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Abstract We consider Stochastic Volatility processes with heavy tails and possi-
ble long memory in volatility. We study the limiting conditional distribution of
future events given that some present or past event was extreme (i.e. above a level
which tends to infinity). Even though extremes of stochastic volatility processes are
asymptotically independent (in the sense of extreme value theory), these limiting
conditional distributions differ from the i.i.d. case. We introduce estimators of these
limiting conditional distributions and study their asymptotic properties. If volatility
has long memory, then the rate of convergence and the limiting distribution of the
centered estimators can depend on the long memory parameter (Hurst index).

Keywords Stochastic volatility · Heavy tails · Long memory · Regular variation
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1 Introduction

One of the empirical features of financial data is that log-returns are uncorrelated, but
their squares, or absolute values, are dependent, possibly with long memory. Another
important feature is that log-returns are heavy-tailed. There are two common classes
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of processes to model such behaviour: the generalized autoregressive conditional het-
eroscedastic (GARCH) process and the stochastic volatility (SV) process; the latter
introduced by Breidt et al. (1998) and Harvey (1998). The former class of models
rules out long memory in the squares, while the latter allows for it. We will therefore
concentrate in this paper on the class of SV processes, which we define now.

Throughout the paper, we will assume that the observed process {Y j , j ∈ Z} can
be expressed as

Y j = σ(X j )Z j = σ j Z j (1)

where σ is some (possibly unknown) positive function, {Z j , j ∈ Z} is an i.i.d.
sequence and {X j , j ∈ Z} is a stationary Gaussian process with mean zero, unit vari-
ance, autocovariance function {γn}, and independent from the i.i.d. sequence. The
sequence {σ(X j ), j ∈ Z} can be seen as a proxy for the volatility. We will assume
that either {X j , j ∈ Z} is weakly dependent in the sense that

∞∑

n=1

|γn| < ∞, (2)

or that it has long memory with Hurst index H ∈ (1/2, 1), i.e.

γn = cov(X0, Xn) = n2H−2�(n) (3)

where � is a slowly varying function.
It will also always be assumed that the marginal distribution FZ of the i.i.d.

sequence {Z j } has a regularly varying tail with index α > 0:

lim
x→∞

P(Z > x)

x−α L(x)
= β, lim

x→∞
P(Z < −x)

x−α L(x)
= (1 − β), (4)

where L(·) is slowly varying at infinity and β ∈ [0, 1]. Examples of heavy tailed
distributions include the stable distributions with index α ∈ (0, 2), the t distribution
with α degrees of freedom, and the Pareto distribution with index α.

By Breiman’s lemma (Breiman 1965; Resnick 2007), if

E[σα+ε(X)] < ∞ (5)

for some ε > 0, then the marginal distribution of {Y j } also has a regularly varying
right tail with index α and

lim
x→∞

P(Y > xy)

P(Z > x)
= E[σα(X)]y−α, (6)

where X , Y and Z denote random variables with the same joint distribution as X0, Y0
and Z0. This one-dimensional result can be extended to a multivariate setting. The
finite dimensional marginal distributions of the SV process are multivariate regularly
varying with spectral measure concentrated on the axes; see Proposition 1 for details.
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Estimation and test of the possible long memory of such processes has been stud-
ied by Hurvich et al. (2005). Estimation of the tail of the marginal distribution by the
Hill estimator has been studied in Kulik and Soulier (2011).

In this paper we are concerned with certain extremal properties of the finite dimen-
sional joint distributions of the process {Y j } when Z is heavy tailed and the Gaussian
process {X j } possibly has long memory.

From the extreme value point of view, there is a significant distinction between
GARCH and SV models. In the first one, exceedances over a large threshold are
asymptotically dependent and extremes do cluster. In the SV model, it follows from
the multivariate regular variation result (Proposition 1) that exceedances are asymp-
totically independent. More precisely, for any positive integer m, and positive real
numbers x, y,

lim
t→∞ tP(Y0 > a(t)x , Ym > a(t)y) = 0 , (7)

where a(t) = F←
Z (1 − 1/t) and F←

Z is the left continuous inverse of FZ .
The above observations may lead to the incorrect conclusion that, for the SV pro-

cess, there is no spillover from past extreme observations onto future values and
from the extremal behaviour point of view we can treat the SV process as an i.i.d.
sequence. However, under the assumptions stated previously, it holds that

lim
t→∞P(Ym ≤ y | Y0 > t) = E[σα(X0)FZ (y/σ(Xm))]

E[σα(X0)] . (8)

See Lemma 11 in Section 4 for a proof. Therefore, the limiting conditional distribu-
tion is influenced by the dependence structure of the time series. To illustrate this, we
show in Fig. 1 estimates of the standard distribution function and of the conditional

Fig. 1 Empirical conditional
distribution (points) and
empirical distribution (solid
line) for SV model (right panel)
and i.i.d. data (left panel)
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distribution for a simulated SV process. Clearly, the two estimated distributions are
different, as suggested by Eq. 8. For a comparison, we also plot the corresponding
estimates for i.i.d. data. Other kind of extremal events can be considered, for instance,
we may be interested in the conditional distribution of some future values given that a
linear combination (portfolio) of past values is extremely large, or that two consecu-
tive values are large. As in Eq. 8, in each of these cases, a proper limiting distribution
can be obtained. To give a general framework for these conditional distributions, we
introduce a modified version of the extremogram of Davis and Mikosch (2009). For
fixed positive integers h < m and h′ ≥ 0, Borel sets A ⊂ R

h and B ⊂ R
h′+1, we are

interested in the limit denoted by ρ(A, B, m), if it exists:

ρ(A, B, m) = lim
t→∞P((Ym, . . . , Ym+h′) ∈ B | (Y1, . . . , Yh) ∈ t A). (9)

The set A represents the type of events considered. For instance, if we choose A =
{(x, y, z) ∈ [0,∞)3 | x + y + z > 1}, then for large t , {(Y−2, Y−1, Y0) ∈ t A}
is the event that the sum of last three observations was extremely large. The set B
represents the type of future events of interest.

In the original definition of the extremogram of Davis and Mikosch (2009), the set
B is also dilated by t . This is well suited to the context of asymptotic dependence,
as arises in GARCH processes. But in the context of asymptotic independence, this
would yield a degenerate limit: if h < m, then for most sets A and B,

lim
t→∞P((Ym, . . . , Ym+h′) ∈ t B | (Y1, . . . , Yh) ∈ t A) = 0.

The general aim of this paper is to investigate the existence of these limiting con-
ditional distributions appearing in Eq. 9 and their statistical estimation. The paper is
the first step towards understanding conditional laws for stochastic volatility models.
Although we provide theoretical properties of estimators, their practical use should
be investigated in conjunction with resampling techniques. This is a topic of the
authors’ current research.

The paper is structured as follows. In Section 2, we present a general framework
that enables to treat various examples in a unified way. In Section 3 we present
the estimation procedure with appropriate limiting results. The proofs are given
in Section 4. In the Appendix we collect relevant results on second order regular
variation, (long memory) Gaussian processes, and criteria for tightness.

1.1 Notation

We conclude this introduction by gathering some notation that will be used through-
out the paper. We denote convergence in probability by →P , weak convergences
of sequences of random variables or vectors by →d and weak convergence in the
Skorokhod space D(Rq) of cadlag functions defined on R

q endowed with the J1
topology by ⇒.

Boldface letters denote vectors. Product of vectors and inequalities between vec-
tors are taken componentwise: u · v = (u1v1, . . . , udvd); x ≤ y if and only if xi ≤ yi
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for all i = 1, . . . , d . The (multivariate) interval (−∞, y] is defined accordingly:
(−∞, y] = ∏d

i=1(−∞, yi ].
For any univariate process {ξ j } and any integers h ≤ h′, let ξh,h′ denote the (h′ −

h + 1)-dimensional vector (ξh, . . . , ξh′).
If ξ h,h′ = (ξh, . . . , ξh′) is a random vector and σ : R → R is a deterministic

function, then σ (ξ h,h′) denotes a vector

σ (ξ h,h′) = (σ (ξh), . . . , σ (ξh′)).

For A ⊂ R
d and u ∈ (0,∞)d , u−1 · A = {x ∈ R

d | u · x ∈ A}.
If X is a random vector, we denote by L p(X) the set of measurable functions f

such that E[| f (X)|p] < ∞.
The σ -field generated by the process {X j } is denoted by X .

2 Regular variation on subcones

In this section, we will present our general framework. A crucial property of the
SV processes is that the finite dimensional marginal distributions are multivariate
regularly varying and are asymptotically independent (in the sense of extreme value
theory). For the sake of completeness, we state and prove this fact formally. Recall
that a measure ν on the Borel sets of [−∞,∞]h \{0} is said to be a Radon measure if
ν(A) < ∞ for each relatively compact set A, i.e. for each set A bounded away from
0. A sequence of Radon measures νn on R

h is said to converge vaguely to a Radon
measure ν, which will be denoted by νn →v ν if νn(A) → ν(A) for all relatively
compact set A of [−∞,∞]h \ {0}. Recall that a(t) = F←

Z (1 − 1/t).

Proposition 1 The f inite dimensional distributions of the process {Y j , j ∈ Z} are
multivariate regularly varying and for each f ixed integer h

lim
t→∞ tP((Y1, . . . , Yh) ∈ a(t)·) →v E[σα(X1)]ν(·) (10)

where the measure ν is characterized by

ν([x, y]c) = (1 − β)

h∑

i=1

(−xi )
−α + β

h∑

i=1

y−α
i ,

for x = (x1, . . . , xh) ∈ [−∞, 0)h and y = (y1, . . . , yk) ∈ (0,∞]h, and β is def ined
in Eq. 4.

The special form of the measure ν which is concentrated on the axes is due to the
asymptotic independence (in the sense of extreme value theory) of the bivariate dis-
tributions of the process {Y j , j ∈ Z}, regardless of the memory of the volatility
process {σ(X j ), j ∈ Z}. In fact, as will be clear from the proof in Section 4, a
particular structure for the volatility process is not needed.
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Let us now describe the conditional distributions we will consider. Since we con-
sider dilated sets t A = {t x : x ∈ A}, where A ⊂ R

h for some integer h > 0 and
t > 0, it is natural to consider cones, that is subsets C of [0,∞]h such that t x ∈ C for
all x ∈ C and t > 0. Hence, our discussion in this section is related to the concept
of regular variation on cones or hidden regular variation (see Das and Resnick 2011;
Mitra and Resnick 2011; Resnick 2008). We endow R

h with the topology induced by
any norm and [0,∞]h is the compactification of [0,∞)h . A subset A of [0,∞]h \{0}
is relatively compact if its closure is compact. See Resnick (2007, Chapter 6) for more
details.

We are interested in cones C such that there exists an integer βC and a Radon
measure νC on C such that, for all relatively compact subsets A of C with νC(∂ A) = 0,

lim
t→∞

P((Z1, . . . , Zh) ∈ t A)

(F̄Z (t))βC
= νC(A). (11)

Intuitively, the number βC corresponds to the number of components of a point of
a relatively compact subset A of the cone C that must be separated from zero. For
the simplicity and clarity of exposition, we will restrict our considerations to the
following type of cones. Let k ≥ 1 and P1, . . . , Pk be nonempty subsets of {1, . . . , h}
such that Pi �⊂ Pj for any pair i, j , though it is not assumed that Pu ∩ Pv = ∅ for
u, v ≥ 1. To avoid trivialities, we also assume that h ∈ ∪k

u=1 Pu . Let then C be the
cone defined by

C =
⎧
⎨

⎩z ∈ [0,∞]h |
k∏

u=1

⎛

⎝
∑

i∈Pu

zi

⎞

⎠ > 0

⎫
⎬

⎭ . (12)

In words, a vector z = (z1, . . . , zh) belongs to C if in each set Pu , 1 ≤ u ≤ k, we can
find at least one index i ∈ Pu such that zi > 0. This class of cones is of interest for
several reasons. First, it will allow to deal with practical examples. From a theoretical
point of view, it is noteworthy that this class is stable by intersection, and relative
compactness in such a cone C is easily characterized: a subset A is relatively compact
in C if and only if there exists η > 0 such that

∑
i∈Pu

zi > η for all u = 1, . . . , k.
Examples of such cones are C1 = {z1 > 0, z2 > 0, z3 + z4 > 0} in [0,∞]4 and
C2 = {z1 + z2 > 0, z2 + z3 > 0, z3 + z4 > 0, z4 + z5 > 0} in [0,∞]5; for a, b, c > 0,
{z1 > a, z2 > b, z3 > c} is relatively compact in C1 and {z2 > a, z4 > b} is
relatively compact in C2. More detailed examples will be given in Section 2.1.

Proposition 2 Assume that there exists ε > 0 such that

E[σ 2hα+ε(X0)] < ∞. (13)

Let C be one of the cones def ined in Eq. 12. Then there exists an integer βC and a
Radon measure νC on C such that Eq. 11 holds and for all relatively compact sets
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A ⊂ C with νC(∂ A) = 0, for m > h and h′ ≥ 0, and for any Borel measurable set
B ⊂ R

h′+1, we have

lim
t→∞

P(Y1,h ∈ t A, Ym,m+h′ ∈ B)

(F̄Z (t))βC
= E

[
νC(σ (X1,h)−1 · A)P(Ym,m+h′ ∈ B | X )

]
.

(14)

Furthermore, for r = 1, . . . , h, there exist functions Lr such that for all s, s′ ≥ 1,
u, v ∈ (0,∞)h,

lim
t→∞

P(u · Z1,h ∈ ts A, v · Zr,r+h−1 ∈ ts′ A)

(F̄Z (t))βC
= Lr (A, u, v, s, s′). (15)

Some comments are in order. Note first that we assume that h < m. Otherwise,
if m < h, then vectors Ym,m+h′ and Y1,h may be asymptotically dependent. For
example, if {Z j } is i.i.d with the tail distribution as in Eq. 4, then P(Z2 + Z3 > t |
Z1 + Z2 > t) → 1/2. We do not think that this is of particular interest, since one
is primary interested in estimating distribution of future vector Ym,m+h′ based on the
past observations Y1,h . Condition 13 is sufficient to deal with any of the cones C.
For a given cone C, it might be relaxed. However, it holds if σ(x) = ex , which is
a common choice in the econometric literature. It is easily seen that the coefficient
βC is the smallest integer � for which there exists i1, . . . , i� ∈ {1, . . . , h} such that
zi1 > 0, . . . , zi� > 0 implies

∏k
u=1(

∑
i∈Pu

zi ) > 0. The measure νC is cumbersome
to write precisely in general, but is easily obtained in each example. See Eq. 36 in
the proof of Proposition 2. The condition 13 obviously holds if σ(x) = ex or if σ is
a polynomial. For B = R

h′+1, Eq. 14 specializes to

lim
t→∞

P(σ (X1,h) · Z1,h ∈ t A)

(F̄Z (t))βC
= E[νC(σ (X1,h)−1 · A)].

If νC(A) > 0, then E[νC(σ (X1,h)−1 · A)] > 0 and Eq. 14 implies that the
extremogram defined in Eq. 9 can be expressed as

ρ(A, B, m) = E
[
νC(σ (X1,h)−1 A)P(Ym,m+h′ ∈ B | X )

]

E[νC(σ (X1,h)−1 · A)] . (16)

It may happen that Lr (A, ·) ≡ 0 for r = 2, . . . , h. Intuitively, this happens if u ·
Z1,h and v · Zr,r+h−1 belonging simultaneously to t A implies that at least βC + 1
coordinates of Z1,r+h−1 are large. This is the case for instance in Examples 1, 2 and
4. Otherwise, Lr may have quite a complicated form, as in Example 3.

Let us finally note an important fact. In practice, the conditioning set A is given,
not the cone C. So it is important to know if the choice of the cone has any effect on
the quantities that will appear in the inference theory. The following lemma shows
that fortunately this is not the case.
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Lemma 3 Let A be a subset of [0,∞]h \ {0}. If there exists two cones C and C′
such that Eq. 11 hold, A is relatively compact in both C and C′, νC(A) > 0 and
νC′(A) > 0, then βC = βC′ and for all u ∈ (0,∞]h, νC(u · A) = νC′(u · A).

However, introducing the cone C is not superfluous, since all the constants in the
limiting distributions will be expressed in terms of the measure νC and cannot be
expressed in terms of A only.

2.1 Examples

Example 1 Fix some positive integer h and consider the cone C = (0,∞]h . Then
βC = h and the measure νC is defined by

νC(dz1, . . . , dzh) = αh
h∏

i=1

z−α−1
i dzi .

Consider the set A defined by A = {(z1, . . . , zh) ∈ R
h+ | z1 > 1, . . . , zh > 1}. If

Eq. 13 holds, then for m > h, and B ∈ R
h′+1, Proposition 2 yields

lim
t→∞P(Ym,m+h′ ∈ B | Y1 > t, . . . , Yh > t)

=
E

[∏h
i=1 σα(Xi )P(Ym,m+h′ ∈ B | X )

]

E

[∏h
i=1 σα(Xi )

] .

In particular, setting B = (−∞, y] and h′ = 0, the limiting conditional distribution
of Ym given that Y1, . . . , Yh are simultaneously large is given by

h(y) = lim
t→∞P(Ym ≤ y | Y1 > t, . . . , Yh > t)

=
E

[∏h
i=1 σα(Xi )FZ (y/σ(Xm))

]

E

[∏h
i=1 σα(Xi )

] . (17)

Finally, note that the function Lr defined in Eq. 15 vanish for r = 2, . . . , h.

Example 2 Consider now C = (0,∞]. Another quantity of interest is the limiting
distribution of the sum of h′ consecutive values, given that past values are extreme.
To keep notation simple, consider h′ = 1 and, for m > 1,

∗(y) = lim
t→∞P(Ym + Ym+1 ≤ y | Y1 > t) = E[σα(X1)P(Ym + Ym+1 ≤ y | X )]

E[σα(X1)] .

Estimating this distribution yields for instance empirical quantiles of the sum of
future returns, given the present one is large.
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Example 3 Consider C = [0,∞]× [0,∞] \ {0}. Then βC = 1 and the measure νC is
defined by

νC(dz) = α{z−α−1
1 d1δ0(dz2) + δ0(dz1)z

−α−1
2 dz2},

where δ0 is the Dirac point mass at 0. Consider the set A defined by A = {(z1, z2) ∈
R

2+ | z1 + z2 > 1}. If E[σα+ε(X1)] < ∞ for some ε > 0, then Proposition 2 yields

lim
t→∞P(Ym,m+h′ ∈ B | Y1 + Y2 > t)

= E
[
P(Ym,m+h′ ∈ B | X )(σα(X1) + σα(X2))

]

E[σα(X1)] + E[σα(X2)] .

In particular, take B = (−∞, y] and h′ = 0. The limiting conditional distribution of
Ym given Y1 + Y2 is large is defined by

�(y) = lim
t→∞P(Ym ≤ y | Y1 + Y2 > t) = E[{σα(X1) + σα(X2)}FZ (y/σ(Xm)]

E[σα(X1) + σα(X2)] .

Finally, the function L2 equals

L2(A, u1, u2, v1, v2, s, s′) =
(

1 + s

u2
∨ 1 + s′

v1

)−α

.

Example 4 Consider the cone C = ([0,∞]2 \ {0}) × ([0,∞]2 \ {0}) × (0,∞]. Then
βC = 2 and

νC(dz) = α3{z−α−1
1 dz1δ0(dz2) + δ0(dz1)z

−α−1
2 dz2)}

× {z−α−1
3 dz3δ0(dz4) + δ0(dz3)z

−α−1
4 dz4}z−α−1

5 dz5.

Consider A = {(z1, z2, z3, z4, z5) ∈ R
5+|z1 + z2 > 1, z3 + z4 > 1, z5 > 0}. If

E[σ 3α+ε(X0)] < ∞ for some ε > 0, then we obtain, for m > 3,

lim
t→∞P(Ym,m+h′ ∈ B | Y1 + Y2 > t, Y3 + Y4 > t, Y5 > t)

= E
[
P(Ym,m+h′ ∈ B | X ){σα(X1) + σα(X2)}{σα(X3) + σα(X4)}σα(X5)

]

E[{σα(x1) + σα(X2)}{σα(X3) + σα(X4)}σα(X5)] .

Here the functions Lr vanish for r ≥ 2.

Example 5 In this example, we illustrate Lemma 3. Let h = 4 and A = {z1 > a,

z3 + z4 > b}. Then A is relatively compact in C1 = ([0,∞]2 \ {0})× ([0,∞]2 \ {0}),
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C2 = (0,∞] × ([0,∞]3 \ {0}) and C3 = [0,∞]4 \ {0}. Then it is easily seen that
βC1 = βC2 = 2 and βC2 = 1, and for all u ∈ [(0,∞]4, νC1(u

−1 · A) = νC2(u
−1 · A) =

uα
1 (uα

3 + uα
4 )a−αb−α and νC3(A) = 0.

3 Estimation

Let C be a cone defined in Eq. 12 and let A be a relatively compact subset of C such
that νC(A) > 0. To simplify the notation, assume that we observe Y1, . . . , Yn+m+h′ .
An estimator ρ̂n(A, B, m) is naturally defined by

ρ̂n(A, B, m) =
∑n

r=1 1{Yr,r+h−1∈Y(n:n−k) A}1{Yr+m,r+m+h′ ∈B}∑n
r=1 1{Yr,r+h−1∈Y(n:n−k) A}

,

where k is a user chosen threshold and Y(n:1) ≤ · · · ≤ Y(n:n) are the increas-
ing order statistics of the observations Y1, . . . , Yn . We will also consider the case
B = (−∞, y], i.e. the case of the limiting conditional distribution of Ym,m+h′ given
Y1,h ∈ t A, that means

A,m,h′(y) = lim
t→∞P(Ym,m+h′ ≤ y | Y1,h ∈ t A)

= ρ(A, (∞, y], m)

= E[νC(σ (X1,h)−1 · A)
∏h′

i=1 F(yi/σ(Xm+i ))]
E[νC(σ (X1,h)−1 · A)] . (18)

An estimator ̂n,A,m,h′ of A,m,h′ is defined on R
h′+1 by

̂n,A,m,h′(y) =
∑n

r=1 1{Yr,r+h−1∈Y(n:n−k) A}1{Yr+m,r+m+h′≤y}∑n
r=1 1{Yr,r+h−1∈Y(n:n−k) A}

. (19)

As usual, the bias of the estimators will be bounded by a second order type condition.
Let k be a non decreasing sequence of integers, let FY denote the distribution of Y
and let un = (1/F̄Y )←(n/k). Consider the measure defined on C by

μC(A) = E[νC(σ (X1,h)−1 · A)]
(E[σα(X)])βC . (20)

We introduce the following quantity which will be used as a bound for the bias of the
estimators and thus will also determine their rate of convergence.

vn(A) = E

[
sup
s≥1

∣∣∣∣
P(Y1,h ∈ uns A | X )

(k/n)βC
− s−αβCμC(A)

∣∣∣∣

]
. (21)

Lemma 4 If Eqs. 4 and 13 hold, then limn→∞ vn(A) = 0.
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We need also the following quantities, which are well defined when Eq. 13 holds.
For r = 2, . . . , h and measurable subsets B, B ′ of Rh′+1, define

Rr (A, B, B′)

= E
[
L(A, σ (X1,h), σ (Xk,k+h−1), 1, 1) × P(Ym,m+h′ ∈ B, Ym+k−1,m+h′+k−1 ∈ B′ | X )

]

μC(A)

+ E
[
L(A, σ (X1,h), σ (Xk,k+h−1), 1, 1) × P(Ym,m+h′ ∈ B′, Ym+k−1,m+h′+k−1 ∈ B | X )

]

μC(A)
.

(22)
For brevity, denote Rr (A, B) = Rr (A, B, B).

3.1 General result: weak dependence

We can now state our main result in the weak dependence setting, i.e. when abso-
lute summability (Eq. 2) of the autocovariance function of the process {X j } holds.
In order to simplify the proof, and without loss of meaningful generality we will
hereafter assume that the set A is itself a cone. This assumption is satisfied by all
reasonable examples.

Theorem 5 Let Eqs. 2, 4 and 13 hold. Assume moreover that A is a relatively
compact subcone of C such that μC(A) > 0, that k/n → 0, n(k/n)βC → ∞ and

lim
n→∞

√
n(k/n)βC vn(A) = 0. (23)

Then
√

n(k/n)βCμC(A){ρ̂n(A, B, m) − ρ(A, B, m)}

converges weakly to a centered Gaussian distribution with variance

ρ(A, B, m){1 − ρ(A, B, m)} +
h∧(m−h)∑

r=2

{
Rr (A, B) − 2ρ(A, B, m)Rr (A, B,Rh′+1)

+ ρ2(A, B, m)Rr (A,Rh′+1)
}
. (24)

If h = 1 or if the functions Lr defined in Eq. 15 are identically zero for r ≥ 2, then
the limiting covariance in Eq. 24 is simply ρ(A, B, m){1 − ρ(A, B, m)}. Otherwise,
the additional terms can be canceled by modifying the estimator of ρ̂n(A, B, m).
Assuming we have nh + m + h′ + 1 observations, we can define

ρ̃n(A, B, m) =
∑n

r=1 1{Y(r−1)h+1,rh∈Y(n:n−k) A}1{Y(r−1)h+m,(r−1)h+m+h′ ∈B}∑n
r=1 1{Y(r−1)h+1,rh∈Y(n:n−k) A}
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Noting that the events {Yr,r+h−1 ∈ A} are h-dependent conditionally on X , the
proof of Theorem 5 can be easily adapted to show that the limiting variance of√

n(k/n)βC {ρ̃n(A, B, m) − ρ(A, B, m)} is the same as in the case where Lr ≡ 0
for r = 2, . . . , h. But this is of course at the cost of an increase of the asymptotic
variance, due to a different sample size.

We can also obtain the functional convergence of the estimator ̂n,A,m,h′ of the
limiting conditional distribution function A,m,h′ , defined respectively in Eqs. 19
and 18.

Corollary 6 Under the Assumptions of Theorem 5, and if moreover the distribution
A,m,h′ is continuous, then

√
n(k/n)βCμC(A){̂n,A,m,h′ − A,m,h′ }

converges in D(Rh′+1) to a Gaussian process. If h = 1 or if the functions Lr are
identically zero for r = 2, . . . , h, then the limiting process can be expressed as
B ◦ A,m,h′ , where B is the standard Brownian bridge.

Note that a sufficient condition for A,m,h′ to be continuous is that FZ is continuous.

3.2 General result: long memory

We now state our results in the framework of long memory. This requires several
additional notions, such as multivariate Hermite expansion and Hermite ranks which
are recalled in Appendix B.

Define the functions Gn and G for (x, x′) ∈ R
h × R

h′+1 and s ≥ 1 by

Gn(A, B, s, x, x′) = P(σ (x) · Z1,h ∈ uns A)

(k/n)βC
P(σ (x′) · Zm,m+h′ ∈ B) (25)

G(A, B, x, x′) = lim
n→∞ Gn(A, B, 1, x, x′)

= νC(σ (x)−1 · A)

E[σα(X1)])βC P(σ (x′) · Zm,m+h′ ∈ B). (26)

Let τn(A, B, s) and τ(A, B) be the Hermite ranks with respect to (X1,h, Xm,m+h′)
of the functions Gn(A, B, s, ·, ·) and G(A, B, ·, ·), respectively. Define τ(A) =
τ(A,Rd).

Assumption 1 For large n, infs τn(A, B, s) = τ(A, B) and τ(A, B) ≤ τ(A).

This assumption is fulfilled for example when σ(x) = exp(x), in which case all the
considered Hermite ranks are equal to one, or if σ is an even function with Hermite
rank 2 (such as σ(x) = x2), in which case they are equal to two. The modification of
Theorem 5 reads as follows.
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Theorem 7 Assume that {X j } is the long memory Gaussian sequence with covari-
ance given by Eq. 3. Assume that A is a relatively compact subcone of C such that
νC(A) > 0. Let Assumption 1 and Eq. 13 hold, and k/n → 0, n(k/n)βC → ∞ and

lim
n→∞

{√
n(k/n)βC ∧ γ

−τ(A,B)/2
n

}
vn(A) = 0. (27)

(i) If n(k/n)βCγ
τ(A,B)
n → 0, then

√
n(k/n)βCμC(A){ρ̂n(A, B, m) − ρ(A, B, m)}

converges to a centered Gaussian distribution with variance given in Eq. 24.
(ii) If n(k/n)βCγ

τ(A,B)
n → ∞, then γ

−τ(A,B)/2
n {ρ̂n(A, B, m) − ρ(A, B, m)} con-

verges weakly to a distribution which is non-Gaussian except if τ(A, B) = 1.

The exact definition of the limiting distribution will be given in Section 4. It
suffices to mention here that this distribution depends on H and τ(A, B). The mean-
ing of the above result is the following. In the long memory setting, it is still possible
to obtain the same limit as in the weakly dependent case, if k (i.e., the number of
high order statistics used in the definition of the estimators) is not too large, so that
both the bias and the long memory effect are canceled.

Define a new Hermite rank τ ∗(A) = infy∈Rh′+1 τ(A, (∞, y]).

Corollary 8 Under the assumptions of Theorem 7, if the distribution function
A,m,h′ is continuous and if τ ∗(A) ≤ τ(A), then

• If n(k/n)βCγ
τ∗(A)
n → 0, then

√
n(k/n)βCμC(A){̂n,A,m,h′ − A,m,h′ }

converges in D((−∞,+∞)h′+1 to a Gaussian process. If h = 1 or if the func-
tions Lr are identically zero for r = 2, . . . , h, then the limiting process can be
expressed as B ◦ A,m,h′ , where B is the standard Brownian bridge.

• If n(k/n)βCγ
τ∗(A)
n → ∞, then γ

−τ∗(A)/2
n {̂n,A,m,h′ − A,m,h′ } converges in

D((−∞,+∞)h′+1 to a process which can be expressed as JA,m,h′ · ℵ where
JA,m,h′ is a deterministic function and ℵ is a random variable, which is non
Gaussian except if τ ∗(A) = 1.

The exact definition of the function JA,m,h′ and of the random variable ℵ will be
given in Section 4. Anyhow, they are not of much practical interest. In practice, the
main goal will be to choose the number k of order statistics used in the estimation
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procedure so that both the bias and the long memory effect are canceled, and the
limiting distribution of the weakly dependent case can be used in the inference.

3.3 Examples

We now discuss the Examples introduced in Section 2.1. In order to evaluate the bias
term (Eq. 21), it is necessary to introduce a second order regular variation condition.
We follow here Drees (1998). This assumption is referred to as second order regular
variation (SO).

Assumption 2 (SO) There exists a bounded non increasing function η∗ on [0,∞),
regularly varying at inf inity with index −αζ for some ζ ≥ 0, and such that
limt→∞ η∗(t) = 0 and there exists a measurable function η such that for z > 0,

P(Z > z) = cz−α exp

(∫ z

1

η(s)

s
ds

)
,

∃C > 0 , ∀s ≥ 0, |η(s)| ≤ Cη∗(s).

The most commonly used second order assumption is that η∗(s) = O(s−αζ ). Then

P(Z > z) = cz−α(1 + O(z−αζ )) as z → ∞, (28)

for some constant c > 0.
On account of Breiman’s lemma, if the tail of Z is regularly varying with index

−α, then the same holds for Y = σ(X)Z , as long as X and Z are independent, and
E[σα(X)] < ∞. Also, (SO) property is transferred from the tail of Z to Y ; see Kulik
and Soulier (2011, Proposition 2.1).

For the sake of simplicity and clarity of exposition, we will make in this section the
usual assumption that σ(x) = exp(x), so that the Hermite rank of σ is 1 and Assump-
tion 1 is fulfilled with the Hermite rank equal to one. This will avoid to define many
auxiliary functions and Hermite ranks. But the examples can of course be treated in
a more general framework. For the exponential function, Eq. 13 obviously holds for
any h. Also, we will only state the convergence results under the conditions which
imply that the limiting distribution is the same as in the weak dependence case, since
this is the case of practical interest. We only treat Examples 1 and 3 since they exhibit
two different limiting distributions. The computations for the other examples are
straightforward.

3.3.1 Example 1 continued
Fix integers h ≥ 1 and m > h. Recall the formula 17 for the conditional distribution
of Ym given that Y1, . . . , Yh are simultaneously large. Its estimator ̂n,h is defined by

̂n,h(y) =
∑n

r=1 1{Yr >Y(n:n−k),...,Yr+h−1>Y(n:n−k),Yr+m≤y}∑n
r=1 1{Yr >Y(n:n−k),...,Yr+h−1>Y(n:n−k)}

with a user chosen k.
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In this case, if Eq. 13 holds, then the functions Lr (A, ·) vanish for r = 2, . . . , h.
Assumption 2 and Kulik and Soulier (2011, Proposition 2.8) imply that a bound for
vn(A) is then given by

vn(A) = O(η∗(un)). (29)

Corollary 9 Assume that σ(x) = exp(x). Let Assumption 2 hold. Let k be such that
k/n → 0, n(k/n)h → ∞, and

lim
n→∞(n(k/n)h)1/2η∗(un) = 0. (30)

In the weakly dependent case (Eq. 2) or in the long memory case (Eq. 3) if moreover
n(k/n)hγn → 0, then

√
n(k/n)h(̂n,h − h) ⇒

(
E[σα(X1) · · · σα(Xh)]

Eh[σα(X1)]
)−1/2

B ◦ h (31)

weakly in D((−∞,∞)), where B is the standard Brownian bridge.

We note that the rate of convergence
√

n(k/n)h depends explicitly on the expo-
nent βC = h. Let us have a closer look at the bias condition 30. Assume that in
Assumption 2 we have η∗(s) = O(s−αζ ) so that F̄Z (z) = cz−α(1 + O(z−αζ )) and
η∗(un) = O((k/n)ζ ). Hence, Eq. 30 becomes

lim
n→∞ n(k/n)h+2ζ = 0.

Consequently, the largest allowed number of extremes k used in the construction of
the estimator ̂n,h is proportional to n(h−1+2ζ )/(h+2ζ )−ε with arbitrary small ε > 0
and the best possible rate of convergence in Eq. 31 is nζ/(2ζ+h)−ε .

3.3.2 Example 3 continued
Consider the estimation of

�(y) = lim
t→∞P(Ym ≤ y | Y1 + Y2 > t) = E[{σα(X1) + σα(X2)}FZ (y/σ(Xm))]

E[σα(X1) + σα(X2)] .

An estimator if defined by

�̂n(y) =
∑n

r=1 1{Yr+Yr+1>Y(n:n−k)}1{Yr+m≤y}∑n
r=1 1{Yr+Yr+1>Y(n:n−k)}

.

As argued before, if Eq. 13 holds, then the function L2 is equal to

L2(A, u1, u2, v1, v2, s, s′) =
(

1 + s

u2
∨ 1 + s′

v1

)−α

.
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Applying Lemma A.1, we obtain a bound for vn(A):

vn(A) = O

(
η∗(un) + u−1

n

∫ un

0
F̄Z (s) ds

)
. (32)

Corollary 10 Assume that σ(x) = exp(x). Let Assumption 2 and holds. Let k be
such that k → ∞, k/n → 0 and

lim
n→∞ k1/2

(
η∗(un) + u−1

n

∫ un

0
F̄Z (s) ds

)
= 0. (33)

In the weakly dependent case (Eq. 2) or in the long memory case (Eq. 3) if moreover
kγn → 0, then

k1/2(�̂n − �) ⇒
(
E[σα(X1) + σα(X2)]

E[σα(X1)]
)−1/2

W

weakly in D((−∞,∞)), where W is a Gaussian process with covariance

cov(W(y),W(y′))
= �(y ∧ y′) − 2�(y)�(y′)

+E[σα(X2){FZ (y/σ(Xm))FZ (y′/σ(Xm+1))+FZ (y/σ(Xm))FZ (y′/σ(Xm+1))}]
E[σα(X1) + σα(X2)] .

Consider as in the previous example that η∗(s) = O(s−αζ ) and α > 1 so that Eq. 32
becomes

vn(A) = O
(
(k/n)ζ + k/n

)
.

Thus, the vanishing bias condition 33 implies that the maximum allowed number of
extremes is n2ζ/(2ζ+1)−ε if ζ < 1 and n2/3−ε otherwise, for some arbitrarily small
ε > 0. If α < 1, then the rate of convergence depends on α, since Eq. 32 becomes

vn(A) = O
(
(k/n)ζ + (k/n)α

)
.

Thus the maximum allowed number of extremes is n2ζ/(2ζ+1)−ε if ζ < α and
n2α/2α+1−ε otherwise, for some arbitrarily small ε > 0. Summarizing, the best
possible rate of convergence is nρ/(2ρ+1) with ρ = α ∧ ζ ∧ 1.

Remark 1 If the estimator is modified by taking only every other observation,

�̃n(y) =
∑n

r=1 1{Y2(r−1)+1+Y2r >Y(n:n−k)}1{Yr+m≤y}∑n
r=1 1{Y2(r−1)++Y2r >Y(n:n−k)}

.
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then
√

k(�̃n − �) converges weakly to 2B ◦ � where B is the standard Brow-
nian bridge. Indeed, the random vectors {Y1, Y2}, {Y3, Y4}, . . . are conditionally
independent given X but the price to be paid is the bigger variance.

4 Proofs

We start by proving the limiting behaviour of the conditional distribution (Eq. 8).

Lemma 11 Suppose that assumptions of Proposition 1 are fulf illed. Then

lim
t→∞P(Ym ≤ y | Y0 > t) = E[σα(X0)FZ (y/σ(Xm))]

E[σα(X0)] . (34)

Proof Conditioning on the sigma-field X yields

P(Ym ≤ y, Y0 > t) = E[P(σ0 Z0 ≤ y, σm Zm > t)|X ]
= E[P(σ0 Z0 ≤ y|X )P(σm Zm > t |X )]
= E[FZ (y/σ0)F̄(t/σ0)]

Applying Potter’s bound (see Bingham et al. 1989, Theorem 1.5.6), yields, for some
constant C and ε > 0

FZ (y/σ0)F̄(t/σ0)

F̄(t)
≤ C(σ0 ∨ 1)α+ε.

Thus, the assumption E[σα+ε(Xm)] < ∞ and the bounded convergence theorem
imply that

lim
t→∞

P(Ym ≤ y, Y0 > t)

F̄(t)
= E

[
lim

t→∞
F(y/σm)F̄(t/σ0)

F̄(t)

]
= E[σα(X0)FZ (y/σ(Xm))].

Finally, noting that by Eq. 6 we have P(Y0 > t) ∼ E[σα(X0)]F̄(t) as t → ∞ yields
Eq. 8. ��

Proof of Proposition 1 Since the random variables Z1, . . . , Zh are i.i.d., for each
(u1, . . . , uh) ∈ [0,∞]h , x ∈ [−∞, 0)h and y ∈ (0,∞]h , it holds that

lim
t→∞ tP(a−1(t)(u1 Z1, . . . , uh Zh) ∈ [x, y]c)

= (1 − β)

h∑

i=1

uα
i |xi |−α + β

h∑

i=1

uα
i y−α

i

=
h∑

i=1

uα
i να,β([xi , yi ]c),
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where να,β is the Radon measure on [−∞,∞] \ {0} defined by

να,β(dx) = α{(1 − β)(−x)−α−11{x<0} + βx−α−11{x>0}} dx .

Moreover, by Potter’s bound, for any ε > 0, there exists a constant C (which also
depends on x and y) such that

tP(a−1(t)(u1 Z1, . . . , uk Zk) ∈ [x, y]c) ≤ C
k∑

i=1

(ui ∨ 1)α+ε . (35)

Thus, we can apply the bounded convergence theorem and obtain

lim
t→∞ tP(a−1(t)(σ (X1)Z1, . . . , σ (Xk)Zk) ∈ [x, y]c)

= E[ lim
t→∞ tP(a−1(t)(σ (x1)Z1, . . . , σ (Xk)Zk) ∈ [x, y]c | X )]

= E[σα(X0)]
k∑

i=1

να,β([xi , yi ]c).

��
Proof of Proposition 2 Let C be a cone of type 12 and let βC be the smallest integer
� for which there exists i1 < · · · < i� ∈ {1, . . . , h} such that zi1 > 0, . . . , zi� > 0
implies

∏u
i=1(

∑
i∈Pu

zi ) > 0. Such an integer exists since obviously zi > 0 for all
i ∈ {1, . . . , h} implies that

∏u
i=1(

∑
i∈Pu

zi ) > 0. Moreover, since βC is the smallest
such integer, then it clearly holds conversely that

∏u
i=1(

∑
i∈Pu

zi ) > 0 implies that
at least βC among zi , i = 1, . . . , h, are positive. Let P∗ be the sets of βC-tuples
i = (i1, . . . , iβC ) ∈ {1, . . . , h}βC such that ziq > 0 for q = 1, . . . , βC implies
that z ∈ C. We now prove Eq. 11. It suffices to prove it for sets A of the form
A = {z ∈ [0,∞]h | ∑

i∈Pu
zi ≥ au, u = 1, . . . , k}, where au > 0, u = 1, . . . , k.

By relative compactness, there exist η > 0 and i = (i1, . . . , iβC ) ∈ P∗ such that
zi j > η, 1 ≤ j ≤ βC . Moreover, by independence, asymptotically there is only one
such i ∈ P∗, i.e.

P(Z1,h ∈ t A)

(F̄Z (t))βC
∼

∑

i∈P∗

P(Z1,h ∈ t A, Zi1 > tη, . . . , ZiβC
> tη)

(F̄Z (t))βC
,

since by independence it holds that for i �= i′ ∈ P∗,

lim
t→∞

P(Zi1 > tη, . . . , ZiβC
> tη, Zi ′1 > tη, . . . , Zi ′βC

> tη)

(F̄Z (t))βC
= 0.
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Let us now consider one arbitrary i ∈ P∗, and for clarity assume that i = (1, . . . , βC).
For any ε > 0, again by independence, it holds that

P(Z1,h ∈ t A, Z1 > tη, . . . , ZβC > tη)

(F̄Z (t))βC

∼ P(Z1,h ∈ t A , Z1 > tη, . . . , ZβC > tη, ZβC+1 ≤ tε, . . . , Zh ≤ tε)

(F̄Z (t))βC
.

Fix some arbitrary ζ > 0, ζ < infk
u=1 au . Then ε can be chosen small enough, so that

the last term is less than P((Z1, . . . , ZβC ) ∈ Aζ ) where

Aζ = {z1, . . . , zβC |
∑

i∈Pu∩{1,...,βC}
zi ≥ au − ζ, u = 1, . . . , k}.

Thus, we obtain

lim sup
t→∞

P(Z1,h ∈ t A, Z1 > tη, . . . , ZβC > tη)

(F̄Z (t))βC

≤ lim sup
t→∞

P((Z1, . . . , ZβC ) ∈ t Aζ )

(F̄Z (t))βC

= αβC
∫

Aζ

βC∏

i=1

z−α−1
i dzi .

Moreover, limζ→0
∫

Aζ

∏βC
i=1 z−α−1

i dzi = ∫
A0

∏βC
i=1 z−α−1

i dzi , thus it actually holds
that

lim sup
t→∞

P(Z1,h ∈ t A, Z1 > tη, . . . , ZβC > tη)

(F̄Z (t))βC
≤ αβC

∫

A0

βC∏

i=1

z−α−1
i dzi .

Conversely, for the lower bound, it obviously holds that

P(Z1,h ∈ t A, Z1 > tη, . . . , ZβC > tη)

(F̄Z (t))βC
≥ P((Z1, . . . , ZβC ) ∈ t A0)

(F̄Z (t))βC

→ αβC
∫

A0

βC∏

i=1

z−α−1
i dzi .

Comparing the lower bound and the upper bound and summing over i ∈ P∗ yields

lim
t→∞

P(Z1,h ∈ t A)

(F̄Z (t))βC
= αβC

∑

i∈P∗

∫

A0(i)

βC∏

q=1

z−α−1
iq

dziq ,
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where i = (i1, . . . , iβC ), A0(i) = {(zi1 , . . . , ziβC
) | ∑

i∈Pu∩{i1,...,iβC } zi ≥ au, u =
1, . . . , k}. This proves that the measure νC has the following expression

νC(dz) = αβC
∑

i∈P∗

βC∏

q=1

z−α−1
iq

dziq

∏

i /∈{i1,...,iβC }
δ0(dzi ). (36)

where δ0 denotes the Dirac point measure at 0.
We now prove Eq. 14. By the characterization of relatively compact sets given

above, if A is relatively compact in C, then for u ∈ (0,∞)h , u−1 · A is also relatively
compact in C. Thus Eq. 11 implies that

lim
t→∞

P(u · Z1,h ∈ t A)

(F̄Z (t))βC
= νC(u−1 · A). (37)

It follows from Potter’s bound and the characterization of a relatively compact set A
of C, that for any ε > 0, there exists a constant C (which depends on A and ε) such
that, for all u ∈ (0,∞)h , all t ≥ 1,

P(u · Z1,h ∈ t A)
(
F̄Z (t)

)βC ≤ P(∃i1, . . . , iβC ∈ {1, . . . , h}, ui j Zi j > η)
(
F̄Z (t)

)βC

≤ C
∑

1≤i1<···<iβC≤h

βC∏

q=1

(uiq ∨ 1)α+ε .

Thus, denoting M(u) = ∏h
i=1(ui ∨ 1)α+ε , we obtain that there exists a constant C

(which depends on A and ε) such that

sup
t≥1

P(u · Z1,h ∈ t A)

(F̄Z (t))βC
≤ C M(u). (38)

Assumption 13 implies that E[M(σ (X1,h))] < ∞. Then Eqs. 37, 38 and bounded
convergence yield (Eq. 14). We now prove Eq. 15. For r ≥ 2, let Cr be the subcone
of [0,∞]h+r−1 defined by

(z1, . . . , zh+r−1) ∈ Cr ⇐⇒ (z1, . . . , zh) ∈ C, (zr , . . . , zh+r−1) ∈ C.

For u = 0, . . . , k, define Pr
u = r − 1 + Pu , i.e. i ∈ Pr

u if and only if i − r + 1 ∈ Pu

(which implies that i ≥ r ). Then

(z1, . . . , zh+r−1) ∈ Cr ⇐⇒
k∏

u=1

⎛

⎝
∑

i∈Pu

zi

⎞

⎠
k∏

u=1

⎛

⎝
∑

i∈Pr
u

zi

⎞

⎠ > 0.

The sum over the sets Pr
u which include one of the sets Pv can be removed from the

second product, and thus we see that Cr is of the form 12, and Eq. 11 holds. Necessar-
ily, it holds that βCr ≥ βC . Indeed, if there exists only � < βC indices i1, . . . , i� such
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that zi > 0, then the first product above is zero, hence (z1, . . . , zh+r−1) /∈ Cr . Let
now Ar (s, s′) be the subset of [0,∞]h+r−1 such that (z1, . . . , zh+r−1) ∈ Ar (s, s′) if
and only if (z1, . . . , zh) ∈ s A and (zr , . . . , zh+r−1) ∈ s′ A. If A is relatively compact
in C, then Ar (s, s′) is also relatively compact in Cr and thus, it holds that

lim
t→∞

P(Z1,h ∈ ts A, Zr,r+h−1 ∈ ts′ A)

(F̄Z (t))βCr
= lim

t→∞
P(Z1,r+h−1 ∈ t Ar (s, s′))

(F̄Z (t))βCr

= νCr (Ar (s, s′)),

and Eq. 15 follows straightforwardly, with Lr ≡ 0 if βCr > βC . ��

Proof of Lemma 3 By assumption, we have

lim
t→∞

P((Z1, . . . , Zh) ∈ t A)

(F̄Z (t))βC
= νC(A) , lim

t→∞
P((Z1, . . . , Zh) ∈ t A)

(F̄Z (t))βC′ = νC′(A),

with νC(A) ∈ (0,∞) and νC′(A) ∈ (0,∞). This implies that βC = βC′ and νC(A) =
νC′(A). It easily follows that for all u ∈ (0,∞]h , νC(u · A) = νC′(u · A). ��

We now prove the results of Section 3. For clarity of notation, denote σi = σ(Xi ),
νC = ν, μC = μ and define g(t) = tβC and T (s) = s−αβC . Recall that FY denotes
the distribution function of Y and un = (1/F̄Y )←(n/k). By Eqs. 4 and 13, Breiman’s
Lemma applies and thus it holds that F̄Y (un) ∼ E[σα

0 ]F̄Z (un) and

lim
n→∞

g(k/n)

g(F̄Z (un))
= (E[σα

0 ])βC .

Whenever there is no risk of confusion, we omit dependence on h, m, h′ and A in the
notation. For r = 1, . . . , n, define the following random variables

Wr,n(s) = 1{Yr,r+h−1∈uns A}, s ≥ 1, Vr (B) = 1{Yr+m,r+m+h′ ∈B}. (39)

The choice of un implies that (recall the definitions (Eqs. 16 and 20) of ρ(A, B, m)

and μ(A)),

lim
n→∞

E[Wr,n(s)]
g(k/n)

= T (s)μ(A), (40)

lim
n→∞

E[Wr,n(s)Vr (B)]
g(k/n)

= T (s)μ(A)ρ(A, B, m). (41)

Recall the definition (Eq. 25) of the function Gn :

Gn(A, B, s, x, x′) = P(σ (x) · Z1,h ∈ uns A)

gj(k/n)
P(σ (x′) · Zm,m+h′ ∈ B)



224 R. Kulik, P. Soulier

Also, define, for s ≥ 1 and x ∈ R
h and x′ ∈ R

h′+1, the function Ln by

Ln(s, x) = P(σ (x) · Z1,h ∈ uns A)

g(k/n)
, (42)

With these notations, we have,

Ln(s, Xr,r+h−1) = E[Wr,n(s) | X ]
g(k/n)

,

Gn(A, B, s, Xr,r+h−1, Xr+m,r+m+h′) = E[Wr,n(s)Vr (B) | X ]
g(k/n)

.

For x ∈ R
h , denote

L(x) = ν(σ (x)−1 · A)

(E[σα(X)])δ , (43)

so that E[L(X1,h)] = μ(A).

Proof of Lemma 4 Write

Ln(s, x) − T (s)L(x)

=
{

g(F̄Z (uns))

g(k/n)
− (E[σα(X)])−δ T (s)

}
P(σ (x) · Z1,h ∈ uns A)

g(F̄Z (uns))

+ (E[σα(X)])−δT (s)

{
P(σ (x) · Z1,h ∈ uns A)

g(F̄Z (uns))
− (E[σα(X)])δ L(x)

}
.

Thus, recalling the definition of vn from Eq. 21, we have

vn(A) ≤ sup
s≥1

∣∣∣∣
g(F̄Z (uns))

g(k/n)
− (E[σα(X)])−δ T (s)

∣∣∣∣E[M(σ (X1,h))] + (E[σα(X)])−δ

× E

[
sup
s≥1

∣∣∣∣
P(σ (X1,h) · Z1,h ∈ uns A | X )

g(F̄Z (uns))
− (E[σα(X)])δ L(X1,h)

∣∣∣∣

]

For all x ∈ R
h , we have

lim
n→∞ sup

s≥1

∣∣∣∣
P(σ (x) · Z1,h ∈ uns A)

g(F̄Z (uns))
− (E[σα(X)])δ L(x)

∣∣∣∣ = 0.

Moreover, by Eq. 38,

sup
s≥1

∣∣∣∣
P(σ (x) · Z1,h ∈ uns A)

g(F̄Z (uns))
− (E[σα(X)])δ L(x)

∣∣∣∣ ≤ C M(σ (x)).
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Thus, by Eq. 13 and bounded convergence,

lim
n→∞E

[
sup
s≥1

∣∣∣∣
P(σ (X1,h) · Z1,h ∈ uns A | X )

g(F̄Z (uns))
− (E[σα(X)])δ L(X1,h)

∣∣∣∣

]
= 0.

Since g ◦ F̄ is regularly varying at infinity with negative index, by Bingham et al.
(1989, Theorem 1.5.2), the convergence of g(F̄Z (uns))/g(k/n) to (E[σα(X)])−δT (s)
is uniform on [1,∞). Thus we have proved that vn(A) → 0. ��

Proof of Theorem 5 For s ≥ 1, define

K (B, s) = T (s)μ(A)ρ(A, B, m),

K̃n(B, s) = 1

ng(k/n)

n∑

r=1

Wr,n(s)Vr (B),

ẽn(s) = K̃n(Rh′+1, s) = 1

ng(k/n)

n∑

r=1

Wr,n(s),

ξn = Y(n:n−k)

un
.

With this notation, we have

ρ̂n(A, B, m) = K̃n(B, ξn)

ẽn(ξn)

Equations 41 and 40 imply, respectively, that

lim
n→∞E[K̃n(B, s)] = K (B, s) lim

n→∞E[ẽn(s)] = T (s)μ(A).

With this in mind, we split

ρ̂n(A, B, m) − ρ(A, B, m) = K̃n(B, ξn) − K (B, ξn)

ẽn(ξn)

− ρ(A, B, m)

ẽn(ξn)
{ẽn(ξn) − μ(A)T (ξn)}. (44)

We note that the term ẽn(ξn) − μ(A) T (ξn) that appears in the second part of Eq. 44
has the form K̃n(B, ξn) − K (B, ξn) with B = R

h′+1. Thus, we only need to find
the correct norming sequence wn and asymptotic distribution in D([a, b]) for any
0 < a < b of the sequence of processes wn{K̃n(B, ·) − K (B, ·)}. To do this, define
further

Kn(B, s) = E[K̃n(B, s)]. (45)
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Then

K̃n(B, s) − K (B, s) = K̃n(B, s) − Kn(B, s) + Kn(B, s) − K (B, s).

The term Kn(B, s) − K (B, s) is a deterministic bias term that will be dealt with by
the second order condition 23. Write K̃n − Kn = (ng(k/n))−1/2 En,1 + En,2 with

En,1(B, s) = 1√
ng(k/n)

n∑

r=1

{Wr,n(s)Vr (B) − E[Wr,n(s)Vr (B) | X ]}, (46)

En,2(B, s) = 1

ng(k/n)

n∑

r=1

E[Wr,n(s)Vr (B) | X ] − Kn(B, s)

= 1

n

n∑

r=1

{Gn(A, B, s, Xr,r+h−1, Xr+m,r+m+h′) − Kn(B, s)}. (47)

We note that Kn(B, s) is the proper centering in Eq. 47 since, using the definition of
Kn , Eqs. 42 and 25 we have

Kn(B, s) = E[Gn(A, B, s, X1,h, Xm,m+h′)]
= E[Ln(s, X1,h)P(σ (Xm,m+h′) · Zm,m+h′ ∈ B | X )]. (48)

The term in Eq. 46 will be called the i.i.d. term. It is a sum of conditionally indepen-
dent random variables. The term in Eq. 47 will be called the dependent term. It is a
function of the dependent vectors (Xr,r+h−1, Xr+m,r+m+h′).

We now state some claims whose proofs are postponed to the end of this section.
The implication of Claims 1 and 3 is, in particular, that in the weakly dependent case
only the i.i.d. part contributes to the limit.

Claim 1 The process En,1 converges in the sense of f inite-dimensional distributions
to a Gaussian process W with covariance

(E[σα(X1)])δcov(W (B, s), W (B ′, s′))

= E

[
L1(A, σ (X1,h), σ (X1,h), s, s′) × P(Ym,m+h′ ∈ B, Ym,m+h′ ∈ B ′ | X )

]

+
h∧(m−h)∑

r=2

E

[
Lr (A, σ (X1,h), σ (Xr,r+h−1), s, s′)

× {P(Ym,m+h′ ∈ B, Ym+r−1,m+h′+r−1 ∈ B ′ | X )

+ P(Ym,m+h′ ∈ B ′, Ym+r−1,m+h′+r−1 ∈ B | X )}
]
,

(49)
where the functions Lr are def ined in Eq. 15.

Claim 2 For each f ixed B, En,1(B, ·) is tight in D([a, b]) for each 0 < a < b.

This claim is proved in Lemma C.3.
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The previous two statements are valid in both weakly dependent and long memory
case. The next one may not be valid in the long memory case. See Section 3.2.

Claim 3 In the weakly dependent case En,2(B, ·) = OP (
√

n), uniformly with
respect to s ∈ [a, b] for any 0 < a < b.

The next claim is proved in Kulik and Soulier (2011, Corollary 2.4).

Claim 4 ξn − 1 = oP(1).

The last thing we need is the negligibility of the bias term.

Claim 5 For any a > 0, sups≥a supB |Kn(B, s) − K (B, s)| = O(vn(A)).

Therefore if ng(k/n) → ∞ and Eq. 23 holds (i.e. ng(k/n)vn(A) → 0), then

√
ng(k/n){K̃n(B, ·) − K (B, ·), ẽn(·) − K (Rd , ·)} ⇒ (W (B, ·), W (Rh′+1, ·)).

This convergence and the decomposition 44 imply

√
ng(k/n)μ(A){ρ̂n(A, B, m) − ρ(A, B, m)}
→d W (B, 1) − ρ(A, B, m)W (Rh′+1, 1).

This distribution is Gaussian. Applying Eq. 49 and the fact that ρ(A,Rh′+1, m) = 1,
it is easily checked that its variance is given by Eq. 24. This concludes the proof of
Theorem 5. ��

We now prove the claims.

Proof of Claim 1 For r = 1, . . . , n, denote

ζn,r (B, s) = 1√
ng(k/n)

Wr,n(s)Vr (B).

In order to prove our claim, we apply the central limit theorem for m-dependent
random variables, see Orey (1958). Let C(B, B ′, s, s′) denote the quantity in the
right hand side of Eq. 49. We need to check that

cov

(
n∑

r=1

ζn,r (B, s),
n∑

r=1

ζn,r (B ′, s′) | X
)

→P C(B, B ′, s, s′), (50)

n∑

r=1

E[ζ 4
n,r (B, s) | X ] →P 0. (51)
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By standard Lindeberg–Feller type arguments, this proves the one-dimensional con-
vergence. The finite-dimensional convergence is proved by similar arguments and by
computing the asymptotic covariances. We now prove Eqs. 50 and 51.

For u ≥ 1, x, x′ ∈ R
h , denote

Ln,u(A, x, x′, s, s′) = P(σ (x) · Z1,h ∈ uns A, σ (x′) · Zu,u+h−1 ∈ uns′ A)

g(F̄Z (un))
.

The functions Ln,u converge in L1(X1,h, Xu,u+h−1) to the functions Lu defined
Eq. 15. For u > h, Z1,h and Zu,u+h−1 are independent, so Ln,u converges a.s. and in
L1(X1,h, Xu,u+h−1) to 0.

The random variables ζn,r are m + h′ dependent. Thus,

cov

(
n∑

r=1

ζn,r (B, s),
n∑

r=1

ζn,r (B ′, s′) | X
)

=
n∑

r=1

cov(ζn,r (B, s), ζn,r (B ′, s′) | X )

+
n∑

r=1

m+h′∑

u=1

cov(ζn,r (B, s), ζn, j+u(B ′, s′) | X ) (52)

+
n∑

r=1

m+h′∑

u=1

cov(ζn, j+u(B, s), ζn,r (B ′, s′) | X ). (53)

For u = 1, . . . , h ∧ (m − h) it is easily seen that

n∑

r=1

cov(ζn,r (B, s), ζn,r+u(B ′, s′) | X )

∼ g(F̄Z (un))

ng(k/n)

n∑

r=1

Ln,u(Xr,r+h−1, Xr+u,r+u+h−1, s, s′)

× P(Yr+m,r+m+h ∈ B, Yr+u+m,r+u+m+h′ ∈ B ′ | X )

→P
E

[
Lu(A, X1,h, Xu,h+u−1, s, s′)P(Ym,m+h ∈ B, Yu+m,u+m+h′ ∈ B ′ | X )

]

(E[σα(X)])δ .

This yields the right-hand side of Eq. 49, so we must prove that the terms in Eqs. 52
and 53 are negligible. If h > m − h, then for large n and m − h < u ≤ h, we have
(uns′ A) ∩ B = 0, so, for all r = 1 . . . , n,

P
(
Yr,r+h−1 ∈ uns A, Yr+u,r+u+h−1 ∈ uns′ A,

Yr+m,r+m+h ∈ B, Yr+u+m,r+u+m+h′ ∈ B ′ | X ) = 0.
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For u > h, then as mentioned above, Lu(A, ·, ·, s, s′) converges to 0 in L1(X1,h,

Xu,u+h−1) so

n∑

r=1

cov(ζn,r (B, s), ζn,r+u(B ′, s′) | X ) →P 0.

This proves Eq. 50. Next, since ζn,r are indicators and applying Eq. 41

n∑

r=1

E[ζ 4
n,r (B, s)] ≤ C

E[W1,n(s, A)V1(B)]
ng(k/n)

→ 0.

This proves Eq. 51 and the weak convergence of finite dimensional distributions. ��

Proof of Claim 3 By definition of the functions Ln and Gn (cf. Eqs. 42 and 25), it
clearly holds that

|Gn(A, B, s, Xr,r+h−1, Xr+m,r+m+h′)| ≤ Ln(s, Xr,r+h−1).

We apply the variance inequality B.3 in the weak dependence case to get

var(En,2(B, s)) ≤ C

n
var(Gn(A, B, s, X1,h, X1+m,1+m+h′)) ≤ C

n
E[L2

n(s, X1,h)].

By Eq. 38, Ln(s, x) ≤ C M(σ (x)). Thus, by Eq. 13, the right hand side is uniformly
bounded, thus var(En,2(B, s)) = O(1/n) and for any fixed s > 0,

√
nEn,2(B, s) =

OP (1). Tightness follows from Lemma C.4, thus En,2(B, ·) converges uniformly to
0 on any compact set of (0,∞]. ��

Proof of Claim 5 Consider now the bias term Kn − K . Recall that (see Eqs. 45
and 41)

Kn(B, s) = E[K̄n(B, s)] → T (s)μ(A)ρ(A, B, m) = K (B, s)

Therefore, Kn(B, s) converges pointwise to K (B, s). The goal here is to show that
this convergence is uniform. Using Eq. 48 and recalling the formula for ρ(A, B, m)

(see Eq. 16), we have

K (B, s) = T (s)E[L(X1,h)P(σ (Xm,m+h′) · Zm,m+h′ ∈ B | X )].

Therefore, recalling the definition (Eq. 21) of vn(A), we obtain that

|Kn(B, s) − K (B, s)| ≤ E

[
sup
s≥1

|Ln(s, X1,h) − T (s)L(X1,h)|
]

= vn(A).

��
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Proof of Corollary 6 In the following, y stands for the set (−∞, y] in the previous
notation. For y ∈ R

h′+1, rewrite the decomposition 44 in the present context to get

̂n(y) − (y) = K̃n(y, ξn) − K (y, ξn)

ẽn(ξn)
− (y)

ẽn(ξn)
{ẽn(ξn) − μ(A) T (ξn)}.

Thus we need only prove that the sequence of suitably normalized processes
K̃n(s, y) − Kn(y, s) converge weakly to the claimed limit. The convergence of finite
dimensional distributions follows from Theorem 5 and the tightness follows from
Lemmas C.3 and C.4. ��

Proof of Theorem 7 Claims 1, 2, 4 and 5 hold under the assumptions of Theorem 7.
Thus, the result will follow if we prove a modified version of Claim 3.

Claim 6 If 2τ(A, B)(1 − H) < 1, then γ
−τ(A,B)/2
n En,2(A, B, ·) converges weakly

uniformly on compact sets of (0,∞] to a process T · Z(A, B) where the random vari-
able Z(A, B) is in a Gaussian chaos of order τ(A, B) and its distribution depends
only on the Gaussian process {Xn}.

For any d ∈ N
∗, q ∈ N

d and x ∈ R
d , denote

Hq(x) =
d∏

i=1

Hqi (xi ) .

Define X j = (X j+1, . . . , X j+h, X j+m, . . . , X j+m+h′). The Hermite coefficients of
Gn(A, B, s, ·) and G with respect to X0 can be expressed, for q ∈ N

h+h′+1, as

Jn(q, s) = E[Hq(X0)Gn(A, B, s,X0)], J (q) = E[Hq(X0)G(X0)].
Since Gn(A, B, s, ·) converges to T (s)G(·) in L p(X0) for some p > 1, Jn(q, s)
converges to s−αδ J (q). Let U be an (h + h′ + 1) × (h + h′ + 1) matrix
such that UU ′ is equal to the inverse of the covariance matrix of X0. Define
J ∗

n (q, s) = E[Hq(UX0)Gn(A, B, s, UX0)] and J ∗(q) = E[Hq(UX0)G(X0)].
Under Assumption 1, the function Gn can be expanded for x ∈ R

h+h′+1 as

Gn(A, B, s, x) − E[Gn(A, B, s,X0)] =
∑

|q|=τ(A,B)

J ∗
n (q, s)

q! Hq(Ux) + rn(s, x),

where rn is implicitly defined and has Hermite rank at least τ(A, B)+ 1 with respect
to UX0. Denote Rn(s) = n−1 ∑n

r=1 rn(s,X j ). Applying Eq. B.3, we have

var (Rn(s)) ≤ C

(
γ τ(A,B)+1

n ∨ 1

n

)
var(Gn(A, B, s,X0))

≤ C

(
γ τ(A,B)+1

n ∨ 1

n

)
E[L2

n(s, X1,h)].
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By Assumption 13, E[L2
n(s, X1,h)] is uniformly bounded, thus var(Rn(s)) =

o(γ
τ(A,B)
n ) and γ

−τ(A,B)
n Rn(s) converges weakly to zero. The convergence is uni-

form by an application of Lemma C.1.
Thus, the asymptotic behaviour of γ

−τ(A,B)/2
n En,2 is the same as that of

Zn(s) =
∑

|q|=τ(A,B)

J ∗
n (q, s)n−1

q! γ
−τ(A,B)/2
n

n∑

r=1

Hq(UX j ).

By Arcones (1994, Theorem 6), there exist random variables ℵ∗(q) such that Zn(s)
converges to

T (s)
∑

|q|=τ(A,B)

J ∗(q)

q! ℵ∗(q)

for each s ≥ 0. To prove that the convergence is uniform, we only need to prove that
J ∗

n (q, s) converges uniformly to T (s)J ∗(q) for each q such that |q| = τ(A). Since
the coefficients J ∗

n can be expressed linearly in terms of the coefficients Jn , it suffices
to prove uniform convergence of the coefficients Jn . Applying Hölder inequality, we
obtain, for p > 1 and for any a > 0,

sup
s≥a

|Jn(q, s) − T (s)J (q)| ≤ CE

[
sup
s≥a

∣∣Ln(s, X1,h) − T (s)L(X1,h)
∣∣p

]
.

As already shown in the proof of Lemma 4, this last quantity converges to 0 for
p = 2. ��

Appendix A: Second order regular variation of convolutions

Lemma A.1 Let Z1 and Z2 be i.i.d. non negative random variables with common
distribution function F that satisf ies Assumption 2. Then

∣∣∣P(a1 Z1 + a2 Z2 > t) − F̄(t/a1) − F̄(t/a2)
∣∣

≤ C(a1 ∨ 1)α+ε(a2 ∨ 1)α+ε t−1 F̄(t)
∫ t

0
F̄(v) dv.

Proof of Theorem 7 Obviously, we have

P(a1 Z1 + a2 Z2 > t) = F̄(t/a1) + F̄(t/a2) − F̄(t/a1)F̄(t/a2)

+ P(t/2 < a1 Z1 ≤ t)P(t/2 < a2 Z2 ≤ t)

+ P(a1 Z1 ≤ t/2, a2 Z2 ≤ t, a1 Z1 + a2 Z2 > t)

+ P(a2 Z2 ≤ t/2, a1 Z1 ≤ t, a1 Z1 + a2 Z2 > t).
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Thus, we obtain
∣∣P(a1 Z1 + a2 Z2 > t) − F̄(t/a1) − F̄(t/a2)

∣∣

≤ 2F̄(t/2a1)F̄(t/2a2) + F̄(t/a2)I1 + F̄(t/a1)I2.

with

I1 = E

[
1{a1 Z1≤t/2}

{
F̄(t (1 − a1 Z1/t)/a2)

F̄(t/a2)
− 1

}]
,

I2 = E

[
1{a2 Z2≤t/2}

{
F̄(t (1 − a2 Z1/t)/a1)

F̄(t/a1)
− 1

}]
.

Since F satisfies Assumption 2, we have, for u ∈ [1/2, 1] and s > 0,

0 ≤ F̄(us)

F̄(s)
− 1 = u−αe

∫ u
1

η(sv)
v

dv − 1 = {u−α − 1}e
∫ u

1
η(sv)

v
dv + e

∫ u
1

η(sv)
v

dv − 1

≤ |u−α − 1|e
∫ 1

1/2
η∗(sv)

v
dv + e

∫ 1
1/2

η∗(sv)
v

dv

∫ 1

u

η∗(sv)

v
dv.

Since η∗ is decreasing, we have, for all u ∈ [1/2, 1],

0 ≤ F̄(us)

F̄(s)
− 1 ≤ C{|u−α − 1| + log(u)} ≤ C(1 − u).

Applying this inequality with s = t/a2 and 1−u = a1 Z1/t on the event a1 Z1 ≤ t/2
yields

I1 ≤ Ca1t−1
E

[
Z11{a1 Z1≤t}

] ≤ Ct−1
∫ t

0
F̄(v/a1) dv

≤ C(a1 ∨ 1)α+ε t−1
∫ t

0
F̄(v) dv.

where the last bound is obtained by applying Potter’s bound for some ε > 0.
This yields the desired bounds for the term I1. The bound for the term I2 is

obtained similarly. To conclude, note that F̄2(t) = O(t−1 F̄(t)
∫ t

0 F̄(v) dv) if α < 1
and F̄2(t) = o(t−1 F̄(t)

∫ t
0 F̄(v) dv) if α ≥ 1. ��

Remark 2 By induction, we can obtain the bound

∣∣∣P(Z1 + · · · + Zn > t) − nF̄(t)
∣∣ ≤ C t−1 F̄(t)

∫ t

0
F̄(v) dv,

and we can also recover a particular case of a result of Omey and Willekens (1987)
in a slightly different form. For α ≥ 1 and E[Z1] < ∞,

lim
t→∞ t

{
P(Z1 + · · · + Zn > t)

P(Z1 > t)
− n

}
= n(n − 1)

2
E[Z1].
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We apply Lemma A.1 to obtain the bound 32 for the bias term in Example 3 consid-
ered in Section 3.3.2. Recall that in this case we have βC = 1, μC(A) = 2, and that
it always holds that k/n = F̄Y (un) ∼ F̄(un)E[σα]. Then vn(A) becomes

vn(A) = E

[
sup
s≥1

∣∣∣∣
P(σ1 Z1 + σ2 Z2 > uns | X )

F̄Y (un)
− 2s−α

∣∣∣∣

]

≤ F̄(un)

F̄Y (un)
(A1 + 2A2) + 2A3,

with

A1 = E

[
sup
s≥1

∣∣∣∣
P(σ1 Z1 + σ2 Z2 > uns | X )

F̄(un)

−P(σ1 Z1 > uns | X )

F̄(un)
− P(σ2 Z2 > uns | X )

F̄(un)

∣∣∣∣

]
,

A2 = E

[
sup
s≥1

∣∣∣∣
P(σ1 Z1 > uns | X )

F̄(un)
− s−ασα

1

∣∣∣∣

]
, A3 =

∣∣∣∣∣
E[σα

1 ]F̄(un)

F̄Y (un)
− 1

∣∣∣∣∣ .

By Kulik and Soulier (2011, Proposition 2.8), the terms A2 and A3 are of order
O(η∗(un)). Next, applying Lemma A.1 with t = un and ai = σi/s for s ≥ 1 yields
A1 ≤ Cu−1

n

∫ un
0 F̄(t) dt . Altogether, we obtain the bound 32.

Appendix B: Gaussian long memory sequences

For the sake of completeness, we recall in this appendix the main definitions
and results pertaining to Hermite coefficients and expansions of square integrable
functions with respect to a possibly non standard multivariate Gaussian distribu-
tion. Expansions with respect to the multivariate standard Gaussian distribution are
easy to obtain and describe. The theory for non standard Gaussian vectors is more
cumbersome. The main reference is Arcones (1994).

B.1 Hermite coefficients and rank

Let G be a function defined on R
k and X = (X (1), . . . , X (k)) be a k-dimensional

centered Gaussian vector with covariance matrix �. The Hermite coefficients of G
with respect to X are defined as

J (G, X, q) = E

⎡

⎣G(X)

k∏

j=1

Hq j (X ( j))

⎤

⎦ ,
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where q = (q1, . . . , qk) ∈ N
k . If � is the k × k identity matrix (denoted by Ik),

i.e. the component of X are i.i.d. standard Gaussian, then the corresponding Hermite
coefficients are denoted by J ∗(G, q). The Hermite rank of G with respect to X, is
the smallest integer τ such that

J (G, X, q) = 0 for all q such that 0 < |q1 + · · · + qk | < τ.

B.2 Variance inequalities

Consider now a k-dimensional stationary centered Gaussian process {Xi , i ≥ 0} with
covariance function γn(i, j) = E[X (i)

0 X ( j)
n ] and assume either

∀1 ≤ i, j ≤ k ,

∞∑

n=0

|γn(i, j)| < ∞, (B.1)

or that there exists H ∈ (1/2, 1) and a function � slowly varying at infinity such that

lim
n→∞

γn(i, j)

n2H−2�(n)
= bi, j , (B.2)

and the bi, j s are not identically zero. Denote then γn = n2H−2�(n). Then, we have
the following inequality due to Arcones (1994).

For any function G such that E[G2(X0)] < ∞ and with Hermite rank q with
respect to X0,

var

(
n−1

n∑

r=1

G(X j )

)
≤ C(�q(n)n2q(H−1)) ∨ n−1 var(G(X0)). (B.3)

where the constant C depends only on the Gaussian process {Xn} and not on the
function G. This bound summarizes Eqs. 2.18, 3.10 and 2.40 in Arcones (1994). The
rate obtained is n−1 in the weakly dependent case where Eq. B.1 holds and in the case
where Eq. B.2 holds and G has Hermite rank q such that q(1 − H) > 1. Otherwise,
the rate is �q(n)n2q(H−1).

Appendix C: A criterion for tightness

We state a criterion for the tightness of a sequence of random processes with path in
D(Rd), which adapts to the present context Bickel and Wichura (1971, Theorem 3)
and the remarks thereafter.

Let T be a rectangle T = T1 × Td ⊂ R
d . A block B in T is a subset of T of the

form
∏d

i=1(si , ti ] with si < ti , 1 ≤ i ≤ d . Disjoint blocks B = ∏d
i=1(si , ti ] and

B ′ = ∏d
i=1(s

′
i , t ′i ] are neighbours if there exists p ∈ {1, . . . , d} such that s′p = tp or

sp = t ′p and si = s′i and ti = t ′i for i �= p. (In the terminology of Bickel and Wichura
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(1971) the blocks B and B ′ are said to share a common face.) Let X be a random
process indexed by T . The increment of the process X over a block B = ∏d

i=1(si , ti ]
is defined by

X (B) =
∑

(ε1,...,εd )∈{0,1}d

(−1)d−∑d
i=1 εi X (s1 + ε1(t1 − s1), . . . , sd + εd(td − sd)).

(This is the usual d-dimensional increment of a random process X . If for instance
d = 2, then X (B) = X (t1, t2)−X (t1, s2)−X (s1, t2)+X (s1, s2)). If X is an indicator,
i.e. X (y) = 1{Y≤y} for some T valued random variable Y, then X (B) = 1{Y∈B}.

Lemma C.1 Let {ζn} be sequence of stochastic processes indexed by a compact rect-
angle T ⊂ R

d . Assume that the f inite dimensional marginal distributions of ζn

converges weakly to those of a process ζ which is continuous on the upper boundary
of T . Assume moreover that there exist γ ≥ 0 and δ > 1 such that

P(|ζn(B)| ∧ |ζn(B ′)| ≥ λ) ≤ Cλ−γ
E[μδ

n(B ∪ B ′)] (C.1)

for some sequence of random probability measures μn which converges weakly
in probability to a (possibly random) probability measure μ with (almost surely)
continuous marginals. Then the sequence of processes {ζn} is tight in D(T,R).

Sketch of proof For f defined on T = T1 × · · · × Td , i ∈ {1, . . . , d} and t ∈ Ti ,
define f (i)

t on T1 × · · · × Ti−1 × Ti+1 × · · · × Td by

f (i)
t (t1, . . . , ti−1, ti+1, . . . , td) = f (t1, . . . , ti−1, t, ti+1, . . . , td)

and define, for s < t ∈ Ti and δ > 0,

w′′
i ( f, s, t) = sup

s<u<v<w<t
‖ f (i)

u − f (i)
v ‖∞ ∧ ‖ f (i)

v − f (i)
w ‖∞,

w′′
i ( f, δ) = sup

u<v<w<u+δ

‖ f (i)
u − f (i)

v ‖∞ ∧ ‖ f (i)
v − f (i)

w ‖∞.

By the corollary of Bickel and Wichura (1971), a sequence of processes {Xn} defined
on T converges weakly in D(T ) to a process X which is continuous at the upper
boundary of T with probability one, if the finite-dimensional marginal distributions
of Xn converges to those of X and if, for all δ, λ > 0, and al i = 1, . . . , d ,

P(w′′
i (Xn, δ) > λ) → 0. (C.2)

For any measure μ on T , define its i-th marginal μ(i) by

μ(i)((s, t]) = μ(T1 × · · · × Ti−1 × (s, t] × Ti+1 × · · · × Td), s, t ∈ Ti .
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As mentioned in the remarks after the proof of Bickel and Wichura (1971, Theo-
rem 3), an easy adaptation of the proof of Billingsley (1968, Theorem 15.6) shows
that Eq. C.2 is implied by

P(w′′
i (Xn, s, t) > λ) ≤ Cλ−γ

E[{μ(i)
n (s, t])}δ], (C.3)

where μn satisfies the assumptions of the Lemma. So we must show that Eq. C.1
implies Eq. C.3. The proof is by induction, so the first step is to prove it in the
one-dimensional case, where Eq. C.1 becomes, for u < v < w ∈ T ,

P(|ζn(v) − ζn(u)| ∧ |ζn(w) − ζn(v)| ≥ λ) ≤ Cλ−γ
E[μδ

n((u, w])]. (C.4)

The proof of Eq. C.3 under the assumption C.4 follows the lines of the proof of
Billingsley (1968, (15.26)) under the assumption (Billingsley 1968, (15.21)). The
key ingredient is the maximal inequality (Billingsley 1968, Theorem 12.5), which
can be easily adapted as follows in the present context. Let S0, . . . , Sn be random
variables. Assume that there exists nonnegative random variables u1, . . . , un such that

P(|Si − S j | ∧ |Sk − S j | > λ) ≤ λ−γ
E[(ui + · · · + uk)

δ]
for some δ > 1 and γ ≥ 0 and all 1 ≤ i ≤ j ≤ k ≤ n and, then there exists a
constant C that depends only on δ and γ such that

P

(
max

1≤i≤ j≤k≤n
|Si − S j | ∧ |Sk − S j | > λ

)
≤ Cλ−γ

E[(u1 + · · · + un)δ].

Proving by induction that Eq. C.1 implies Eq. C.3 in the d-dimensional case can be
done exactly along the lines of Step 5 of the proof of Bickel and Wichura (1971,
Theorem 1). ��

In order to apply this criterion to the context of empirical processes, we need the
following lemma which slightly extends the bound Billingsley (1968, (13.18)).

Lemma C.2 Let {(Bi , B ′
i )} be a sequence of m-dependent vectors, where Bi and B ′

i
are Bernoulli random variables, with parameters pi and qi , respectively, and such
that Bi B ′

i = 0 a.s. Denote Sn = ∑n
r=1(B j − p j ) and S′

n = ∑n
r=1(B ′

j − q j ). Then,
there exists a constant C which depends only on m, such that

E[S2
n S′

n
2] ≤ C

(
n∑

i=1

pi

)(
n∑

i=1

qi

)
≤ C

(
n∑

i=1

pi ∨ qi

)2

. (C.5)

Proof We start by assuming that the pairs (Bi , B ′
i ) are i.i.d. and we prove Eq. C.5 by

induction. For any integrable random variable X , denote X̄ = X − E[X ]. For n = 1,
since B1 B ′

1 = 0, we obtain E[B̄i B̄ ′
i ] = −pi qi and

E[B̄2
1 B̄ ′2

1] = E[(B1 − 2p1 B1 + p2
1)(B ′

1 − 2q1 B ′
1 + q2

1 )]
= p1q2 + p2

1q1 − 3p2
1q2 = p1q1(p1 + q1 − 3p1q1) ≤ p1q1.
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The last inequality comes from the fact that B1 B ′
1 = 0 a.s. implies that pi + qi ≤ 1,

and 0 ≤ p + q − 3pq ≤ p + q ≤ 1 for all p, q ≥ 0 such that p + q ≤ 1. Assume
now that Eq. C.5 holds with C = 3 for some n ≥ 1. Then, denoting sn = ∑n

r=1 p j

and s′n = ∑n
r=1 q j , we have

E[S2
n+1S′

n+1
2] = E[S2

n S′
n

2] + E[S2
n ]E[B̄ ′2

n+1] + E[S′
n

2]E[B̄2
n+1]

+ 4E[Sn S′
n]E[Bn+1 B ′

n+1] + E[B̄2
n+1 B̄ ′2

n+1]

≤ 3sns′n + snqn+1 + s′n pn+1 + 4pn+1qn+1

n∑

i=1

pi qi + pn+1qn+1

≤ 3sns′n + 3snqn+1 + 3s′n pn+1 + pn+1qn+1 ≤ 3sn+1s′n+1.

This proves that Eq. C.5 holds for al n ≥ 1.
We now consider the case of m-dependence. Let ai , 1 ≤ i ≤ n be a sequence of

real numbers and set ai = 0 if i > n. Then

(
n∑

i=1

ai

)2

=
⎛

⎝
m∑

q=1

 n/m"∑

r=1

a( j−1)m+q

⎞

⎠
2

≤ m
m∑

q=1

⎛

⎝
 n/m"∑

r=1

a( j−1)m+q

⎞

⎠
2

.

Applying this and the bound for the independent case (extending all sequences by
zero after the index n) yields

E[S2
n S′

n
2] ≤ 3m2

m∑

q=1

m∑

q ′=1

 n/m"∑

r=1

 n/m"∑

j ′=1

p( j−1)m+q p( j ′−1)m+q ′ = 3m2sns′n .

��

Let us apply this criterion in the context of Section 3. Fix a cone j and a relatively
compact subset A ∈ j. Recall that En,1 and En,2 are defined in Eqs. 46 and 47.

Lemma C.3 Under the assumptions of Theorem 5 or 7, for any f ixed B ∈ R
h′+1,

En,1(B, ·) is tight in D([a, b]), and if moreover A,m,h is continuous, then En,1 is
tight in D(K × [a, b]) for any 0 < a < b and any compact set K of Rh′+1.

Proof Since A is a cone, if s < t , then t A ⊂ s A. Thus, a sequence of random
measures μ̂n on R

d × (0,∞) can be defined by

μ̂n((−∞, y] × (s,∞)) = 1

n

n∑

r=1

P(Y j,h ∈ sun A | X )

g(k/n)
P(Yr+m,r+m+h′ ≤ y | X )

= 1

n

n∑

r=1

Gn(A, B, s, X j,hXr+m,r+m+h′, y),
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where Gn is defined in Eq. 25. Then μ̂n converges vaguely in probability to the
measure μ defined by

μ((−∞, y] × (s,∞)) = μ(A)T (s)A,m,h(y).

Then, by conditional m-dependence, for any neighbouring relatively compact blocs
D, D′ of Rd × (0,∞], applying Lemma C.2 yields

E[E2
n,1(D)E2

n,2(D′) | X ] ≤ Cμ̂n(D)μ̂n(D′).

Taking unconditional expectations then yields

E[E2
n,2(D)E2

n,2(D′)] ≤ CÊ[μn(D)μ̂n(D′)] ≤ E[μ̂2
n(D ∪ D′)].

Thus Eq. C.1 holds with δ = γ = 2. In the context of Theorem 5, for any fixed B,
this implies that for each B, the sequence of processes En,1(B, ·) is tight, since the
limiting distribution is proportional to T (s) which is continuous. If the distribution
function  is assumed to be continuous, then Lemma C.1 applies and the process
En,1 is tight with respect to both variables. ��

Lemma C.4 Under the assumptions of Theorem 5, for any f ixed B ∈ R
h′+1,

En,2(B, )̇ converges uniformly to zero on compact sets of (0,∞]. Under the assump-
tion of Corollary 6, En,2 converges uniformly to zero on compact sets of Rh′+1 ×
(0,∞].

Proof We only need to prove the tightness. By the variance inequality B.3 and
Hölder’s inequality, we have, for any relatively compact neighbouring blocks D, D′
of Rd × (0,∞),

P(|E2,n(D)| ∧ |E2,n(D′)| ≥ λ) ≤ λ−2
√
E[E2

2,n(D)]E[E2
2,n(D′)]

≤ λ−2
E[E2

2,n(D ∪ D′)]
≤ Cλ−2n−1

E[μ̃2
n(D ∪ D′)]

where μ̃n is the random measure defined by

μ̃n(y, s) = P(Y1,h ∈ sun A | X )

g(k/n)
P(Ym,m+h′ ≤ y | X ).

The sequence μ̃n converges vaguely on R
d × (0,∞], in probability and in the mean

square to the measure μ̂ defined by

μ̂((−∞, y] × (s,∞]) = νj(σ (X1,h)−1 · A)

(E[νC (σ (X1,h)−1 · A])δ T (s)P(Ym,m+h′ ≤ y | X ).
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The measure μ̂ has continuous marginals if we consider the case of a fixed B (which
takes care of Theorem 7). The marginals of μ̂ are almost surely continuous if FZ is
continuous, so Lemma C.1 applies. ��
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