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Abstract In this paper, we discuss an algorithm for the adaptive estimation of a
positive extreme value index, γ , the primary parameter in Statistics of Extremes.
Apart from the classical extreme value index estimators, we suggest the consid-
eration of associated second-order corrected-bias estimators, and propose the use
of resampling-based computer-intensive methods for an asymptotically consistent
choice of the thresholds to use in the adaptive estimation of γ . The algorithm is
described for a classical γ -estimator and associated corrected-bias estimator, but it
can work similarly for the estimation of other parameters of extreme events, like a
high quantile, the probability of exceedance or the return period of a high level.
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1 Introduction and outline of the paper

Heavy-tailed models appear often in practice in fields like Telecommunications,
Insurance, Finance, Bibliometrics and Biostatistics. Power laws, such as the Pareto
distribution and the Zipf’s law, have been observed a few decades ago in some impor-
tant phenomena in Economics and Biology, and have seriously attracted scientists in
recent years.

We shall essentially deal with the estimation of a positive extreme value index
(EVI), denoted γ , the primary parameter in Statistics of Extremes. Apart from the
classical Hill, moment and generalized-Hill semi-parametric estimators of γ , we
shall also consider associated classes of second-order reduced-bias (RB) estimators.
RB estimation of any parameter of extreme events, such as the EVI, has recently
revealed to be of primordial importance. Indeed, the classical estimators, and partic-
ularly the Hill estimator, reveal usually a high non-null (asymptotic) bias at optimal
levels, i.e., levels k where the mean squared error (MSE) is minimum, where k is
directly related with the number of top order statistics (o.s.’s) involved in the estima-
tion. This non-null bias, together with a rate of convergence of the order of 1/

√
k,

leads to sample paths with a high variance for small k, a high bias for large k, and
a very sharp MSE pattern, as a function of k. In the pioneering papers in the field
of RB EVI-estimation, among which we mention Beirlant et al. (1999), Feuerverger
and Hall (1999) and Gomes et al. (2000), authors have been led to a reduction of
bias at expenses of a larger asymptotic variance, with a ruler never smaller than(
γ (1 − ρ)/ρ

)2, the minimal asymptotic variance of RB EVI-estimators at Drees’
class of models (Drees 1998), with ρ(≤ 0) a second-order parameter ruling the rate
of convergence of the sequence of maximum values to a non-degenerate limit. For
an overview of this topic, see Reiss and Thomas (2007), Chapter 6, 189–204, as
well as the more recent paper by Gomes et al. (2008a). The classes of RB EVI-
estimators considered in this paper are based on the adequate “external” estimation of
a “scale” and a “shape” second-order parameters, β and ρ, respectively, as performed
in Caeiro et al. (2005), among others. They are valid for a reasonably large class of
heavy-tailed underlying parents and are appealing in the sense that we are able to
reduce the asymptotic bias of a classical estimator without increasing its asymptotic
variance. We shall call these estimators “classical-variance reduced-bias” (CVRB)
estimators.

After the introduction, in Section 2, of a few technical details in the area of
Extreme Value Theory (EVT), related with the EVI-estimators under consideration
in this paper, we shall briefly discuss, in Section 3, the asymptotic properties of those
estimators, and the kind of second-order parameters’ estimation which enables the
building of corrected-bias estimators with the same asymptotic variance of the asso-
ciated classical estimators, i.e., the building of CVRB estimators. In Section 4, in
the lines of Gomes et al. (2011), we propose an algorithm for the adaptive consis-
tent estimation of a positive EVI, through the use of resampling computer-intensive
methods. The algorithm is described for a classical EVI estimator and associated
CVRB estimator, but it can work similarly for the estimation of other parameters
of extreme events, like a high quantile, the probability of exceedance or the return
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period of a high level. In Section 5, we present some of the results of a large-scale
Monte-Carlo simulation related with the behaviour of the non-adaptive and adap-
tive estimators under consideration, emphasizing the low coverage probabilities of
bootstrap confidence intervals. Finally, Section 6 is entirely dedicated to the appli-
cation of the algorithm described in Section 4 to the analysis of an environmental
data set.

2 The EVI-estimators under consideration

In the area of EVT, and whenever dealing with large values, a model F is usually
said to be heavy-tailed whenever the right-tail function, F := 1 − F , is a regularly
varying function with a negative index of regular variation, denoted −1/γ , i.e., for
all x > 0, there exists γ > 0, such that

F(t x)/F(t) −→
t→∞ x−1/γ . (2.1)

If Eq. 2.1 holds, we use the notation F ∈ RV−1/γ , with RV standing for regular vari-
ation. For this type of models, and for independent, identically distributed or even
stationary and weakly dependent sequences of random variables (r.v.’s), {Xn}n≥1,
the sequence of maximum values, Xn:n := max(X1, X2, . . . , Xn), linearly normal-
ized, converges weakly towards a non-degenerate r.v., with an extreme value (EV)
distribution function (d.f.),

EVγ (x) = exp
(
−(1 + γ x)−1/γ

)
, x > −1/γ, γ > 0. (2.2)

If Eq. 2.1 holds, we are working in the whole domain of attraction (for maxima) of
EVγ , in Eq. 2.2, denoted D+

M ≡ DM
(
EVγ

)
γ>0. Equivalently, with

U (t) := F←(
1 − 1/t

) = inf {x : F(x) ≥ 1 − 1/t}

denoting a reciprocal quantile function, we have the validity of the so-called f irst-
order condition,

F ∈ D+
M ⇐⇒ F ∈ RV−1/γ ⇐⇒ U ∈ RVγ . (2.3)

For these heavy-tailed parents, given a sample Xn := (X1, X2, . . . , Xn) and the
associated sample of ascending o.s.’s, (X1:n ≤ X2:n ≤ · · · ≤ Xn:n), the classical EVI
estimator is the Hill (H) estimator (Hill 1975),

H(k) ≡ Hk,n := 1

k

k∑

i=1

{ln Xn−i+1:n − ln Xn−k:n}, (2.4)
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the average of the k log-excesses over a high random threshold Xn−k:n , which needs
to be an intermediate o.s., i.e., k needs to be such that

k ≡ kn → ∞ and k/n → 0, as n → ∞. (2.5)

But, as mentioned before, the Hill-estimator H(k), in Eq. 2.4, reveals usually a
high non-null asymptotic bias at optimal levels. Hence the importance of RB EVI-
estimators and, among them, of the second-order minimum-variance reduced-bias
(MVRB) EVI-estimators in Caeiro et al. (2005) and Gomes et al. (2007, 2008c),
which outperform the Hill estimator for all k. For technical reasons, essentially
related with the erratic estimation of the second-order parameter ρ, whenever ρ = 0,
but also to get full information on the dominant component of the asymptotic bias of
the RB EVI-estimators, we then need to work in a region slightly more restrict than
D+
M. In this paper, we shall consider parents such that, as t → ∞, the third-order

condition,

U (t) = Ctγ
(
1 + A(t)/ρ + ηA2(t) + o(A2(t))

)
, A(t) =: γβtρ, (2.6)

holds, with γ > 0, ρ < 0, and β, η 
= 0, where β and η can more generally be
slowly varying functions, i.e., elements of RV0. Note that for models in Eq. 2.6, the
slowly varying function L(t), in U (t) = tγ L(t), behaves approximately as a con-
stant. Consequently, no deviation that has slowly varying components going towards
infinity or zero is allowed. The class in Eq. 2.6 is however a wide class of models,
that contains most of the heavy-tailed parents useful in applications, like the Fréchet,
the generalized Pareto and the Student-tν , with ν degrees of freedom.

The most simple class of second-order MVRB EVI-estimators is the one in Caeiro
et al. (2005), used for a semi-parametric estimation of ln VaRp in Gomes and Pestana
(2007b), with VaRp standing for the Value-at-Risk at the level p, the size of the
loss occurred with a small probability p. This class of EVI-estimators, here denoted
H ≡ H(k), is the CVRB-estimator associated with the Hill estimator, H ≡ H(k), in
Eq. 2.4, and depends upon the estimation of the second-order parameters (β, ρ), in
Eq. 2.6. Its functional form is

H(k) ≡ Hk,n;β̂,ρ̂
:= H(k)

(
1 − β̂(n/k)ρ̂/(1 − ρ̂)

)
, (2.7)

where (β̂, ρ̂) is an adequate consistent estimator of (β, ρ). Algorithms for the esti-
mation of (β, ρ) are provided, for instance, in Gomes and Pestana (2007a, b), and
one of them will be reformulated in the Algorithm presented in Section 4.2 of this
paper.

Apart from the Hill estimator, in Eq. 2.4, we suggest the consideration of two other
classical estimators, valid for all γ ∈ R, but considered here exclusively for heavy
tails, the moment (Dekkers et al. 1989) and the generalized-Hill (Beirlant et al. 1996,
2005) estimators. The moment estimator, M ≡ M(k), has the functional expression

M(k) ≡ Mk,n := M (1)
k,n + 1

2

{
1 − (

M (2)
k,n/

(
M (1)

k,n

)2 − 1
)−1

}
, (2.8)
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with

M ( j)
k,n := 1

k

k∑

i=1

(
ln Xn−i+1:n − ln Xn−k:n

) j
, j ≥ 1, (2.9)

M (1)
k,n ≡ H(k), in Eq. 2.4. The generalized Hill estimator, G H ≡ G H(k), is defined

for k = 2, . . . , n − 1, and it is given by

G H(k) ≡ G Hk,n := 1

k

k∑

j=1

ln U Hj,n − ln U Hk,n,

U Hj,n := Xn− j :n Hj,n, 1 ≤ j ≤ k, (2.10)

with Hk,n defined in Eq. 2.4. To enhance the similarity between the moment estima-
tor, in Eq. 2.8, and the generalized Hill estimator, in Eq. 2.10, we can also write an
asymptotically equivalent expression for G H(k), given by

G H∗(k) := Hk,n + 1

k

k∑

i=1

{
ln Hi,n − ln Hk,n

}
. (2.11)

This means that Hk,n ≡ M (1)
k,n is estimating γ + := max(0, γ ), both in Eqs. 2.8

and 2.11, whereas γ − := min(0, γ ) = γ − γ + is being estimated differently.
The associated bias-corrected moment (M) and generalized Hill (G H ) estimators

have similar expressions, due to the same dominant component of asymptotic bias
of the estimators in Eqs. 2.8 and 2.10, whenever the EVI is positive (see Gomes and
Neves 2008, among others). Denoting generally W , either M or G H , and with the
notation W for either M or G H , we get

W (k) ≡ W k,n;β̂,ρ̂
:= W (k)

(
1 − β̂ (n/k)ρ̂ /(1 − ρ̂)

)
− β̂ ρ̂ (n/k)ρ̂ /(1 − ρ̂)2.

(2.12)

In the sequel, we generally denote C any of the classical EVI-estimators, in Eqs. 2.4,
2.8 and 2.10, and C the associated CVRB-estimator.

Remark 2.1 As we shall see later on, in Section 3, the most interesting feature of
the CVRB estimators, C(k), lies on the fact that they are no longer alternatives
to the classical estimators, C(k), only at optimal levels, as often happens with
other RB EVI-estimators. They overpass the associated classical estimators for all
k-thresholds.

3 Asymptotic behaviour of the estimators

In order to obtain a non-degenerate behaviour for any EVI-estimator, under a
semi-parametric framework, it is convenient to assume a second-order condition,



468 M.I. Gomes et al.

measuring the rate of convergence in the first-order condition, given in Eq. 2.3.
Such a condition involves the above mentioned non-positive parameter ρ, and can be
given by

lim
t→∞

U (t x)/U (t) − xγ

A(t)
= xγ

(
xρ − 1

ρ

)
, (3.1)

for all x > 0, where A(·) is a suitably chosen function of constant sign near infinity.
Then, |A| ∈ RVρ (Geluk and de Haan 1987).

In this paper, as mentioned before and mainly because of the CVRB EVI-
estimators in Eqs. 2.7 and 2.12, generally denoted C(k) ≡ Ck,n;β̂,ρ̂

, we shall
slightly more restrictively assume that the third-order condition in Eq. 2.6 holds.
Then, Eq. 3.1 holds, with A(t) = γβtρ , ρ < 0, the parametrization used in Eq. 2.6.
For the classical H , M and G H estimators, generally denoted C , we know that for
any intermediate sequence k, as in Eq. 2.5, and under the validity of the second-order
condition in Eq. 3.1,

C(k)
d= γ + σC ZC

k√
k

+ bC,1 A(n/k)
(
1 + op(1)

)
, (3.2)

where

σH = γ, bH,1 = 1

1 − ρ
, σM = σG H =

√
γ 2 + 1,

bM,1 = bG H,1 = γ (1 − ρ) + ρ

γ (1 − ρ)2
= 1

1 − ρ
+ ρ

γ (1 − ρ)2
, (3.3)

being ZC
k asymptotically standard normal r.v.’s (de Hann and Peng 1998; Dekkers

et al. 1989; Beirlant et al. 1996, 2005). See also de Haan and Ferreira (2006).
Moreover, if we consistently estimate (β, ρ), through (β̂, ρ̂), in such a way that
ρ̂ − ρ = op(1/ ln n),

C(k)
d= γ + σC ZC

k√
k

+ op(A(n/k)), (3.4)

again under the validity of the second-order condition, in Eq. 3.1, and with σC already
mentioned in Eqs. 3.2 and 3.3.

The above mentioned properties, together with trivial adaptations of the results
in Caeiro et al. (2005, 2009) and Gomes et al. (2008d), for H , and Gomes et al.
(2008b), for M , enable us to state, the following theorem, again for models with a
positive EVI. We shall include in the statement of the theorem both the classical and
the associated CVRB estimators.

Theorem 3.1 Assume that condition (3.1) holds, and let k ≡ kn be an intermediate
sequence, i.e., Eq. 2.5 holds. Then C(k) is consistent for the estimation of γ . More-
over, there exist a sequence ZC

k of asymptotically standard normal r.v.s, and real
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numbers σC > 0 and bC,1 , given in Eq. 3.3, such that the asymptotic distributional
representation in Eq. 3.2 holds.

If we further assume that Eq. 2.6 holds, there exists an extra real number bC,2 ,
such that we can write

C(k)
d= γ + σC ZC

k√
k

+ bC,1 A(n/k) + bC,2 A2(n/k)
(
1 + op(1)

)
. (3.5)

If under the validity of the second-order condition in Eq. 3.1, we estimate β and ρ

consistently through β̂ and ρ̂, in such a way that ρ̂ −ρ = op(1/ ln n), the asymptotic
distributonal representation in Eq. 3.4 holds. Under the validity of Eq. 2.6, we can
guarantee that there exists a pair of real numbers (b

C,1
, b

C,2
), but with b

C,1
= 0, ∀C,

such that for adequate k values of an order up to k such that
√

k A2(n/k) → λA ,
f inite,

C(k)
d= γ + σC ZC

k√
k

+ b
C,1

A(n/k) + b
C,2

A2(n/k) (1 + op(1))

d= γ + σC ZC
k√

k
+ b

C,2
A2(n/k) (1 + op(1)). (3.6)

Proof The proof of the theorem for H , in Eq. 2.7, follows from the above mentioned
papers. For the W estimators, in Eq. 2.12, the proof can also be performed along the
same lines. If we estimate consistently β and ρ through the estimators β̂ and ρ̂ in the
conditions of the theorem, we may use Cramer’s delta-method, and write,

W k,n,β̂,ρ̂
= Wk,n ×

(
1 − β

1 − ρ

(n

k

)ρ − (
β̂ − β

) 1

1 − ρ

(n

k

)ρ

(1 + op(1))

− β

1 − ρ

(
ρ̂ − ρ

) (n

k

)ρ ( 1

1 − ρ
+ ln(n/k)

)
(1 + op(1))

)
− β ρ

(1 − ρ)2

(n

k

)ρ

−
{
(β̂−β)

ρ

(1−ρ)2

(n

k

)ρ + β(ρ̂−ρ)

1−ρ

(n

k

)ρ (ρ ln(n/k)

1−ρ
+3−ρ

)}
(1+op(1)).

We can then guarantee the existence of real values uW and vW such that

W k,n,β̂,ρ̂

d= W k,n,β,ρ− A(n/k)

1 − ρ

(

uW

(
β̂ − β

β

)

+ vW (ρ̂ − ρ) ln(n/k)

)

(1+op(1)).

The reasoning is then quite similar to the one used in Gomes et al. (2008d) for the
H -estimator. Since β̂ and ρ̂ are consistent for the estimation of β and ρ, respectively,
and (ρ̂ − ρ) ln(n/k) = op(1), the last summand is obviously op(A(n/k)), and can
even be op(A2(n/k)).

Remark 3.1 Note that the values of bH,1 , bM,1 and bG H,1 , in Eq. 3.3, provide an easy
heuristic justification for the CVRB estimators in Eqs. 2.7 and 2.12.
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Remark 3.2 Only the external estimation of both β and ρ at a level k1, adequately
chosen, and the estimation of γ at a level k = o(k1), or at a specific value k = O(k1),
can lead to a CVRB estimator, with an asymptotic variance σ 2

C
. Such a choice of k

and k1 is theoretically possible, as shown in Gomes et al. (2008d) and in Caeiro
et al. (2009), but under conditions difficult to guarantee in practice. As a compro-
mise between theoretical and practical results, and with [x] denoting, as usual, the
integer part of x , we have so far advised any choice k1 = [n1−ε], with ε small
(see Caeiro et al. 2005, 2009; Gomes et al. 2007, 2008b, among others). Later
on, in the algorithm described in Section 4, we shall consider ε = 0.001, i.e.,
k1 = [n0.999]. Then we get

√
k1 A(n/k1) → ∞ if and only if ρ > −499.5, an

almost irrelevant restriction in the class defined in Eq. 2.6. We can then guarantee
that ρ̂ − ρ = op(1/ ln n), and the above mentioned behaviour, described in Theorem
3.1, for the reduced-bias EVI-estimators. Note that the above mentioned condition,√

k1 A(n/k1) → ∞, is necessary for a consistent estimation of the second-order
parameters β and ρ. The estimation of γ , β and ρ at the same value k would lead to a
high increase in the asymptotic variance of the RB-estimators Ck,n;β̂,ρ̂

, which would

become σ 2
C

((1 − ρ)/ρ)4 (see Feuerverger and Hall 1999; Beirlant et al. 1999; Peng
and Qi 2004, also among others). The external estimation of ρ at k1, but the estima-
tion of γ and β at the same k = o(k1), enables a slight decreasing of the asymptotic
variance to σ 2

C
((1 − ρ)/ρ)2, stilll greater than σ 2

C
(see Gomes and Martins 2002,

again among others). However, even in such cases, the results in Section 4 are still
valid.

Remark 3.3 Let k = kn be intermediate and such that
√

k A(n/k) → λ, finite, the
type of levels k where the MSE of C(k) is minimum. Let γ̂ (k) denote either C(k) or
C(k). Then

√
k
(
γ̂ (k) − γ

) d−→
n→∞ Normal

(
λ bγ̂ ,1, σ 2

C

)
,

even if we work with the CVRB EVI-estimators, and we thus get asymptotically a
null mean value (b

C,1
= 0). Since bC,1 
= 0 whereas b

C,1
= 0, the C-estimators

Fig. 1 Typical patterns of
asymptotic variances (Var),
squared bias (BIAS2) and MSE
of a classical EVI-estimator,
C , and associated
CVRB estimator, C

0 0.5 1

BIAS
C
2

BIASC
2

VarC VarC

MSEC

MSEC

r = k / n
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outperform the C-estimators for all k, as illustrated in Fig. 1, where we picture the
patterns of the asymptotic variance γ 2/k, for γ = 1 and n = 1000, as well as the
squared bias and the mean squared error of C = H and C = H , for a Fréchet parent
with γ = 1 (ρ = −1, η = −1/3). Then bH,1 = 0.5 and b

H ,2
= 0.306 (see Caeiro

and Gomes 2011, for details on the expression of b
H ,2

, there denoted b
H

). Similar
results were obtained for other values of the parameters, other underlying parents,
other pairs (C, C) of EVI-estimators, and we can claim that such a picture is related
with a typical pattern of these estimators.

Under the conditions of Theorem 3.1, if
√

k A(n/k) → ∞, with
√

k A2(n/k) →
λA , finite, the type of levels k where the MSE of C(k) is minimum, then

√
k

(
C(k) − γ

) d−→
n→∞ Normal

(
λA b

C,2
, σ 2

C

)
.

Remark 3.4 If the second-order condition in Eq. 3.1 holds with ρ = 0, the ρ-
estimators used in this paper, although consistent, do not work as nicely as for the
case ρ < 0, but the Hill EVI-estimator works also very badly. Consequently, even
under such conditions, any of the CVRB estimators, C(k), works better than the
classical one, C(k), for all k.

4 Adaptive classical and CVRB EVI-estimation

With AMSE standing for “asymptotic MSE”, γ̂ denoting either C or C ,

k0|γ̂ (n) := arg min
k

MSE(γ̂ (k)), (4.1)

and

kA|γ̂ (n) := arg min
k

AMSE
(
γ̂ (k)

)
(4.2)

we get, on the basis of Eqs. 3.5 and 3.6,

kA|γ̂ (n) = arg min
k

⎧
⎪⎨

⎪⎩

(
σ 2

γ̂
/k + b2

γ̂ ,1
A2(n/k)

)
if γ̂ = C

(
σ 2

γ̂
/k + b2

γ̂ ,2
A4(n/k)

)
if γ̂ = C

= k0|γ̂ (n)(1 + o(1)).

The bootstrap methodology can thus enable us to consistently estimate the optimal
sample fraction (OSF), k0|γ̂ (n)/n, with k0|γ̂ (n) defined in Eq. 4.1, on the basis of a
consistent estimator of kA|γ̂ (n), in Eq. 4.2, in a way similar to the one used in Draisma
et al. (1999), Danielsson et al. (2001) and Gomes and Oliveira (2001), for the classi-
cal adaptive EVI estimation, performed through the classical EVI-estimators, C(k),



472 M.I. Gomes et al.

and for second-order reduced-bias estimation in Gomes et al. (2011). We shall here
use the auxiliary statistics

Tk,n ≡ T (k|γ̂ ) ≡ Tk,n|γ̂ := γ̂ ([k/2]) − γ̂ (k), k = 2, . . . , n − 1, (4.3)

which converge in probability to zero, for intermediate k, and have an asymptotic
behaviour strongly related with the asymptotic behaviour of γ̂ (k). Indeed, under the
above-mentioned third-order framework in Eq. 2.6, we get

T (k|γ̂ )
d= σ

γ̂
P γ̂

k√
k

+
⎧
⎨

⎩

b
γ̂ ,1(2

ρ − 1) A(n/k)(1 + op(1)) if γ̂ = C

b
γ̂ ,2(2

2ρ − 1) A2(n/k)(1 + op(1)) if γ̂ = C,

with P γ̂

k asymptotically standard normal.
Consequently, denoting k0|T (n) := arg mink MSE(Tk,n), we have

k0|γ̂ (n) = k0|T (n) ×

⎧
⎪⎨

⎪⎩

(1 − 2ρ)
2

1−2ρ (1 + o(1)) if γ̂ = C

(
1 − 22ρ

) 2
1−4ρ (1 + o(1)) if γ̂ = C .

(4.4)

4.1 The resampling methodology in action

How does the resampling methodology then work? Given the sample Xn =
(X1, . . . , Xn) from an unknown model F , and the functional in Eq. 4.3, Tk,n =:
φk(Xn), 1 < k < n, consider for any n1 = O(n1−ε), 0 < ε < 1, the bootstrap
sample

X∗
n1

= (
X∗

1, . . . , X∗
n1

)
,

from the model

F∗
n (x) = 1

n

n∑

i=1

I[Xi ≤x],

the empirical d.f.associated with the available sample, Xn .
Next, associate to the bootstrap sample the corresponding bootstrap auxiliary

statistic, T ∗
k1,n1

:= φk1(X∗
n1

), 1 < k1 < n1. Then, with k∗
0|T (n1) = arg mink1

MSE
(
T ∗

k1,n1

)
,

k∗
0|T (n1)

k0|T (n)
=

(n1

n

)− cρ
1−cρ

(1 + o(1)), c =
{

2 if γ̂ = C
4 if γ̂ = C .



Adaptive estimation of heavy right tails: resampling-based methods in action 473

Consequently, for another sample size n2, and for every α > 1,
(
k∗

0|T (n1)
)α

k∗
0|T (n2)

=
(

nα
1

nα

n

n2

)− cρ
1−cρ (

k0|T (n)
)α−1

(1 + o(1)).

It is then enough to choose n2 = [n (n1/n)α], in order to have independence of ρ. If
we put n2 = [n2

1/n], i.e., α = 2, we have

(
k∗

0|T (n1)
)2

/k∗
0|T (n2) = k0|T (n)(1 + o(1)), as n → ∞. (4.5)

On the basis of Eq. 4.5, we are now able to consistently estimate k0|T and next
k0|γ̂ through Eq. 4.4, on the basis of any estimate ρ̂ of the second-order parameter ρ.

With k̂∗
0|T denoting the sample counterpart of k∗

0|T , and ρ̂ an adequate ρ-estimate, we
thus have the k0-estimate

k̂∗
0|γ̂ ≡ k̂0|γ̂ (n; n1) :=min

(
n−1,

[
cρ̂

(
k̂∗

0|T (n1)
)2

/k̂∗
0|T

([
n2

1/n
]+1

)]+1
)
, (4.6)

with

cρ̂ =
{
(1 − 2ρ̂ )

2
1−2ρ̂ if γ̂ = C

(1 − 22ρ̂ )
2

1−4ρ̂ if γ̂ = C .

The adaptive estimate of γ is then given by

γ̂ ∗ ≡ γ̂ ∗
n,n1|T := γ̂ (k̂0|γ̂ (n; n1)). (4.7)

4.2 Algorithm for adaptive EVI-estimation through C and C

Again, with γ̂ denoting any of the estimators C or C , we proceed with the description
of the algorithm for the adaptive estimation of γ , where in Steps 1., 2. and 3. we
reproduce the algorithm provided in Gomes and Pestana (2007b) for the estimation
of the second-order parameters β and ρ.

Algorithm

1. Given an observed sample (x1, . . . , xn), compute, for the tuning parameters
τ = 0 and τ = 1, the observed values of ρ̂τ (k), the most simple class of
estimators in Fraga Alves et al. (2003). Such estimators depend on the statistics

V (τ )
k,n :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
M (1)

k,n

)
−

(
M (2)

k,n/2
)1/2

(
M (2)

k,n/2
)1/2 −

(
M (3)

k,n/6
)1/3

if τ = 1

ln
(

M (1)
k,n

)
− 1

2 ln
(

M (2)
k,n/2

)

1
2 ln

(
M (2)

k,n/2
)

− 1
3 ln

(
M (3)

k,n/6
) if τ = 0,
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where M ( j)
k,n , j = 1, 2, 3, are given in Eq. 2.9, and have the functional form

ρ̂τ (k) := min

(
0,

3(V (τ )
k,n − 1)

V (τ )
k,n − 3

)
. (4.8)

2. Consider
{
ρ̂τ (k)

}
k∈K, with K = ([n0.995], [n0.999]), compute their median,

denoted χτ , and compute Iτ := ∑
k∈K

(
ρ̂τ (k) − χτ

)2, τ = 0, 1. Next choose
the tuning parameter τ ∗ = 0 if I0 ≤ I1; otherwise, choose τ ∗ = 1.

3. Work with ρ̂ ≡ ρ̂τ∗ = ρ̂τ∗(k1) and β̂ ≡ β̂τ∗ := β̂ρ̂τ∗ (k1), with k1 = [n0.999],
being β̂ρ̂ (k) the estimator in Gomes and Martins (2002), given by

β̂ρ̂ (k) :=
(

k

n

)ρ̂ dk(ρ̂) Dk(0) − Dk(ρ̂)

dk(ρ̂) Dk(ρ̂) − Dk(2ρ̂)
, (4.9)

dependent on the estimator ρ̂ = ρ̂τ∗(k1), and where, for any α ≤ 0,

dk(α) := 1

k

k∑

i=1

(
i

k

)−α

and Dk(α) := 1

k

k∑

i=1

(
i

k

)−α

Ui ,

with

Ui = i
(

ln
Xn−i+1:n
Xn−i :n

)
, 1 ≤ i ≤ k < n,

the scaled log-spacings.
4. Compute γ̂ (k), k = 1, 2, . . . , n − 1.
5. Next, consider the sub-sample size n1 = [n0.955] and n2 = [n2

1/n] + 1.
6. For l from 1 till B (number of bootstrap iterations), generate independently,

from the empirical d.f. F∗
n (x) = 1

n

∑n
i=1 I[Xi ≤x] associated with the observed

sample,

(x∗
1 , . . . , x∗

n2
) and

(
x∗

1 , . . . , x∗
n2

, x∗
n2+1, . . . , x∗

n1

)
,

bootstrap samples of sizes n2 and n1, respectively.
7. Denoting T ∗

k,n the bootstrap counterpart of Tk,n , in Eq. 4.3, obtain, for 1 ≤ l ≤
B, t∗k,n1,l

, 1 < k < n1, t∗k,n2,l
, 1 < k < n2, the observed values of the statistic

T ∗
k,ni

, i = 1, 2, and compute

MSE∗(ni , k) = 1

B

B∑

l=1

(
t∗k,ni ,l

)2
, k = 2, . . . , ni − 1.

8. Obtain k̂∗
0|T (ni ) := arg min1<k<ni MSE∗(ni , k), i = 1, 2.

9. Compute k̂∗
0|γ̂ ≡ k̂0|γ̂ (n; n1), given in Eq. 4.6.

10. Compute γ̂ ∗ ≡ γ̂ ∗
n,n1|T , given in Eq. 4.7.
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In order to obtain a final adaptive estimate of γ on the basis of one of the esti-
mators under consideration, we still suggest the estimation of the MSE of any of
the EVI-estimators at the bootstrap k0-estimate, in Step 9., say the estimation of
MSE(γ̂ (k̂∗

0γ̂
)), with γ̂ ∈ {

H, H , M, M, G H, G H
}
, and the choice of the estimate γ̂

for which MSE(γ̂ (k̂∗
0γ̂

)) is minimum, i.e., the consideration of an extra step, after
Step 7.:

7’. For k = 2, . . . , n2 − 1, compute Bias∗(ni , k) = 1
B

∑B
l=1 t∗k,ni ,l

, i = 1, 2.

Finally, we add the extra step:

11. Compute RMSE∗
γ̂

=
√

M̂SE(k̂∗
0|γ̂ |γ̂ ∗), with M̂SE(k̂∗

0|γ̂ |γ̂ ∗) given by

M̂SE
(
k̂∗

0|γ̂ |γ̂ ∗) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(γ̂ ∗)2

k̂∗
0|γ̂

+
( (

Bias∗(n1, k̂∗
0|γ̂

))2

(2ρ̂ − 1)Bias∗(n2, k̂∗
0|γ̂

)
)2

if γ̂ = H

(γ̂ ∗)2

k̂∗
0|γ̂

+
( (

Bias∗(n1, k̂∗
0|γ̂

))2

(22ρ̂ − 1)Bias∗(n2, k̂∗
0|γ̂ )

)2

if γ̂ = H

(γ̂ ∗)2+1

k̂∗
0|γ̂

+
( (

Bias∗(n1, k̂∗
0|γ̂

))2

(2ρ̂ −1)Bias∗(n2, k̂∗
0|γ̂

)
)2

if γ̂ = M or G H

(γ̂ ∗)2+1

k̂∗
0|γ̂

+
( (

Bias∗(n1, k̂∗
0|γ̂ )

)2

(22ρ̂ −1)Bias∗(n2, k̂∗
0|γ̂

)
)2

if γ̂ = M or G H ,

and consider the final estimate, γ̂ ∗∗ := arg minγ̂ ∗ M̂SE(k̂∗
0|γ̂ |γ̂ ∗).

4.3 Remarks on the adaptive classical or CVRB estimation

(i) If there are negative elements in the sample, the value of n, in the Algorithm,
must be replaced by n+ := ∑n

i=1 I[Xi >0], the number of positive elements in
the sample.

(ii) In Step 2. of the Algorithm we are led in almost all situations to the tuning
parameter τ = 0 whenever −1 ≤ ρ < 0 and τ = 1, otherwise. Due to the fact
that bias reduction is really needed when −1 ≤ ρ < 0, we claim again for the
relevance of the choice τ = 0. Whenever we want to refer, in the estimation of
γ through any of the reduced-bias estimators, the use of either τ = 0 or τ = 1
in the estimation of the second-order parameter ρ, we shall use the notation
Cτ , for C equal to H or M or G H .

(iii) Regarding second-order parameters’ estimation, attention should also be paid
to the most recent classes of ρ-estimators proposed in Goegebeur et al. (2008,
2010) and in Ciuperca and Mercadier (2010), as well as to the estimators of β

in Caeiro and Gomes (2006) and in Gomes et al. (2010).
(iv) As we shall see later on in Section 5.2, the method is only moderately depen-

dent on the choice of the nuisance parameter n1, in Step 5. of the Algorithm,
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particularly for the MVRB estimators. This enhances the practical value of the
method. Moreover, although aware of the need of n1 = o(n), it seems that,
once again, we get good results up till n, particularly for the MVRB estimator,
H(k), in Eq. 2.7.

(v) The Monte-Carlo procedure in the Steps 6.–10. of the Algorithm can be repli-
cated r1 times if we want to associate standard errors to the OSF and to the
EVI-estimates. The value of B can also be adequately chosen.

(vi) We would like to stress again that the use of the random sample of size n2,
(x∗

1 , . . . , x∗
n2

), and of the extended sample of size n1, (x∗
1 , . . . , x∗

n2
, x∗

n2+1, . . . ,

x∗
n1

), leads us to increase the precision of the result with a smaller B, the num-
ber of bootstrap samples generated. Indeed, if we had generated the sample
of size n1 independently of the sample of size n2, we would have got a wider
confidence interval for the EVI, should we have kept the same value for B. This
is quite similar to the use of the simulation technique of “Common Random
Numbers” in comparison algorithms, when we want to decrease the variance
of a final answer to z = y1 − y2, inducing a positive dependence between y1
and y2.

5 Monte-Carlo simulations

5.1 Non-adaptive estimation

In this section, and comparatively with the behaviour of the classical EVI-estimators
H(k), M(k) and G H(k), in Eqs. 2.4, 2.8 and 2.10, respectively, we are interested in
the finite-sample behaviour, as functions of k, of the CVRB EVI-estimators, H(k)

and W (k), in Eqs. 2.7 and 2.12, respectively, with W denoting either M , with M the
estimator in Eq. 2.8, or G H , with G H the estimator in Eq. 2.10. We have performed
a multi-sample simulation with size 5000 × 10, i.e., 10 replicates with 5000 runs
each. For details on multi-sample simulation refer to Gomes and Oliveira (2001).
The patterns of mean values (E) and root mean squared errors (RMSE) are based on
the first replicate and are considered as a function of h = k/n. We have considered
in this article the following underlying heavy-tailed parents:

I. the Fréchet(γ ) model, with d.f. F(x) = e−x−1/γ
, x > 0, for γ = 0.25

(ρ = −1);
II. the Burr(γ, ρ) model, with d.f. F(x) = 1 − (1 + x−ρ/γ )1/ρ, x > 0, for a few

values of (γ, ρ), the pairs, (0.25, −0.5), (0.25, −1) and (1, −1);
III. the Student’s tν model with ν degrees of freedom, with a probability den-

sity function ftν (t) = �((ν + 1)/2)
(
1 + t2/ν

)−(ν+1)/2
/(

√
πν �(ν/2)), t ∈

R (ν > 0), for which γ = 1/ν and ρ = −2/ν. The illustration will be done
for ν = 4 degrees of freedom, i.e. (γ, ρ) = (0.25, −0.5);

IV. the extreme value EVγ model, with d.f. in Eq. 2.2, for which ρ = −γ . We
shall consider γ = 0.25 (ρ = −0.25) and γ = 1 (ρ = −1);

V. the generalized Pareto G Pγ model, with d.f. G Pγ (x) = 1 − (1 + γ x)−1/γ ,
x > 0, (ρ = −γ, as in IV.), also for γ = 0.25 (ρ = −0.25) and γ = 1
(ρ = −1);
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VI. the Log-gamman model, Y = exp(Gn), where Gn is a Gamma r.v. with proba-
bility density function f (x) = exp(−x) xn−1/�(n), x ≥ 0, a model out of the
class in Eq. 2.6 and even out of Hall-Welsh class of models (Hall and Welsh
1985). We then have γ = 1 and ρ = 0.

5.1.1 Mean values and root mean squared errors patterns

In Fig. 2, as an illustration of the results obtained, we show the simulated pat-
terns of mean values for all the estimators under study, as a function of the sample
fraction h = k/n, for the underlying Fréchet parent, and sample sizes n = 500
and n = 5000. Figure 3 is equivalent to Fig. 2, but with the root mean squared
errors (RMSE) patterns of the estimators. Similar results have been obtained for all
simulated models.

From Fig. 2 it is clear the reduction in bias achieved by any of the reduced-bias
estimators. Such a bias reduction leads to much lower mean squared errors for the
CVRB estimators, as can be seen from Fig. 3.

5.1.2 Relative ef f iciencies and mean values at optimal levels

Given a sample Xn = (X1, . . . , Xn), let us denote S(k) = S(k; Xn) any statistic
or r.v. dependent on k, the number of top o.s.’s to be used in an inferential proce-
dure related with a parameter of extreme events. Just as mentioned before for the
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Fig. 2 Patterns of mean values of the classical estimators H , M and G H , in Eqs. 2.4, 2.8 and 2.10 (top)
and the associated CVRB estimators (bottom), as functions of k/n, for an underlying Fréchet parent with
γ = 0.25 (ρ = −1)
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Fig. 3 Patterns of RMSEs of the classical estimators H , M and G H , in Eqs. 2.4, 2.8 and 2.10 (top)
and the associated CVRB estimators (bottom), as functions of k/n, for an underlying Fréchet parent with
γ = 0.25 (ρ = −1)

Hill estimator H(k), in Eq. 2.4, the OSF for S(k) is denoted k0|S/n, with k0|S :=
arg mink MSE (S(k)). We have obtained, for n = 100, 200, 500, 1000, 2000 and
5000, and with • denoting H or M or G H or H τ or Mτ or G H τ , τ = 0 and 1, the
simulated OSF (OSF•

0 = k0|•/n), bias (BIAS•
0 = E•

0 − γ ) and relative efficiencies
(REFF•

0) of the EVI-estimators under study, at their optimal levels. The search of
the minimum MSE has been performed over the region of k-values between 1 and
[0.9×n]. For any EVI-estimator different from H , generally denoted S, and with the
notation S0 = S(k0|S), the REFFS

0 indicator is

REFFS
0 :=

√
MSE (H0)

MSE (S0)
=: RMSEH

0

RMSES
0

.

As an illustration, we present in Tables 1, 2 and 3, the obtained simulated results for
models with |ρ| < 1 (the generalized Pareto model with γ = 0.25, and consequently
ρ = −γ = −0.25), |ρ| = 1 (the Burr parent with γ = 0.25 and ρ = −1) and |ρ| > 1
(the Student parent with ν = 1, for which γ = 1/ν = 1 and ρ = −2/ν = −2),
respectively. Among the estimators considered, and for all n, the one providing the
smallest squared bias and the smallest MSE, i.e., the highest REFF is underlined and
in bold. The second highest REFF indicators are written in italic and underlined. The
MSE of H0, Hill estimators at their simulated optimal level, is also provided so that
it is possible to recover the MSE of any other EVI-estimator. Moreover, we present
the BIAS0 and REFF0 indicators of the r.v.’s Ck,n;β,ρ at their optimal levels, with
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Table 1 Simulated bias at optimal levels (BIAS•
0), relative efficiency indicators (REFF•

0) and MSE of
H0, for a generalized Pareto G Pγ parent with γ = 0.25 (ρ = −0.25)

n 100 200 500 1000 2000 5000

BIAS•
0

H 0.2352 0.1219 0.0869 0.0991 0.1292 0.0448

H0 0.1979 0.1339 0.1132 0.1007 0.1046 0.0414

H1 0.2347 0.1217 0.0908 0.0991 0.1292 0.0447

M 0.1290 0.0700 0.0801 0.0805 0.0644 0.0239

M0 0.1470 0.0761 0.0840 0.0305 0.0124 0.0082

M1 0.1512 0.0548 0.0801 0.0753 0.0658 0.0160

G H 0.1210 0.0301 0.0646 0.0543 0.0606 0.0097

G H0 0.1169 0.0337 0.0650 0.0567 0.0591 0.0079

G H1 0.1280 0.0243 0.0666 0.0576 0.0557 0.0079

Hβ,ρ 0.0325 0.0256 0.0212 0.0175 0.0102 0.0099

Mβ,ρ 0.0200 0.0098 0.0224 −0.0016 −0.0076 0.0010

G Hβ,ρ 0.0360 0.0177 0.0284 0.0236 0.0226 0.0086

REFF•
0

H0 1.1489 1.1170 1.0880 1.0688 1.0577 1.0421

H1 1.0015 1.0007 1.0003 1.0001 1.0001 1.0000

M 1.0585 1.1600 1.2506 1.3032 1.3479 1.3999

M0 1.3376 1.3194 1.3055 1.4244 1.6963 2.1667

M1 1.0832 1.1549 1.2346 1.2880 1.3334 1.4179

G H 1.3591 1.3605 1.3798 1.3946 1.4166 1.4424

G H0 1.5844 1.4981 1.4313 1.3991 1.3850 1.3767

G H1 1.3654 1.3563 1.3693 1.3851 1.4077 1.4364

Hβ,ρ 4.8574 5.3039 5.8883 6.4205 6.9599 7.7053

Mβ,ρ 4.1515 4.8043 5.2907 5.7535 6.7673 8.6844

G Hβ,ρ 4.6909 4.5833 4.4753 4.4443 4.4596 4.4941

MSE

H0 0.0561 0.0382 0.0238 0.0172 0.0126 0.0084

C = H , M and G H , denoted Hβ,ρ , Mβ,ρ and G Hβ,ρ , respectively, just to make it
clear that in most situations some improvement is still possible with a better estima-
tion of the second-order parameters. Note however, that some times the estimation
of the parameters in the model (if nicely done) accommodates better the statisti-
cal fluctuations in the sample and produces better results than the use of the “true
known values”. Extensive tables for all simulated models as well as 95% confidence
intervals (CIs) associated with all the estimates are available from the authors.

In summary we may draw the following final conclusions:

1. For underlying parents with |ρ| < 1, the highest efficiency is generally achieved
through G H0 for n < 1000 and through M0 otherwise. The highest bias reduc-
tion pattern is not so clear-cut, as can be seen in Table 1, but the results are not a
long way from the ones related with efficiency.
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Table 2 Simulated bias at optimal levels (BIAS•
0), relative efficiency indicators (REFF•

0) and MSE of
H0, for a Burr parent with (γ, ρ) = (0.25,−1)

n 100 200 500 1000 2000 5000

BIAS•
0

H 0.0357 0.0112 0.0293 0.0280 0.0206 0.0115

H0 0.0041 −0.0066 0.0035 −0.0006 −0.0028 −0.0018

H1 0.0289 0.0110 0.0268 0.0278 0.0201 0.0107

M −0.1557 −0.1408 −0.0481 −0.0305 −0.0132 −0.0305

M0 −0.0353 −0.0731 −0.0071 0.0043 −0.0014 −0.0026

M1 −0.1173 −0.1389 −0.0399 −0.0279 −0.0137 −0.0385

G H −0.1581 −0.1364 −0.0514 −0.0395 −0.0200 −0.0403

G H0 −0.0065 −0.0210 0.0038 0.0028 −0.0007 −0.0007

G H1 −0.0223 −0.0354 0.0066 0.0045 −0.0003 −0.0008

Hβ,ρ 0.0206 0.0055 0.0068 0.0055 0.0029 0.0047

Mβ,ρ −0.0438 −0.0760 −0.0078 −0.0023 −0.0037 −0.0042

G Hβ,ρ −0.0026 −0.0199 0.0060 0.0028 −0.0006 −0.0007

REFF•
0

H0 1.9835 2.1260 2.4273 2.6968 2.9520 3.3957

H1 1.0432 1.0381 1.0243 1.0196 1.0159 1.0116

M 0.2648 0.2909 0.3148 0.3289 0.3431 0.3530

M0 0.5120 0.5659 0.6314 0.6826 0.7363 0.8146

M1 0.3168 0.3396 0.3553 0.3631 0.3710 0.3750

G H 0.3287 0.3330 0.3406 0.3463 0.3540 0.3593

G H0 1.2003 1.3118 1.4779 1.6396 1.8180 2.0970

G H1 0.7779 0.8633 0.9711 1.0776 1.2145 1.4126

Hβ,ρ 1.8925 1.9854 2.1210 2.2252 2.3388 2.4827

Mβ,ρ 0.4466 0.4976 0.5544 0.5957 0.6356 0.6875

G Hβ,ρ 1.0802 1.1947 1.3522 1.4988 1.6665 1.9248

MSE

H0 0.0044 0.0026 0.0013 0.0008 0.0005 0.0003

2. Again at optimal levels, and for underlying parents with ρ = −1, the highest
bias reduction as well as the highest efficiency is generally achieved through the
use of H0, followed by G H0. Only for very large values of n, say n ≥ 2000, did
G H0 beat H0 regarding the bias-indicator (refer to Table 2).

3. Almost generally, and for models such that |ρ| ≤ 1, M0 (G H0) works better
than M (G H ). But, for models with |ρ| = 1, M0 never beats H0 regard-
ing efficiency. Regarding bias reduction, G H0 beats H0 for large n, almost
generally.

4. For the range of ρ-values close to zero (−1 ≤ ρ ≤ 0), the use of τ = 1 in H τ

provides results only slightly better than the ones associated with the classical
estimator.



Adaptive estimation of heavy right tails: resampling-based methods in action 481

Table 3 Simulated bias at optimal levels (BIAS•
0), relative efficiency indicators (REFF•

0) and MSE of
H0, for a Student parent with ν = 1 degrees of freedom (γ = 1, ρ = −2)

n 100 200 500 1000 2000 5000

BIAS•
0

H 0.0794 0.1117 0.0936 0.0471 0.0573 0.0254

H0 −0.2632 −0.0608 0.0845 −0.0195 0.0250 −0.0048

H1 −0.1252 0.0222 0.0744 0.0116 0.0390 0.0275

M −0.0142 0.0704 0.0915 0.0240 0.0539 0.0051

M0 −0.2392 −0.0999 0.0018 −0.0820 −0.0390 −0.0849

M1 −0.1865 −0.0235 0.0761 0.0068 0.0380 0.0073

G H −0.0210 0.0503 0.0719 0.0190 0.0421 0.0334

G H0 −0.6775 −0.0997 0.0710 −0.0188 0.0235 0.0179

G H1 −0.6224 −0.0371 0.0667 0.0084 0.0328 0.0301

Hβ,ρ 0.0397 0.0488 0.0479 0.0144 0.0207 0.0152

Mβ,ρ −0.0950 0.0021 0.0198 −0.0128 0.0039 −0.0073

G Hβ,ρ −0.0805 0.0008 0.0413 0.0126 0.0274 0.0310

REFF•
0

H0 0.2359 0.5818 0.9376 0.9826 1.1084 1.3939

H1 0.2073 0.7966 1.1590 1.1583 1.1593 1.1641

M 0.7932 0.8668 0.9151 0.9234 0.9232 0.9273

M0 0.2145 0.5045 0.7283 0.7116 0.6741 0.6095

M1 0.1895 0.6698 0.9660 0.9962 1.0299 1.0676

G H 1.0459 1.0683 1.0600 1.0469 1.0266 1.0102

G H0 0.2969 0.5618 0.9363 0.9948 1.1002 1.3348

G H1 0.2705 0.7593 1.1151 1.1165 1.1260 1.1406

Hβ,ρ 1.3399 1.4229 1.5261 1.6359 1.7199 1.8236

Mβ,ρ 0.9507 1.1146 1.2612 1.3644 1.4499 1.5628

G Hβ,ρ 1.1897 1.3858 1.4854 1.5209 1.5228 1.5304

MSE

H0 0.0693 0.0370 0.0166 0.0095 0.0053 0.0025

5. For underlying parents with ρ < −1, bias-reduced estimators work only for large
n, say n ≥ 500. Then the highest efficiency is generally achieved through the use
of H1, followed by G H1. Again, and even worse than for the case |ρ| < 1, the
highest bias reduction pattern is not clear-cut, as can be seen in Table 3.

5.2 Adaptive estimation

In order to better understand the performance of the adaptive bootstrap estimates as
well as of bootstrap CIs, we have run Steps 6.–10. of the Algorithm in Section 4.2,
r1 = 100 times, for the models considered in Section 5.1, and for B = 250. The
overall estimates of γ , denoted H∗, H

∗
τ , M∗, M

∗
τ , G H∗ and G H

∗
τ , τ = 0 or 1, are

the averages of the corresponding r1 partial estimates.
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Fig. 4 Bootstrap adaptive
EVI-estimates as a function of
the sample size n, for data
simulated from a Fréchet parent
with γ = 0.25 (ρ = −1)
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5.2.1 Bootstrap EVI-estimates and CIs

In Fig. 4, and as an illustration of the overall simulated behaviour of the bootstrap
adaptive estimates, γ̂ ∗, with γ̂ = H, M, G H, H 0, M0 and G H0, we present, for a
Fréchet model with γ = 0.25, the bootstrap adaptive EVI-estimates, as a function of
the sample size n. The method works asymptotically, as can be seen from Fig. 4. But
it also works for small n, particularly if we take into account the estimate H

∗
0.

Those estimates are also given in Table 4, with associated standard errors provided
between parenthesis, close to the estimates, at the first row of each entry. In the
second row of each entry, we present the 99% bootstrap CIs. These bootstrap CIs
are based on the quantiles of probability 0.005 and 0.995 of the r1 = 100 partial

Table 4 Bootstrap adaptive estimates of γ through the classical C estimators, and the associated CVRB
estimators Cτ , with τ = 0, for C = H, M and G H and for an underlying Fréchet parent, with γ = 0.25
(ρ = −1)

H∗ H
∗
0 M∗ M

∗
0 G H∗ G H

∗
0

n = 100
0.326 (0.0079) 0.251 (0.0044) 0.190 (0.0248) 0.205 (0.0139) 0.118 (0.1081) 0.213 (0.0815)

(0.3003, 0.3416) (0.2289, 0.2587) (0.1122, 0.2452) (0.1867, 0.2620) (−0.0689, 0.2798) (−0.0635, 0.2993)
n = 200

0.294 (0.0136) 0.244 (0.0075) 0.123 (0.0201) 0.194 (0.0351) 0.066 (0.1083) 0.172 (0.1281)
(0.2758, 0.3181) (0.2106, 0.2521) (0.0804, 0.1668) (0.1548, 0.2936) (−0.3605, 0.1823) (−0.3409, 0.2759)

n = 500
0.281 (0.0196) 0.239 (0.0031) 0.122 (0.0127) 0.219 (0.0068) 0.087 (0.0783) 0.147 (0.1205)

(0.2404, 0.3080) (0.2332, 0.2457) (0.0854, 0.1561) (0.2045, 0.2297) (−0.1410, 0.1653) (−0.1853, 0.2566)
n = 1000

0.286 (0.0021) 0.240 (0.0008) 0.197 (0.0061) 0.246 (0.0063) 0.119 (0.1442) 0.210 (0.1210)
(0.2819, 0.2905) (0.2382, 0.2414) (0.1841, 0.2181) (0.2370, 0.2626) (−0.4448, 0.2032) (−0.4258, 0.2627)

n = 2000
0.253 (0.0092) 0.254 (0.0004) 0.197 (0.0073) 0.258 (0.0023) 0.197 (0.1327) 0.263 (0.0931)

(0.2529, 0.2548) (0.2233, 0.2626) (0.1885, 0.2172) (0.2436, 0.2645) (−0.0766, 0.6833) (0.1698, 0.7219)
n = 5000

0.254 (0.0159) 0.246 (0.0023) 0.179 (0.0041) 0.256 (0.0082) 0.177 (0.1032) 0.234 (0.0422)
(0.2501, 0.2578) (0.2430, 0.2541) (0.1751, 0.1938) (0.2301, 0.2665) (−0.0951, 0.4413) (0.1593, 0.2788)
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bootstrap estimates, and are written in italic whenever they do not cover the true
value of γ , with the upper limit smaller than γ (underestimation). They are written in
italic and underlined, whenever they do not cover the true value of γ , with the lower
limit larger than γ (overestimation).

A few comments on the bootstrap adaptive EVI-estimates and CIs:

• Almost generally, the bootstrap M∗ and G H∗-estimates provide a system-
atic under-estimation of γ , which is compensated by the consideration of the
associated CVRB-estimates.

• On another side, and except for EVγ underlying parents, the bootstrap H∗-
estimates provide a systematic over-estimation of γ , which is again compensated
by the consideration of the associated CVRB-estimates, H

∗
. Moreover, for sev-

eral values of n, the bootstrap 99% CIs, associated with the H∗-estimates, have
lower limits above γ .

• The 99% bootstrap CIs associated with G H
∗

do always cover the true value of
γ , but at expenses of very large sizes. Moreover, and despite of the volatility of
the simulated G H∗ estimates, some of the associated 99% bootstrap CIs have
upper limits below γ .

• In general, and despite of a slight under-estimation for a few values of n and
some of the simulated parents, the results are clearly in favour of the bootstrap
H

∗
-estimation procedure. However, the performance of M

∗
is also interest-

ing for most of the simulated underlying parents, particularly for large sample
size n.

5.2.2 Sensitivity of the algorithm to the subsample size n1

In order to detect the sensitivity of the algorithm to changes of n1, we have run
it for values of n1 = [na], a = 0.950(0.005)0.995. In Figs. 5 and 6, and again
as an illustration, we present for the same Fréchet underlying parent, the bootstrap
γ -estimates as a function of a, for n = 200 and n = 2000, respectively.

A few comments on the results:

• As expected, and due to the fact that the method works asymptotically, there is a
general improvement in the estimation as the sample size, n, increases.

• The sensitivity of the Algorithm in Section 4.2 to the nuisance parameter n1 is
weak for H∗, H

∗
, M∗ and M

∗
, particularly if n is large. Such a dependency is

however not so weak for both G H∗ and G H
∗
.
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Fig. 5 Bootstrap adaptive EVI-estimates, for samples of size n = 200 from a Fréchet parent with γ = 0.25
(ρ = −1)
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Fig. 6 Bootstrap adaptive EVI-estimates, for samples of size n = 2000 from a Fréchet parent with γ =
0.25 (ρ = −1)

5.2.3 Bootstrap CIs’ sizes and coverage probabilities

Due to the reasonably high number of bootstrap 99% CIs not covering the true value
of γ (see Table 4), we felt the need and the curiosity of analyzing the performance
of these bootstrap CIs, on the basis of a terribly time-consuming computer program.
More specifically, in order to obtain information on the coverage probabilities and
on the sizes of the bootstrap CIs, we have also run r2 = 100 times, the whole
algorithm in Section 4.2, after the r1 = 100 replicates of Steps 6.– 10., suggested
in Section 5.2. This is a terrible time-consuming algorithm, and we have thus run
it only for small values of n. Again as an illustration, we provide in Table 5, for
a Student t2 underlying parent and for n = 100, 200 and 1000, the overall EVI-
estimates, the sizes of the 99% bootstrap CIs and the coverage probabilities of those
CIs, in the first, second and third row, respectively. The overall EVI-estimate closer
to the target, the minimum size and the maximum coverage probability are written
in bold.

Table 5 Overall EVI-estimates (f irst row), sizes (second row) and percentage coverage probabilities (third
row) of the 99% bootstrap CI’s for γ , obtained on the basis of the classical C estimators, and the associated
CVRB estimators Cτ , with τ = 0 and τ = 1, for C = H, M and G H and for an underlying Student tν
parent, with ν = 2 (γ = 1/ν = 0.5, ρ = −2/ν = −1)

H∗ H
∗
0 H

∗
1 M∗ M

∗
0 M

∗
1 G H G H

∗
0 G H

∗
1

n = 100

0.5751 0.4882 0.5885 0.4010 0.4238 0.4042 0.4753 0.4815 0.5427

0.1880 0.1427 0.2443 0.2431 0.2354 0.3850 0.6440 0.4842 0.5974

29% 31% 35% 27% 31% 36% 54% 44% 55%

n = 200

0.5648 0.4898 0.5881 0.4362 0.4406 0.4704 0.4800 0.4818 0.5366

0.1573 0.1154 0.1899 0.17320 0.1722 0.2323 0.7195 0.5486 0.6544

29% 34% 31% 33% 36% 46% 64% 52% 67%

n = 1000

0.5479 0.4994 0.5623 0.4877 0.4702 0.4965 0.5362 0.5220 0.5772

0.1139 0.0862 0.1327 0.1315 0.1396 0.2705 1.2217 0.7944 1.0453

28% 40% 27% 30% 31% 55% 82% 84% 81%
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A few general comments:

• We need to be careful with the use of bootstrap CIs. We can indeed get very
small coverage probabilities, comparatively with the target value, 0.99.

• Large coverage probabilities are attained only by the bootstrap G H∗ and G H
∗

estimates, but at expenses of a very large size.
• As expected, and in general, there is a decreasing trend in the sizes, as n

increases, and a slight increasing trend in the coverage probabilities. However,
in some cases, the coverage probabilities decrease with n.

• As a compromise between size and coverage probability, we are inclined to the
choice of H

∗
0 whenever |ρ| ≤ 1 and M

∗
1 for models with |ρ| > 1. Indeed, these

bootstrap EVI-estimates are quite close to the target γ .

6 An application to burned areas data

Most of the wildfires are extinguished within a short period of time, with almost
negligible effects. However, some wildfires go out of control, burning hectares of
land and causing significant and negative environmental and economical impacts.
The data we analyse here consists of the number of hectares, exceeding 100 ha,
burnt during wildfires recorded in Portugal during 14 years (1990–2003). The data (a
sample of size n = 2627) do not seem to have a significant temporal structure, and
we have used the data as a whole, although we think also sensible, to try avoiding
spatial heterogeneity, the consideration of at least 3 different regions: the north, the
centre and the south of Portugal (a study out of the scope of this paper). Also, it would
be nice to have some kind of model diagnosis to build up the confidence that Eq. 2.6
holds for a real data set, a topic out of the scope of this paper. However, and on the
basis of simulation results, we are confident on the robustness of the methodology in
this paper to a possible model misspecification.

The box-plot and the Pareto quantile plot of the available data, in Fig. 7, provide
evidence on the heaviness of the right tail.
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Fig. 7 Box-and-whiskers plot (left) and Pareto quantile plot (right) associated with burned areas in
Portugal over 100 ha (1990–2003)
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Fig. 8 Estimates of the shape second-order parameter ρ and of the scale second-order parameter β for the
burned areas data

In Fig. 8, we present the sample path of the ρ̂τ (k) estimates in Eq. 4.8, as function
of k, for τ = 0, together with the sample paths of the associated β-estimators in
Eq. 4.9, also for τ = 0, the value obtained in the Algorithm of Section 4.2 for the
tuning parameter τ . We have been led to the ρ-estimate, ρ̂ ≡ ρ̂0 = −0.39, obtained
at the level k1 = [n0.999] = 2606, and to the associated β-estimate, β̂ ≡ β̂0 = 0.47,
both recorded in Fig. 8.

Next, in Fig. 9, we present the adaptive and non-adaptive EVI-estimates provided
by H and associated MVRB estimates H (left), as well as M , G H and the associated
CVRB estimates, M and G H (right).

For the Hill estimator, we have simple techniques to estimate the OSF. Indeed, we

get k̂ H
0 (n) =

[(
(1 − ρ̂)2n−2ρ̂/

( − 2 ρ̂ β̂2
))1/(1−2ρ̂)

]
= 157, and an associated γ -

estimate equal to 0.73. The algorithm in this paper helps us to adaptively estimate the
OSF associated not only with the classical EVI-estimates but also with the MVRB or
even CVRB estimates. For a sub-sample size n1 = [n0.955] = 1843, and B = 250
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Fig. 9 Estimates of the EVI, γ , through the EVI estimators under consideration, H , M and G H and
associated CVRB estimators, H , M and G H , for the burned areas under analysis
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bootstrap generations, we have got k̂0|H (n; n1) = 1317 and the MVRB-EVI-estimate

H
∗ = 0.659, the value pictured in Fig. 9, left, jointly with the bootstrap adaptive Hill

estimate, H∗, equal to 0.769, due to the fact that we were led to k̂0|H (n; n1) = 52.
The estimated RMSEs, in Step 11. of the Algorithm, were RMSE∗

H = 0.164 and
RMSE∗

H0
= 0.049. Again with W denoting either M or G H , we were led to

k̂0|W (n; n1) = 105, k̂0|W (n; n1) = 339, W ∗ = 0.746 and W
∗ = 0.652, the val-

ues pictured at Fig. 9 (right). The estimated RMSEs were RMSE∗
W = 0.173 and

RMSE∗
W 0

= 0.276. Note the fact that the MVRB EVI-estimators look practically

“unbiased” for the data under analysis and the associated adaptive estimator H
∗
0, was

the one chosen, due to the smallest estimated RMSE, the value RMSE∗
H0

= 0.049.
Regarding the dependency of the bootstrap methodology on the subsample size

n1, we refer to Fig. 10, where apart from the adaptive bootstrap estimates we also
picture the medians of the values obtained for n1 = 1750(1)2600.

It is clear the small sensitivity, to changes in n1, of H
∗
0(n; n1), contrarily

to the high sensitivity of G H∗(n; n1). We consider this to be another point in
favour of H

∗
0. The consideration of all the above mentioned values of n1, i.e.,

n1 = 1750, 1751, . . . , 2600 led us to a minimum RMSE given by RMSE∗
H0

= 0.018,

attained at n1 = 1320, with an associated EVI-estimate given by H
∗
0 = 0.66, just

as before. We finally exhibit, in Fig. 11, not only a zoom of the adaptive bootstrap
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Fig. 11 Bootstrap adaptive estimates of the optimal level (left) and of the EVI (right), done through the
adaptive MVRB estimator, H

∗
0, for the burned areas data under analysis
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estimates H
∗
0 (right) but also of k̂0H

∗
0

(left), again as a function of n1, as well as the
medians of the values obtained for n1 from 1750 until 2600, with step 1.
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