt,i(B) =
∫

M−
d

∫

R

∫

Rd

1B(fi(A, t − s)x)ν1(dx)dsπ(dA)

for all B ∈ B(R), where fi denotes the i-th row of f , i.e.

f (A, t − s) =
⎛

⎜
⎝

f1(A, t − s)
...

fd(A, t − s)

⎞

⎟
⎠ .

It follows that X(1) = {X(1)
s : x ∈ T̃ } is infinitely divisible with characteristic

triplet (γ̃ , �̃, ν̃), where γ̃ , �̃ and ν̃ are given as projective limits of the correspond-
ing finite dimensional characteristics described by (γt,i , �t,i , νt,i ) (cf. Maruyama
1970). Moreover, the boundedness ‖f ‖ ≤ C implies ‖fi‖ ≤ C and this, together
with the definition of ν1 = ν|B1(0), yields that the support of the Lévy mea-
sures νt,i and ν̃ can be bounded by C. Now we are able to apply Lemma 2.1 of
Braverman and Samorodnitsky (1995) to obtain E

(
exp

(
ε sups∈T̃ ‖X(1)

s ‖)) <

∞ for all ε > 0. Finally, the finite exponential moments in combination with
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Lemma 1.32 of Lindskog (2004) yield

lim
n→∞ nP

(
a−1
n sup

t1≤t2; t2−t1≤δ

‖X(1)
t1

− X
(1)
t2

‖ ≥ ε
)

≤ lim
n→∞ nP

(
a−1
n sup

s∈T̃

‖X(1)
s ‖ ≥ ε/2

)
= 0

for all ε > 0.

Next we check the process X
(2)
t with respect to the relative compactness condi-

tions (4.2), (4.3) and (4.4).

Proposition 4.18 Let � be an R
d -valued Lévy basis on M−

d × R with generating
quadruple (γ, �, ν, π) and let ν ∈ RV (α, (an), μν). Assume that the kernel function
f is bounded, the MMA process X

(2)
t = ∫

M−
d

∫
R

f (A, t−s)�(2)(dA, ds) satisfies the

existence conditions of Proposition 4.1 and that the regular variation conditions of
Theorem 2.4 hold. If the function fδ given by Eq. 4.6 satisfies the existence condition
of Proposition 4.16 and, as δ → 0,

∫
M−

d

∫
R

fδ(A, s)α dsπ(dA) → 0, then X
(2)
t given

by Eq. 4.11 satisfies the relative compactness conditions (4.2), (4.3) and (4.4).

Proof We define the difference function gt1,t2(A, s) := f (A, t1 − s) − f (A, t2 − s)

and mention that for every t1, t2 ∈ [0, 1] the random vector

X
(2)
t1

− X
(2)
t2

=
∫

‖x‖≥1

∫

M−
d

∫

R

gt1,t2(A, s) x N(dx, dA, ds)

is again an integral similar to an MMA and by Theorem 2.3 and Theorem 2.4 it exists
and is regularly varying with index α.

Condition (4.2) We verify the condition by showing that, as δ → 0, lim
n→∞

nP (a−1
n sup

t1,t2∈[0,δ)

‖X(2)
t1

− X
(2)
t2

‖ ≥ ε) → 0 for every ε > 0. We use the

decomposition

X
(2)
t1

− X
(2)
t2

=
∫

‖x‖≥1

∫

M−
d

∫

(t1,t2]
gt1,t2(A, s) x N(dx, dA, ds)

+
∫

‖x‖≥1

∫

M−
d

∫

(t1,t2]c
gt1,t2(A, s) x N(dx, dA, ds)

=: Z
(1)
t1,t2

+ Z
(2)
t1,t2

(4.12)
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which yields

nP
(
a−1
n sup

t1,t2∈[0,δ)

‖X(2)
t1

− X
(2)
t2

‖ ≥ ε
)

≤ nP
(
a−1
n sup

t1,t2∈[0,δ)

‖Z(1)
t1,t2

‖ ≥ ε/2
)

+ nP
(
a−1
n sup

t1,t2∈[0,δ)

‖Z(2)
t1,t2

‖ ≥ ε/2
)
.

(4.13)
With ν2 = ν|B1(0)c and using the transformation T : Rd → R given by T (x) = ‖x‖
together with the boundedness f (A, s) ≤ C for all (A, s) ∈ M−

d × R we can now
calculate

‖Z(1)
t1,t2

‖ ≤
∫

‖x‖≥1

∫

M−
d

∫

(t1,t2]
‖gt1,t2(A, s)‖ ‖x‖N(dx, dA, ds)

≤ 2 C �(2,T )(M−
d × (t1, t2]) = 2 C

(
L

(2,T )
t2

− L
(2,T )
t1

)
, (4.14)

where �(2,T ) is a Lévy basis with generating quadruple (0, 0, ν2
T , π) and the trans-

formed Lévy measure ν2
T is given by ν2

T (·) = ν2(T
−1(·)). By (L

(2,T )
t ) we denote

the underlying Lévy process given by L
(2,T )
t = �(2,T )(M−

d × (0, t]) for t > 0.
Using a continuous mapping argument similar to Hult and Lindskog (2005, Theo-
rem 6), we see that ν ∈ RV (α, (an), μν) implies ν2

T ∈ RV (α, (an), μνT ) with μνT

defined respectively. Thus by Proposition 3.1 in Hult and Lindskog (2006a) L
(2,T )
1 ∈

RV (α, (an), μνT ) and then by Example 4.2 also (L
(2,T )
t ) ∈ RV

D0
(α, (an), μ̃) for

some measure μ̃. Now another application of Theorem 4.3 yields that condition (4.2)
holds for the process (L

(2,T )
t ) and hence, as δ → 0,

lim
n→∞ nP

(
a−1
n sup

t1,t2∈[0,δ)

‖Z(1)
t1,t2

‖ ≥ ε/2
)

≤ lim
n→∞ nP

(
a−1
n sup

t1,t2∈[0,δ)

(L
(2,T )
t2

− L
(2,T )
t1

) ≥ ε/(4C)
)

→ 0.

Similarly, the supremum of the second term Z
(2)
t1,t2

can be bounded by

sup
t1,t2∈[0,δ)

‖Z(2)
t1,t2

‖ ≤
∫

‖x‖≥1

∫

M−
d

∫

R

sup
t1,t2∈[0,δ)

‖gt1,t2(A, s)‖1(t1,t2]c (s) ‖x‖N(dx, dA, ds)

≤
∫

‖x‖≥1

∫

M−
d

∫

R

fδ(A, s) ‖x‖N(dx, dA, ds)

=
∫

M−
d

∫

R

fδ(A, s)�(2,T )(dA, ds) =: Y.
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Then assumption (4.7) implies fδ ∈ L
α for some δ > 0 sufficiently small and another

application of Theorem 2.4 yields Y ∈ RV (α, (an), μY ) with

μY (B) :=
∫

M−
d

∫

R

∫

Rd

1B (fδ(A, s)‖x‖) μν(dx)dsπ(dA).

Finally, as n → ∞, we obtain

nP
(
a−1
n sup

t1,t2∈[0,δ)

‖Z(2)
t1,t2

‖ ≥ ε/2
)

≤ nP (a−1
n Y ≥ ε/2)

n→∞→
∫

M−
d

∫

R

μν(x : fδ(A, s)‖x‖ ≥ ε/2) ds π(dA)

= μν(x : ‖x‖ ≥ ε/2)

∫

M−
d

∫

R

fδ(A, s)α ds π(dA)
δ→0→ 0

and since μν is a Radon measure the result follows by the assumption.

Condition (4.3) The condition follows likewise to condition (4.2) (note also that the
MMA process (Xt ) is stationary).

Condition (4.4) For the third condition we use Eq. 4.12 again and obtain

sup
t1≤t≤t2; t2−t1≤δ

min
{‖X(2)

t − X
(2)
t2

‖, ‖X(2)
t1

− X
(2)
t ‖} ≤

≤ sup
t1≤t≤t2; t2−t1≤δ

min
{‖Z(1)

t,t2
‖, ‖Z(1)

t1,t
‖} + sup

t1≤t2; t2−t1≤δ

‖Z(2)
t1,t2

‖

and

nP
(
a−1
n sup

t1≤t≤t2; t2−t1≤δ

min
{‖X(2)

t − X
(2)
t2

‖, ‖X(2)
t1

− X
(2)
t ‖} ≥ ε

)
≤

≤ nP
(
a−1
n sup

t1≤t≤t2;t2−t1≤δ

min
{‖Z(1)

t,t2
‖, ‖Z(1)

t1,t
‖} ≥ ε

2

)

+ nP
(
a−1
n sup

t1≤t2;t2−t1≤δ

‖Z(2)
t1,t2

‖ ≥ ε

4

)
.

Applying Eq. 4.14 this implies, as δ → 0,

lim
n→∞ nP

(
a−1
n sup

t1≤t≤t2; t2−t1≤δ

min
{‖Z(1)

t,t2
‖, ‖Z(1)

t1,t
‖} ≥ ε/2

)

≤ lim
n→∞ nP

(
a−1
n sup

t1≤t≤t2; t2−t1≤δ

min
{‖L(2,T )

t2
− L

(2,T )
t ‖,

‖L(2,T )
t − L

(2,T )
t1

‖} ≥ ε/(4 C)
)

→ 0,
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since this is exactly condition (4.4) for the Lévy process L
(2,T )
t which is regularly

varying in D and thus by Theorem 4.3 satisfies Eq. 4.4. Furthermore,

sup
t1≤t2; t2−t1≤δ

‖Z(2)
t1,t2

‖ ≤
∫

M−
d

∫

R

fδ(A, s)�(2,T )(dA, ds) = Y

and consequently, as δ → 0, limn→∞ nP
(
a−1
n supt1≤t2; t2−t1≤δ ‖Z(2)

t1,t2
‖ ≥ ε/4

)
≤

nP
(
a−1
n Y ≥ ε/4

)
→ 0 as shown for condition (4.2).

Finally, the results on which càdlàg functions μ is concentrated and Eq. 4.8 follow
from Theorem 2.4 and the fact that its “finite dimensional distributions” uniquely
determine a measure on D0, since μ as defined in Eq. 4.8 gives the finite dimensional
μt1,...,tk of Theorem 2.4. This concludes the proof of Theorem 4.5.

5 Application to supOU processes

Superpositions of Ornstein-Uhlenbeck processes (supOU processes) have useful
properties and a wide range of applications. A supOU process (Xt ) can be defined as
an MMA process with kernel function

f (A, s) = eAs1[0,∞)(s). (5.1)

We will shortly recall the main results of Barndorff-Nielsen and Stelzer (2011) and
Moser and Stelzer (2011). Sufficient conditions for the existence of supOU processes
are given in the following theorem which takes the special properties of supOU
processes into account.

Theorem 5.1 (Barndorff-Nielsen and Stelzer 2011, Theorem 3.1) Let Xt be an R
d -

valued supOU process as defined by Eq. 5.1. If
∫
‖x‖>1 ln(‖x‖)ν(dx) < ∞ and there

exist measurable functions ρ : M−
d → R

+\{0} and κ : M−
d → [1, ∞) such that

∥
∥
∥eAs

∥
∥
∥ ≤ κ(A)e−ρ(A)s ∀s ∈ R

+ π -almost surely and
∫

M−
d

κ(A)2

ρ(A)
π(dA) < ∞,

then the supOU process Xt = ∫
M−

d

∫ t

−∞ eA(t−s)�(dA, ds) is well defined for all

t ∈ R and stationary. Furthermore, the stationary distribution of Xt is infinitely
divisible with characteristic triplet (γX, �X, νX) given by Theorem 2.2.

Conditions for regular variation of Xt and of the finite-dimensional distributions
of (Xt ) are given by the following result.

Corollary 5.2 (Moser and Stelzer 2011, Cor. 4.3 and Cor. 4.6) Let � ∈ R
d

be a Lévy basis on M−
d × R with generating quadruple (γ, �, ν, π) and let
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ν ∈ RV (α, (an), μν). If the conditions of Theorem 5.1 hold and addition-
ally

∫
M−

d
(κ(A)α/ρ(A)) π(dA) < ∞, then X0 = ∫

M−
d

∫
R+ eAs�(dA, ds) ∈

RV (α, (an), μX) with Radon measure

μX(·) :=
∫

M−
d

∫

R+

∫

Rd

1(·)
(
eAsx

)
μν(dx)dsπ(dA).

Furthermore, the finite dimensional distributions (Xt1 , . . . , Xtk ), ti ∈ R and k ∈ N,
are also regularly varying with index α and given limiting measure μt1,...,tk .

In order to apply Theorem 4.5 to obtain conditions for regular variation of supOU
processes in D, we state some useful sufficient conditions for the function

fδ(A, s) = sup
t1≤t2; t2−t1≤δ

‖f (A, t2 − s) − f (A, t1 − s)‖ 1(t1,t2]c (s)

to be an element of Lα for α > 0.

Proposition 5.1 Let f (A, s) = eAs1[0,∞)(s) be the kernel function of a supOU
process satisfying the conditions of Theorem 5.1 and let fδ be given by Eq. 4.6. If f

is bounded on supp(π) × R
+ and for some α > 0

∫

M−
d

κ(A)α

ρ(A)
π(dA) < ∞,

then fδ ∈ L
α for every 0 ≤ δ ≤ 1.

It should be noted that we require f to be bounded, but not κ . However, in contrast
to Corollary 5.1 we demand (A, s) �→ eAs1R+(s) to be bounded at least for all
A that may possibly occur. The reason is that if π has mass on the non-unitarily
diagonalizable or even non-diagonalisable elements of M−

d this is not clear, although
eA0 = Id for all A ∈ M−

d .

Proof This follows from Lemma 4.13, since the assumptions imply that (s, A) →
κ(A)e−ρ(A)s is in Lα . Furthermore, f1 ∈ L

α implies fδ ∈ L
α for every

0 ≤ δ ≤ 1.

Now we can use Proposition 5.3 to obtain conditions for functional regular vari-
ation of supOU processes with sample paths in D. Therefore, we restrict the time
interval to t ∈ [0, 1] and assume the supOU process to have càdlàg sample paths, see
Section 3 and Barndorff-Nielsen and Stelzer (2011), Theorem 3.12, for details on the
sample path behavior of supOU processes.

Theorem 5.4 Let � and �2 be R
d -valued Lévy bases on M−

d × R with
generating quadruples (γ, �, ν, π) and (0, 0, ν|B1(0)c , π) respectively such that
ν ∈ RV (α, (an), μν). Assume that the supOU process (Xt ) given by Xt =∫
M−

d

∫ t

−∞ eA(t−s)�(dA, ds) exists for t ∈ [0, 1] (in the sense of Theorem 5.1) and
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that the processes Xt and X
(2)
t = ∫

M−
d

∫
R

f (A, t−s)�2(dA, ds) have càdlàg sample

paths. Furthermore, suppose that f (A, s) = eAs1R+(s) is bounded on supp(π)×R
+

and that
∫

M−
d

κ(A)α

ρ(A)
π(dA) < ∞.

If f (A, s) = eAs1[0,∞)(s) and the function fδ given by Eq. 4.6 satisfy condition
(4.5), then

(Xt )t∈[0,1] ∈ RV
D0

(α, (an), μ).

The measure μ is uniquely determined by the measures μt1,...,tk in Corollary 5.2,
concentrated on the càdlàg functions of the form [0; 1] → R

n, s �→ eA(s−t)x1[t,1](s)
where A ∈ supp(π), t ∈ (−∞, 1] and x ∈ supp(μν) and we have that

μ
{
eA(·−t)x1[t,1](s) : A ∈ A, t ∈ T , x ∈ X

}
= λ(T )π(A)μν(X ) (5.2)

for measurable sets A ⊆ M−
d , T ⊆ (−∞, 1] and X ⊆ R

d .

The condition that f (A, s) = eAs1R+(s) is bounded on supp(π) × R
+ is, of

course, satisfied if κ can be taken bounded.

Proof Combine Theorem 4.5, Lemmata 4.11, 4.13 and Remark 4.12.

Conditions for f and fδ to satisfy the existence condition (4.5), i.e.
∫

M−
d

∫

R

∫

‖x‖>1

(1 ∧ ‖f (A, s)x‖) ν(dx) ds π(dA) < ∞

can be obtained by combining Proposition 5.3 with Lemma 4.9 and Barndorff and
Stelzer (2011, Proposition 3.5).

Corollary 5.5 Let f (A, s) = eAs1[0,∞)(s) be the kernel function of a supOU pro-
cess satisfying the conditions of Theorem 5.1 and let fδ be given by Eq. 4.6. Then f

and fδ satisfy condition (4.5) if one of the following two conditions are satisfied:

(i) α > 1 as well as
∫

M−
d

κ(A)

ρ(A)
π(dA) < ∞.

(ii) α ≤ 1 and there exists ε ∈ (0, α) such that
∫

M−
d

κ(A)α−ε

ρ(A)
π(dA) < ∞.
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6 Point process convergence

In this section we discuss the use of the results of the previous two sections in com-
bination with point process results for stochastic processes with sample paths in D.
Therefore, let Mp(D0) denote the space of all point measures on D0 equipped with
the ŵ-topology and let εx be the Dirac measure at the point x. Furthermore, let
Xi , i ∈ N, be a sequence of iid copies of a regularly varying stochastic process
X ∈ RV

D0
(α, (an), μ) with values in D.

We start by stating the main result that links regular variation of X to weak
convergence of the point processes

Nn =
n∑

i=1

ε
a−1
n Xi

, n ∈ N.

The following theorem is the extension of the classical result of Proposition 3.21 in
Resnick (1987) to a state space which is not locally compact. Similar results have
also been proved by de Haan and Lin (2001), Theorem 2.4, in the case of real-valued
processes which are regularly varying with index 1 and by Davis and Mikosch (2008)
for D-valued random fields.

Theorem 6.1 Let (Xi)i∈N be an iid sequence of stochastic processes with values in

D. Then X1 ∈ RV
D0

(α, (an), μ) if and only if Nn
d−→ N in Mp(D0), where N is a

Poisson random measure with mean measure μ (short PRM(μ)).

Proof The proof can be obtained by changing from vague-topology to the
ŵ-topology in the proof of Proposition 3.21 in Resnick (1987). This change of topol-
ogy does not affect the proof which is based on the Laplace functionals of the point
processes involved (cf. Davis and Mikosch 2008, Proof of Lemma 2.2).

This result can now be combined with the results of Sections 4 and 5 to obtain
functional point process convergence for MMA and supOU processes. Point pro-
cesses of that kind include full information of the complete paths of the process
X. In combination with the continuous mapping theorem (cf. Daley and Vere-Jones
1988, Proposition A2.3.V) this is an extremely powerful tool to analyze the extremal
behavior of MMA and supOU processes. Using such methods, one gets a better
understanding of the structure of the extreme values and their properties, e.g. the
extremal clustering behavior or long memory effects.

In contrast to finite-dimensional point process results, functional point process
convergence does not only allow to analyze, for example, the behavior of maxima
at fixed time points, but also of functionals acting on the paths of the process in
compact time intervals. Examples of such functionals are the subadditive functionals
(e.g. suprema) studied by Rosiński and Samorodnitsky (1993) for a subexponential,
by Braverman and Samorodnitsky (1995) for an exponential, and by Braverman et al.
(2002) for a univariate regularly varying setting. Moreover, since point processes
of suprema do not incorporate the directions of the extremes, it is also possible to
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include the directions into the analyzed point processes. Regarding the above issues
introductions to the use of point processes in extreme value theory can be found in
Embrechts et al. (1997), Resnick (1987, 2007), Leadbetter et al. (1983) and de Haan
and Ferreira (2006) and for the exemplary use of functional point processes, see de
Haan and Lin (2001) and Davis and Mikosch (2008).

A thorough investigation of all these issues for mixed moving average processes
is beyond the scope of the present paper and the topic of future research.
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