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Abstract We present several notions of high-level dependence for stochastic
processes, which have appeared in the literature. We calculate such measures
for discrete and continuous-time models, where we concentrate on time
series with heavy-tailed marginals, where extremes are likely to occur in clus-
ters. Such models include linear models and solutions to random recurrence
equations; in particular, discrete and continuous-time moving average and
(G)ARCH processes. To illustrate our results we present a small simulation
study.
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1 Introduction

Throughout we assume that (Xt)t∈I is a strictly stationary stochastic process
and its extremes satisfy some analytic regularity condition. The index set I
can be discrete or continuous and w.l.o.g. we assume that 0 ∈ I. We shall
present analytic results on the dependence structure of high level extremes
in various time series models. Our motivation is two-fold. Firstly, we review
certain known spatial dependence measures in the framework of time series
models in discrete and continuous time. We also adapt the notion of extremal
index for discrete time models to some useful version for continuous time
models. Secondly, we present explicit results for the most prominent time
series models, which also prepares the ground for statistical estimation.

Starting point of our investigation is the extremal coefficient, which simply
measures for two random variables the probability for joint extremes. We
extend this function in the same way as autocovariance and autocorrelation
functions extend the covariance and the correlation between two random
variables. Concentrating on dependence in the extremes it can be viewed as
an analog of a covariance function, but on extreme observations.

Various time series models feature strong clustering in the extremes, a
phenomenon, which is captured by the extremal index for time series models
in discrete time. This also applies to continuous-time models by introducing
discrete time grids on the positive time axes. Since the inverse of the extremal
index serves as a measure for the mean cluster size, it is only a crude measure
of dependence in extremes. In various models it is possible to calculate also
the cluster size distribution. However, the analytic expressions of the cluster
size distributions are complicated, have basically no interpretation, and their
statistical estimation is mostly not possible. Consequently, we concentrate on
the extremal coefficient function (including some multivariate versions) and
the extremal index function.

Previous results to describe the extremal behaviour of time series by ex-
treme dependence measures like in Definition 1.1 below have been obtained
by Ledford and Tawn (2003) and Gomes et al. (2004), and we extend parts of
their results. There also exists a large statistics literature to assess the extremal
behavior of multivariate vectors or time series; see e.g. Ledford and Tawn
(2003) and Ramos and Ledford (2008) and references therein.

There also exists a vast literature on the extremal index of Definition 1.4 and
its estimation. A pathbreaking paper for random recurrence models has been
De Haan et al. (1989). We refer in particular to Laurini and Tawn (2003) for
recent results on the extremal index and further references, in particular, with
respect to statistical estimation.

Independently of our work Davis and Mikosch (2008) introduced what
they call the extremogram of multivariate time series in discrete time, which
in special cases coincides with our extremal coefficient function defined in
Eq. 1.4 below. Their emphasis is, however, on nonparametric estimation of the
extremogram. Segers (2007), in his recent paper, on the other hand, studies
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similar measures for extremes of regularly varying Markov chains and some of
our models fall into this framework.

As appropriate regularity condition we require that all finite dimensional
distributions of (Xt)t∈I belong to the maximum domain of attraction of
some extreme value distribution. In particular, the one-dimensional stationary
distribution (represented by X0) has right endpoint xR ≤ ∞ and belongs
to the maximum domain of attraction of some extreme value distribution
G (X0 ∈ MDA(G)); i. e. there exist norming sequences an > 0, b n ∈ R such
that

lim
n→∞ nP(X0 > anx + b n) = − log G(x), x ∈ R, (1.1)

for some non-degenerate distribution function G, where we define
− log 0 := ∞. By the Fisher–Tippett Theorem G has to be an extreme value
distribution; i. e. G is either a Frechét, a Weibull or a Gumbel distribution.
If we do not specify G, we shall simply write MDA. If all finite dimensional
distributions of the strictly stationary stochastic process (Xt)t∈I belong to some
maximum domain of attraction, we write (Xt)t∈I ∈ MDA. Our conditions may
not be the most general ones, but under a domain of attraction condition all
limits below exist.

We shall formulate extreme dependence measures and related notions for
lagged vectors of (Xt)t∈I of arbitrary dimension. For ease of notation, we
denote for arbitrary d ∈ N by

Xd := (Xt1 , . . . , Xtd), t1 < · · · < td in I,

a generic lagged vector of (Xt)t∈I . Analogous notation will be used for
Xd := (|Xt1 |, . . . , |Xtd |) and X2

d := (X2
t1 , . . . , X2

td).

Definition 1.1 (Extreme dependence measures) Let (Xt)t∈I ∈ MDA and
an > 0, b n ∈ R satisfy Eq. 1.1.

(a) We define the extreme dependence functions of (Xt)t∈I for any lagged
vector Xd of (Xt)t∈I and for all (x1, . . . , xd) ∈ R

d by

χ
(t1,...,td)

(x1, . . . , xd) := lim
n→∞ nP(Xt1 > anx1 + b n, . . . , Xtd > anxd + b n),

(1.2)

χ(t1,...,td)(x1, . . . , xd) := lim
n→∞ nP(Xt1 >anx1+b n or . . . or Xtd >anxd+b n).

(1.3)

(b) We also define the extremal coefficient function of (Xt)t∈I by

χ(t) := lim
x↑xR

P(Xt > x | X0 > x) for t ∈ I. (1.4)
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Remark 1.2

(i) The extremal coefficient function satisfies for every t ∈ I

χ(t) = lim
n→∞

P(X0 > an y + b n , Xt > an y + b n)

P(X0 > an y + b n)
(1.5)

=
χ

(0,t)
(y, y)

χ
(0)

(y)
= 2 − χ(0,t)(y, y)

χ(0)(y)
for any y ∈ R .

The right-hand side quotients are indeed independent of y. In the
Fréchet case this is a consequence of Lemma 2.4 below.

(ii) Note that the limit relation (Eq. 1.5) implies also

χ(t) = lim
x→∞

Cov(I{X0>x}, I{Xt>x})
P(X0 > x)

,

which presents χ(·) as covariance function for extremes; see Davis and
Mikosch (2008) for more general results in the context of multivariate
time series.

(iii) The extremal coefficient function θ(·) of Schlather and Tawn (2003) is
slightly different. They define θ(t) = 2 − χ(t) for t ∈ I, and their multi-
variate extremal coefficient, defined for some index set A ⊂ I is in our
notation

θA = χ A(y, . . . , y)

χ(0)(y)
for any y ∈ R,

where again the right hand side is independent of y.

The following lemma shows that the definition of the extreme dependence
functions are invariant under affine transformations.

Lemma 1.3 Let (Xt)t∈I ∈ MDA and an > 0, b n ∈ R satisfy Eq. 1.1. Let ãn > 0,
˜b n ∈ R be constants such that for some a > 0 and b ∈ R,

lim
n→∞

ãn

an
= a and lim

n→∞
˜b n − b n

an
= b .

Consider a lagged vector Xd of (Xt)t∈I . Denote the extreme dependence mea-
sures χ and χ as in Eqs. 1.2 and 1.3, and define χ̃ , ˜χ in the same way for the
constants ãn > 0, ˜b n ∈ R, respectively. Then for all (x1, . . . , xd) ∈ R

d we have

χ̃
(t1,...,td)

(x1, . . . , xd) = χ
(t1,...,td)

(ax1 + b , . . . , axd + b),

˜χ(t1,...,td)(x1, . . . , xd) = χ(t1,...,td)(ax1 + b , . . . , axd + b).
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Proof Let F ∈ MDA(G) be the distribution function of Xd. Furthermore,
let x = (x1, . . . , xd), b = (b , . . . , b),˜bn = (˜b n, . . . ,˜b n) ∈ R

d. Then Slutzky’s
theorem applies and we obtain

˜χ(t1,...,td)(x1, . . . , xd) = lim
n→∞ n(1 − F(̃anx +˜bn))

= lim
n→∞ − log Fn(̃anx +˜bn)

= − log G(ax + b)

= χ(t1,...,td)(ax1 + b , . . . , axd + b), (1.6)

which proves the second equality. The first equality can be obtained by a
classical Bonferroni argument and Eq. 1.6. For simplicity we only give the
proof for d = 2

χ̃
(t1,t2)

(x1, x2) = lim
n→∞ nP(Xt1 > ãnx1 + ˜b n, Xt2 > ãnx2 + ˜b n)

= lim
n→∞ nP(Xt1 > ãnx1 + ˜b n) + lim

n→∞ nP(Xt2 > ãnx2 + ˜b n)

− lim
n→∞ nP(Xt1 > ãnx1 + ˜b n or Xt2 > ãnx2 + ˜b n)

= − log G(ax1 + b) − log G(ax2 + b) − χ(t1,t2)(ax1 + b , ax2 + b)

= χ
(t1,t2)

(ax1 + b , ax2 + b).

�	

For discrete-time processes the cluster behavior in extremes is often mea-
sured by the extremal index; cf. Embrechts et al. (1997), Section 8.1, or
Leadbetter et al. (1983), p. 67ff. By dividing the positive real line into blocks
of length h this definition can be extended to a function of h, which then
applies to discrete and continuous-time processes. For fixed h it serves as a
measure for the expected cluster sizes among these blocks. This function has
been introduced in Fasen (2004, 2005).

Definition 1.4 (Extremal index, extremal index function) Let (Xt)t∈I be strictly
stationary satisfying Eq. 1.1 for an > 0, b n ∈ R.

(a) Let I = N0. If there exists some θ ∈ (0, 1] such that

lim
n→∞ P

(

max
i=1,...,n

Xi ≤ anx + b n

)

= Gθ (x) for x ∈ R,

then θ is the extremal index of (Xt)t∈I .
(b) Let I = N0 or I = [0, ∞). For h > 0 in I define the sequence

Mk(h) := sup
(k−1)h≤t≤kh

Xt for k ∈ N.

Let θ(h) be the extremal index of the sequence (Mk(h))k∈N. Then we call
the function θ : (0, ∞) → (0, 1] extremal index function.
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Extreme value analysis is most interesting, when extremes happen in a
pronounced way. This is the case in many areas of applications as in insurance
and finance, telecommunication and other areas of technical risk. Conse-
quently, models with heavy-tailed marginal distributions are of high interest.
Distributions with regularly varying or subexponential tails are most natural in
these areas. Heavy tails in linear models originate simply because of a heavy-
tailed noise. In nonlinear models, however, regularly varying tails occur, even
though the noise sequence may be light-tailed. This applies in particular to
solutions of random recurrence equations.

Our paper is organized as follows. In Section 2 we present the extreme
dependence measures for discrete time series models with regularly varying
marginal distributions and, in particular, for solutions to random recurrence
equations. The basic results from Section 2 are used in Section 3 to derive the
extreme dependence measures, first, for discrete-time linear models followed
by non-linear models as ARCH and GARCH models. We present results for
regularly varying linear models, but also for subexponential ones outside of
regular variation, which are definitely different in their extreme behaviour.
For an illustration of our results we choose an ARCH(1) model, and show the
performance of some estimates of the extremal coefficient function in a small
simulation study. In Section 4 the results for continuous-time analogues of lin-
ear models (with the Lévy-driven Ornstein–Uhlenbeck process as prominent
example) as well as for non-linear models like the continuous-time GARCH
(COGARCH) process are presented.

Throughout we shall use the following notation. For a ∈ R we define a+ =
max(0, a) and a− = max(0, −a). The relation a(x) ∼ b(x) as x → xR means
that the quotient of the left hand side and the right hand side tends to 1
as x → xR. By w=⇒ we denote weak convergence and by υ=⇒ vague con-
vergence of measures. We also denote R+ := (0, ∞) and R = R ∪ {±∞}. We

set 0 = (0, . . . , 0) ∈ R
d, −∞ = (−∞, . . . ,−∞) ∈ R

d
, and

∏0
j=1 x j := 1. We use

the maximum norm on R
d defined as |x| = maxi=1,...,d |xi| for x ∈ R

d. We
furthermore denote by S

d−1 = {x ∈ R
d : |x| = 1} the unit sphere in R

d and by

[−∞, x]c = R
d\ [−∞, x] for x ∈ R

d . Finally, the Borel σ -algebra is denoted
by B.

2 Basic results for heavy-tailed time series models

2.1 Regularly varying models

Many models considered below have marginal distributions in the maximum
domain of attraction of the Fréchet distribution, equivalently, their finite
dimensional distributions are regularly varying. We present two equivalent
definitions of multivariate regular variation, which we shall both use through-
out; see e.g. Resnick (1987), Section 5.4 and Resnick (2007), Chapter 6. For
supporting explanations we refer to Mikosch (2004), Section 5.4.2. Further
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properties and results of multivariate regular variation can be found in Basrak
et al. (2002a,b), Basrak and Segers (2009) and some classical references in
Bingham et al. (1987).

Definition 2.1 (Multivariate regular variation) A vector Y in R
d is regularly

varying with index κ (we write Y ∈ R(κ)) for κ > 0, if one of the following
equivalent conditions hold:

(a) There exists a random vector � with values on the unit sphere S
d−1 such

that for every x > 0

P(|Y| > ux, Y/|Y| ∈ ·)
P(|Y| > u)

w=⇒ x−κ
P(� ∈ ·) on B(Sd−1) as u → ∞.

(2.1)

The distribution of � is referred to as the spectral measure of Y.
(b) There exists a Radon measure ρ(·) on R

d\{0} with ρ(E) > 0 for at least

one relatively compact set E ⊆ R
d\{0} and a sequence an ↑ ∞ of positive

constants such that

nP(a−1
n Y ∈ ·) υ=⇒ ρ(·) on B(R

d\{0}) as n → ∞. (2.2)

The measure ρ satisfies the homogeneity property ρ(tA) = t−κρ(A) for all

A ∈ B(R
d\{0}) and t > 0.

For ease of notation we introduce the following notation, which is equiva-
lent to saying that (Xt)t∈I ∈ MDA with Fréchet limit distributions.

Definition 2.2 (Regularly varying stochastic process) Let (Xt)t∈I be a strictly
stationary process. If all finite-dimensional distributions of (Xt)t∈I belong
to R(κ), we say that (Xt)t∈I is regularly varying with index κ and write
(Xt)t∈I ∈ R(κ).

Remark 2.3

(i) Regular variation of stochastic processes has been defined in Hult and
Lindskog (2005). Our definition concerns only the finite-dimensional dis-
tributions. Consequently, it is for continuous-time processes weaker than
the definition presented in Hult and Lindskog (2005), which requires an
additional tightness condition.

(ii) The equivalence of Definitions (a) and (b) above is based on the
following transformation to polar coordinates. The map T : R

d\{0} →
(0, ∞) × S

d−1 defined by T(x) = (|x|, x/|x|) is a continuous bijection.
Furthermore, let ϑκ(dy) = κy−κ−1 dy be a measure on (0, ∞). Then with
P� denoting the distribution of �,

ρ ◦ T−1 = cϑκ × P� on (0, ∞) × S
d−1,
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where c = limn→∞ nP(|Y| > an), see e.g. Resnick (2007), Theorem 6.1. In
particular, for all A ∈ B(Rd\{0}),

ρ(A)=(cϑκ ×P�)(T(A))=c
∫

Sd−1

∫ ∞

0
1{rω∈A} κr−κ−1dr P(�∈dω).

(2.3)

(iii) On B(Rd\S
d−1) the right hand side of Eq. 2.3 can be interpreted as

the distribution of Y(
1, . . . , 
d) times c, where Y and the sequence
(
t) are independent, P(Y > y) = y−κ for y > 1 and (
1, . . . , 
d) has
distribution P(� ∈ ·); see Basrak and Segers (2009) and Segers (2007)
for more general results.

Next, we obtain that for regularly varying models the extremal dependence
measures are homogeneous.

Lemma 2.4 Let (Xt)t∈I ∈ R(κ) for some κ > 0. Assume the tail balance con-
dition P(X0 > x) ∼ pP(|X0| > x) as x → ∞ holds for some p ∈ (0, 1], and let
an > 0 satisfy

lim
n→∞ nP(X0 > an) = 1.

Let Xd be a lagged vector of (Xt)t∈I . Then for all (x1, . . . , xd) ∈ R
d+ and a > 0

the following homogeneity properties hold:

χ
(t1,...,td)

(ax1, . . . , axd) = a−κχ
(t1,...,td)

(x1, . . . , xd),

χ(t1,...,td)(ax1, . . . , axd) = a−κχ(t1,...,td)(x1, . . . , xd).

Proof Let ρ be given as in Definition 2.1 (b). Then

χ(t1,...,td)(ax1, . . . , axd) = lim
n→∞ nP(a−1

n Xd ∈ [−∞, ax]c) = ρ([−∞, ax]c),

χ
(t1,...,td)

(ax1, . . . , axd) = lim
n→∞ nP(a−1

n Xd ∈ (ax, ∞]) = ρ((ax, ∞]).

The result follows then from the homogeneity of ρ. �	

The following result presents the extreme dependence measures for a
strictly stationary stochastic process with regularly varying finite dimensional
distributions. The condition on the spectral measure is very natural; it holds,
for instance, for every example of this paper. It has also been shown to hold
for some discrete time Markov chains in Segers (2007), who also calculated χ

in his Corollary 6.3.

Theorem 2.5 Let (Xt)t∈I ∈ R(κ) for some κ > 0 and assume that the tail bal-
ance condition P(X0 > x) ∼ pP(|X0| > x) as x → ∞ holds for some p ∈ (0, 1].
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Suppose there exists a stochastic process (Wt)t∈I such that the spectral measure
of a lagged vector Xd of (Xt)t∈I has the representation

P(�d ∈ ·) = E
(|Wd|κ 1{Wd/|Wd|∈·}

)

E|Wd|κ on B(Sd−1), (2.4)

where Wd = (Wt1 , . . . , Wtd). Furthermore, assume that an > 0 are such that

lim
n→∞ nP(X0 > an) = 1.

Then for all (x1, . . . , xd) ∈ R
d+,

χ
(t1,...,td)

(x1, . . . , xd) = E
(

mini=1,...,d{x−1
i W+

ti }κ)
E(W+

0 )κ
,

χ(t1,...,td)(x1, . . . , xd) = E
(

maxi=1,...,d{x−1
i W+

ti }κ)
E(W+

0 )κ
,

where W+
t = max(Wt, 0). Furthermore,

χ(t) = E(min{W+
0 , W+

t }κ)
E(W+

0 )κ
for t ∈ I.

Proof Note that by strict stationarity of (Xt)t∈I we have E(W+
t )κ = E(W+

0 )κ for
all t ∈ I. Furthermore,

P(X0 > x) ∼ E(W+
0 )κ

E|W0|κ P(|X0| > x) as x → ∞,

such that E(W+
0 )κ > 0 by the tail balance condition. First, we calculate c of

Remark 2.3(ii):

c = lim
n→∞ nP(|Xd| > an) = lim

u→∞
P(|Xd| > u)

P(X0 > u)
= E|Wd|κ

E(W+
0 )κ

.

Then Remark 2.3(ii) results in

ρ(A) = E|Wd|κ
E(W+

0 )κ

∫

Sd−1

∫ ∞

0
1{rω∈A} κr−κ−1 dr P(�d ∈ dω)

= 1

E(W+
0 )κ

∫ ∞

0
E(|Wd|κ 1{rWd/|Wd|∈A})κr−κ−1 dr , A ∈ B(Rd\{0}) ,
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by Fubini’s theorem together with assumption 2.4. By Definition 2.1 (b), using
Fubini’s theorem again we obtain

χ(t1,...,td)(x1, . . . , xd) = ρ(Rd\ (−∞, x])

= 1

E(W+
0 )κ

E

(

|Wd|κ
∫ ∞

0
1{rWd/|Wd|∈Rd\(−∞,x]} κr−κ−1 dr

)

= 1

E(W+
0 )κ

E

(

|Wd|κ
∫

{r>mini=1,...,d(|Wd|/(x−1
i W+

ti
))}

κr−κ−1 dr

)

= 1

E(W+
0 )κ

E

(

max
i=1,...,d

{x−1
i W+

ti }κ
)

.

In the same way we obtain χ
(t1,...,td)

, and Remark 1.2(i) yields the expression
for χ . �	

For several examples below we shall show that extreme dependence de-
creases (when measured by χ(·)), when κ increases and even that for κ ↑ ∞
extremal dependence disappears completely. Since one of our goals is the
comparison of extremal dependence for linear and non-linear models, this
makes it clear that we should compare the extremal dependence in models
with the same heavy-tailedness.

2.2 Random recurrence equations

Important examples of time series with multivariate regularly varying marginal
distributions are solutions to multivariate random recurrence equations of
the form

Yn = AnYn−1 + Bn for n ∈ N, (2.5)

with an i. i. d. sequence ((An, Bn))n∈N of d × d matrices An and d-dimensional
random vectors Bn �= 0 a. s.

For ((An, Bn))n∈N all with non-negative entries Kesten (1973) presents in his
Theorems 3 and 4 natural, non-trivial conditions for the existence of a unique
strictly stationary solution (Xn)n∈N to the stochastic recurrence Eq. 2.5. In the
one-dimensional case results can be reformulated as shown in Goldie (1991).
Then the spectral measure can be written down explicitly as well as the extreme
dependence measures and the extremal index. The multivariate version 2.5
is more involved and we refer to Theorem 3.1 of Basrak et al. (2002a) for a
precise formulation. Parts (a) and (b) of the following result are classic, part
(c) gives a representation of the spectral measure in terms of Theorem 2.5.
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Proposition 2.6 Let (Xt)t∈N0 be a stochastic process defined by Xt = At Xt−1 +
Bt, where ((At, Bt))t∈N, (A, B) are i. i. d. and independent of X0. Assume that
κ > 0 and the following conditions are satisfied:

(i) E|A|κ = 1.
(ii) The law of log |A|, given |A| �= 0, is not concentrated on a lattice −∞ ∪ rZ

for any r > 0 and −∞ ≤ E(log |A|) < 0.
(iii) E(|A|κ log+ |A|) < ∞.
(iv) E|B|κ < ∞.

Then the following results hold:

(a) The equation X∞
d= AX∞ + B, where X∞ is independent of (A, B), has

the solution unique in distribution

X∞
d=

∞
∑

m=1

Bm

m−1
∏

k=1

Ak.

If we take X0
d= X∞ then (Xt)t∈N0 is strictly stationary.

(b) The tail of X∞ in (a) satisfies

P(X∞ > x) ∼ C+x−κ and P(X∞ < −x) ∼ C−x−κ as x → ∞,

where C+ + C− > 0 if and only if P(B = (1 − A)c) < 1 for every c ∈ R.
If A ≥ 0 a.s. then

C+ = E
[

((AX∞ + B)+)κ − ((AX∞)+)κ
]

κE(|A|κ log |A|) ,

C− = E
[

((AX∞ + B)−)κ − ((AX∞)−)κ
]

κE(|A|κ log |A|) .

(c) Assume that P(B = (1 − A)c) < 1 for every c ∈ R. Define a Bernoulli
variable R independent of (At)t∈N by

P(R = 1) = lim
x→∞

P(X∞ > x)

P(|X∞| > x)
and P(R = −1)= lim

x→∞
P(X∞ < −x)

P(|X∞| > x)
.

(2.6)

Consider a strictly stationary version of (Xt)t∈N0 . Then (Xt)t∈N0 ∈ R(κ).
The spectral measure of a lagged vector Xd of (Xt)t∈N0 is given by

P(�d ∈ ·) =
E

(

maxi=1,...,d

{

∏ti
j=1 |A j|κ

}

1{
R
(

∏t1
j=1 A j,...,

∏td
j=1 A j

)/(

maxi=1,...,d
∏ti

j=1 |A j|
)

∈·
}

)

E

(

maxi=1,...,d
∏ti

j=1 |A j|κ
) .
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Proof Parts (a) and (b) are consequences of Goldie (1991), Theorem 4.1. For
a proof of part (c) define the random vectors

a =
⎛

⎝

t1
∏

j=1

A j, . . . ,

td
∏

j=1

A j

⎞

⎠ and b =
⎛

⎝

t1
∑

i=1

Bi

t1
∏

j=i+1

A j, . . . ,

td
∑

i=1

Bi

td
∏

j=i+1

A j

⎞

⎠ .

Then Xd = aX0 + b, so that the multivariate regular variation is inherited
from the one-dimensional regular variation property of X0. We prove first
Eq. 2.1 for the random vector aX0 with �d as in (c). If we take E|a|κ < ∞ and
P(|X0| > x) ∼ (C+ + C−)x−κ as x → ∞ , into account, the multivariate version
of Breiman’s (1965) classical result in Basrak et al. (2002b), Proposition A.1,
guarantees the multivariate regular variation of aX0. The spectral measure was
explicitly calculated in Fasen (2005), Lemma 2.1 as

lim
u→∞

P(|a||X0| > ux, aX0/(|a||X0|) ∈ S)

P(|aX0| > u)
= x−κ E(|a|κ 1{Ra/|a|∈S})

E|a|κ (2.7)

for x > 0 and S ∈ B(Sd−1). Finally, since E|b|κ < ∞, in particular
limx→∞ xκ

P(|b| > x) = 0. By Jessen and Mikosch (2006), Lemma 3.12,
we conclude

P(|Xd| > ux, Xd/|Xd| ∈ S)

P(|Xd| > u)
∼ P(|a||X0| > ux, aX0/(|a||X0|) ∈ S)

P(|aX0| > u)
as u→∞.

(2.8)

Hence, the result follows from Eqs. 2.7–2.8. �	

Remark 2.7 Note that Basrak et al. (2002b), Proposition A.1, and Fasen
(2005), Lemma 2.1, require the stronger condition E|a|β < ∞ for some β > κ .
Since |X0| is not only regularly varying, but has a Pareto-like tail, Breiman’s
result P(|a||X0| > x) ∼ E|a|κP(|X0| > x) as x → ∞ holds under the weaker
condition E|a|κ < ∞; see Jessen and Mikosch (2006), Lemma 4.2(3). This
interesting detail has been communicated to us by the referee.

Parts of the following Proposition can be found under more restric-
tive assumptions in Gomes et al. (2004). They applied their results to the
ARCH(1) model; cf. Section 3.2.1.

Proposition 2.8 Let the assumptions of Proposition 2.6 (c) hold and X0 be as
in (a). Furthermore, let an > 0 be such that

lim
n→∞ nP(X0 > an) = 1.
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Then the extreme dependence functions of the strictly stationary process (Xt)t∈N0

are given for a lagged vector Xd of (Xt)t∈N0 and for all (x1, . . . , xd) ∈ R
d+ by

χ
(t1,...,td)

(x1, . . . , xd) =
E

(

mini=1,...,d

{

x−κ
i

(

(

R
∏ti

j=1 A j
)+)κ})

P(R = 1)
, (2.9)

χ(t1,...,td)(x1, . . . , xd) =
E

(

maxi=1,...,d

{

x−κ
i

(

(

R
∏ti

j=1 A j
)+)κ})

P(R = 1)
. (2.10)

In particular,

χ(t) = E

⎛

⎝min

⎧

⎨

⎩

1,

⎛

⎝

⎛

⎝

t
∏

j=1

A j

⎞

⎠

+⎞

⎠

κ⎫

⎬

⎭

⎞

⎠ ≥ 0 for t ∈ N0. (2.11)

In particular, if P(A > 0) > 0, then χ(t) > 0 for t ∈ N0. Furthermore, the ex-
tremal index of (Xt)t∈N0 is

θ = E

⎛

⎝1 −
∞
∨

k=1

⎛

⎝

(

k
∏

i=1

Ai

)+⎞

⎠

κ⎞

⎠

+

≤ 1 (2.12)

with θ < 1 if P(A > 0) > 0.

Proof The results (Eqs. 2.9–2.11) follow by Theorem 2.5 and Proposition 2.6.
The value of the extremal index (Eq. 2.12) was calculated in De Haan et al.
(1989) for A, B positive, but it is possible to extend their result to general
A, B by an application of Theorem 2.7 in Davis and Hsing (1995). �	

3 Time series models in discrete time

For the following examples we calculate the extremal measures for (|Xt|)t∈I

such that we have a measure for dependence in extremes on positive and neg-
ative levels. A separation into positive and negative extremes is notationally
involved.

Note that 
d, Wd and the functions χ , χ and χ correspond in this section to
(|Xt|)t∈I .

3.1 Linear models

In this section we investigate the extremal behavior of a strictly stationary
infinite moving average (MA) process

Xt =
∞
∑

n=−∞
ct−n Zn for t ∈ N0 , (3.1)
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where (Zt)t∈Z is an i. i. d. sequence. We further assume the tail balance
condition

lim
x→∞

P(Z0 > x)

P(|Z0| > x)
= p and lim

x→∞
P(−Z0 > x)

P(|Z0| > x)
= 1 − p (3.2)

for some p ∈ [0, 1]. Let cmax = maxi∈Z |ci|. More details on linear models in the
context of extreme value theory can be found in the monographs of Embrechts
et al. (1997), Section 5.5, Leadbetter et al. (1983), Section 3.8, and Resnick
(1987), Section 4.5.

3.1.1 Linear models with regularly varying tail

The next Lemma is due to Davis and Resnick (1985) and Hult and
Samorodnitsky (2008).

Lemma 3.1 Let (Xt)t∈N0 be the MA process given in Eq. 3.1 which satisfies the
tail balance condition (Eq. 3.2). Further, we assume that for κ > 0 and some
slowly varying function �

P(|Z0| > x) = �(x)x−κ for x ≥ 0,

and that one of the following conditions is satisfied:

(i)
∑∞

n=−∞ |cn|δ < ∞ for some δ < min{1, κ}.
(ii)

∑∞
n=−∞ |cn|δ < ∞ for some δ < κ , δ ≤ 2, κ > 1 and E(Z1) = 0.

Then the following results hold:

(a) There exists a strictly stationary version of the MA process.
(b) The stationary distribution given by X∞ is regularly varying with index κ

such that

P(X∞ >x)∼
[

p
∞
∑

n=−∞
(c+

n )κ +(1 − p)

∞
∑

n=−∞
(c−

n )κ

]

P(|Z0| > x) as x→∞.

(c) Let (Xt)t∈N0 be a strictly stationary version of the MA process. Then
(|Xt|)t∈N0 ∈ R(κ) with discrete spectral measure given for a lagged vector
Xd of (|Xt|)t∈N0 by

P(�d ∈ ·) = E
(|Wd|κ 1{Wd/|Wd|∈·}

)

E|Wd|κ , (3.3)

where for n ∈ Z, maxi=1,...,d |cti−n| �= 0, and

m+(n) = #{ j ∈ Z : (|ct1− j|, . . . , |ctd− j|) = (|ct1−n|, . . . , |ctd−n|)},
setting c̃ = ∑∞

k=−∞ maxi=1,...,d |cti−k|κ , we have

P(Wd = (|ct1−n|, . . . , |ctd−n|)) = m+(n)

c̃
max

i=1,...,d
|cti−n|κ .
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Remark 3.2 The spectral measure given in Eq. 3.3 has the alternative
representation

P(�d ∈ ·) = 1

c̃

∞
∑

n=−∞
max

i=1,...,d
|cti−n|κ 1{(|ct1−n|,...,|ctd−n|)/ maxi=1,...,d |cti−n|∈·} .

Theorem 3.3 Let the strictly stationary MA process (Xt)t∈N0 satisfy the
assumptions of Lemma 3.1. Furthermore, let an > 0 be such that

lim
n→∞ nP(|X∞| > an) = 1.

Then the extreme dependence functions of (|Xt|)t∈N0 are given for a lagged vector
Xd of (|Xt|)t∈N0 and for all (x1, . . . , xd) ∈ R

d+ by

χ
(t1,...,td)

(x1, . . . , xd) =

∞
∑

n=−∞
min

i=1,...,d
{x−1

i |cti−n|}κ
∞
∑

n=−∞
|cn|κ

,

χ(t1,...,td)(x1, . . . , xd) =

∞
∑

n=−∞
max

i=1,...,d
{x−1

i |cti−n|}κ
∞
∑

n=−∞
|cn|κ

.

In particular,

χ(t) =

∞
∑

n=−∞
min{|cn|, |ct−n|}κ

∞
∑

n=−∞
|cn|κ

for t ∈ N0.

Furthermore, the extremal index of (|Xt|)t∈N0 is θ = (cmax)
κ
/ ∞

∑

n=−∞
|cn|κ .

Proof Theorem 2.5 and Lemma 3.1 (c) lead to the extreme dependence
functions. If condition (i) of Lemma 3.1 holds, the extremal index follows from
Theorem 3.2 in Davis and Resnick (1985). Under condition (ii) (also condition
(i)), the extremal index of (|Xt|)t∈N0 can be calculated as in Fasen (2005) for
continuous-time moving average processes. �	

Example 3.4 (AR(1) process) Let (Xt)t∈N0 be a strictly stationary AR(1)
process with moving average representation

Xt =
∞
∑

k=0

αk Zt−k =
t
∑

k=−∞
αt−k Zk , t ∈ N0, (3.4)
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for some 0 < α < 1 and (Zk)k∈Z be an i. i. d. sequence satisfying the assump-
tions of Lemma 3.1 with tail index κ > 0. Then

χ(t) = ακt for t ∈ N0 and θ = 1 − ακ.

Thus, χ(·) decreases exponentially fast. Furthermore, if the tail index κ of the
noise variable |Z0| increases (recall this is also the tail index of the stationary
distribution), the dependence in the extremes becomes weaker. Moreover, for
κ → ∞ we obviously have χ(t) → 0 for all t ∈ N and θ → 1.

3.1.2 Linear models with tails in S ∩ MDA(�)

Let (Xt)t∈N0 be the MA process given in Eq. 3.1 with tail balance condition
(Eq. 3.2) and |Z0| subexponential (|Z0| ∈ S), i. e. if F denotes the distribution
function of |Z0| then F(x) < 1 for every x ∈ R and the following conditions
hold:

(i) For all y ∈ R locally uniformly limx→∞ F(x + y)/F(x) = 1.
(ii) limx→∞ F2∗(x)/F(x) exists and is finite.

Typical examples for subexponential distribution functions are those with
regularly varying tails, heavy-tailed Weibull and lognormal distributions. In
this section we restrict our attention to |Z0| ∈ S ∩ MDA(�) which excludes
regularly varying distribution functions. Tails in this class are lighter tailed than
polynomial. Surveys of the class of subexponential distributions with support
on R+ provide Goldie and Klüppelberg (1998) or Fasen and Klüppelberg
(2008), see also Embrechts et al. (1997), Appendix A3. We assume c+ ≥ c−
and define

m+ := #{i : ci = c+} and m− := #{i : ci = −c+}.
The following Lemma presented here is due to Davis and Resnick (1988).

Lemma 3.5 Let (Xt)t∈N0 be a MA process given in Eq. 3.1 which satisfies the tail
balance condition (Eq. 3.2). Furthermore, we assume that |Z0| ∈ S ∩ MDA(�)

and
∑∞

n=−∞ |cn|δ < ∞ for some 0 < δ < 1. Then the following results hold:

(a) There exists a strictly stationary version of the MA process.
(b) The stationary distribution given by X∞ belongs to S ∩ MDA(�) and

P(X∞ > x) ∼ (pm+ + (1 − p)m−)P(c+|Z0| > x) as x → ∞.

Theorem 3.6 Let the strictly stationary MA process (Xt)t∈N0 satisfy the assump-
tions of Lemma 3.2. Furthermore, let an > 0, b n ∈ R be such that

lim
n→∞ nP(|X∞| > anx + b n) = e−x for x ∈ R.
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Suppose m+ = 1 and m− = 0. Then the extreme dependence functions are given
for a lagged vector Xd of (|Xt|)t∈N0 and for all (x1, . . . , xd) ∈ R

d by

χ
(t1,...,td)

(x1, . . . , xd) = 0 and χ(t1,...,td)(x1, . . . , xd) =
d
∑

i=1

e−xi .

In particular,

χ(t) = 0 for t ∈ N and θ = 1.

Proof The proof of the representation of the dependence measures is an
application of Fasen (2006), Lemma 11, and

P(|X∞| > x) ∼ P(X∞ > x) as x → ∞.

The extremal index of (Xt)t∈N0 (and hence also (|Xt|)t∈N0 ) was calculated in
Davis and Resnick (1988). �	

Example 3.7 (AR(1) process, continuation of Example 3.4) For the model in
Eq. 3.4 with α = 0.7 we consider two different regimes. Once we take (Zk)k∈Z

as an i.i.d. Pareto distributed sequence (F(x) = 1 − x−1/2 for x ≥ 1), which falls
in the framework of Example 3.4. Then we take (Zk)k∈Z as an i.i.d. Weibull
distributed sequence with shape parameter less than 1 (F(x) = 1 − exp(−x0.9)

for x ≥ 0), which belongs to S ∩ MDA(�). This model has extreme dependence
functions as in Theorem 3.6. Figure 1 compares the extremal coefficient
functions of both models. The functions are estimated from a sample path
of length 10,000. The estimation is based on data above a threshold, which
is chosen as the empirical 0.5% quantile of the data. The estimated extremal
coefficient function of the AR(1) process with Pareto noise follows nicely the
theoretical one, which decreases exponentially fast with rate 0.5 log(0.7). For
the Weibull noise the estimate at lag 1 is still positive, but for higher order lags
the empirical estimate is near 0.

Fig. 1 Empirical estimates
of the extremal coefficient
function for an AR(1)
process with Pareto and
Weibull noise.
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It can be debated, and indeed has, whether the influence of the marginal
distributions (regular variation versus lighter-tailed) blurs the interpretation
of estimated extremal dependence. Ramos and Ledford (2008) argue that it is
more reasonable to separate the influence of the marginals and the extreme
dependence by standardizing the marginals first to unit Fréchet distributions.
Only afterwards they investigate bivariate joint tail distributions. The spectral
measure in case of unit Fréchet marginals is then given in Eq. 3.3 with κ = 1.
There are two points to be aware of, when standardizing marginals. Firstly,
some statistical uncertainty will be introduced into the model by estimating the
parameters of transformation. Secondly, transformation of the data involves
the whole model. For instance, a linear exponential model will transform into
a product model, resulting in a change of the dependence structure as well.

3.2 Non-linear models

3.2.1 ARCH(1) and GARCH(1,1) processes

The ARCH(1) process (Xt)t∈N0 is defined as

Xt = (α0 + α1 X2
t−1)

1/2 Zt for t ∈ N , (3.5)

where X0 is independent of the i. i. d. sequence (Zt)t∈N0 and α0, α1 > 0. As a
generalization, the GARCH(1,1) process (Xt)t∈N0 is defined by

Xt = σt Zt for t ∈ N0, (3.6)

where (Zt)t∈N0 is an i. i. d. sequence independent of σ0 and the volatility process
(σ 2

t )t∈N0 is the solution of the stochastic recurrence equation

σ 2
t = α0 + α1 X2

t−1 + βσ 2
t−1 = α0 + (α1 Z 2

t−1 + β)σ 2
t−1 for t ∈ N,

where α0, α1 > 0 and 0 < β < 1. Thus, setting Bt = α0 and At = α1 Z 2
t−1 + β,

we see that σ 2
t = Atσ

2
t−1 + Bt. Indeed, if we define

Yt =
(

X2
t

σ 2
t

)

, At =
(

α1 Z 2
t βZ 2

t
α1 β

)

and Bt =
(

α0 Z 2
t

α0

)

,

then Yt = AtYt−1 + Bt for t ∈ N. Setting β = 0 we obtain again the ARCH(1)
process and its volatility process.

This model can be considered as the solution to a multivariate stochastic
recurrence equation and hence, general results by Kesten (1973) and Bougerol
and Picard (1992b) can be applied. These general results can, however, for
this model be considerably reduced; cf. Nelson (1990) and Bougerol and
Picard (1992a). The multivariate regular variation of this model was derived
by Basrak et al. (2002b), and Mikosch and Stărică (2000). For a survey on
GARCH processes and their properties see Mikosch (2004).

Lemma 3.8 Let (Xt)t∈N0 be the ARCH(1) process given in Eq. 3.5 or the
GARCH(1,1) process given in Eq. 3.6, respectively. Suppose Z0 has a positive
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density on R, and either E|Z0|h < ∞ for all 0 < h < h0 and E|Z0|h0 = ∞ for
some finite h0 > 0, or E|Z0|h < ∞ for all h > 0. Furthermore, we assume that

E(log(α1 Z 2
0 + β)) < 0.

Then the following results hold:

(a) There exists a κ > 0 such that

E(α1 Z 2
0 + β)κ/2 = 1. (3.7)

(b) There exists a strictly stationary version of the bivariate process (Xt, σt)t∈N0 .
(c) The stationary distributions given by |X∞| and σ∞ of (|Xt|)t∈N0 and

(σt)t∈N0 , respectively, are regularly varying with index κ such that

P(σ∞ > x) ∼ Cx−κ and P(|X∞| > x) ∼ C E|Z0|κ x−κ as x → ∞,

where

C = E[(α0 + (α1 Z 2
0 + β)σ 2∞)κ/2 − ((α1 Z 2

0 + β)σ 2∞)κ/2]
[(κ/2)E((α1 Z 2

0 + β)κ/2 log(α1 Z 2
0 + β))] .

(d) Let (X2
t , σ 2

t )t∈N0 be a strictly stationary version of the ARCH(1) or
the GARCH(1,1) process, respectively, and its volatility process. Then
(X2

t , σ 2
t )t∈N0 ∈ R(κ/2) with spectral measure given for a lagged vector

(X2
t1 , σ

2
t1 , . . . , X2

td , σ
2
td) by

P(�d ∈ ·) = E
(|Wd|κ/2 1{Wd/|Wd|∈·}

)

E|Wd|κ/2
,

where Wd = (∏t1
i=1(α1 Z 2

i−1 + β)(Z 2
t1 , 1), . . . ,

∏td
i=1(α1 Z 2

i−1 + β)(Z 2
td , 1)

)

.

Theorem 3.9 Let (Xt)t∈N0 be a strictly stationary ARCH(1) or GARCH(1,1)
process, respectively, satisfying the assumptions of Lemma 3.8. Furthermore, let
an > 0 be such that

lim
n→∞ nP(|X∞| > an) = 1.

Then the extreme dependence functions of (|Xt|)t∈N0 are given for a lagged vector
Xd of (|Xt|)t∈N0 and for all (x1, . . . , xd) ∈ R

d+ by

χ
(t1,...,td)

(x1, . . . , xd) =
E

(

mini=1,...,d

{

x−κ
i |Zti |κ

∏ti
j=1(α1 Z 2

j−1 + β)κ/2
})

E|Z0|κ ,

χ(t1,...,td)(x1, . . . , xd) =
E

(

maxi=1,...,d

{

x−κ
i |Zti |κ

∏ti
j=1(α1 Z 2

j−1 + β)κ/2
})

E|Z0|κ .

In particular,

χ(t) = E
(

min
{|Z0|κ , |Zt|κ ∏t

i=1(α1 Z 2
i−1 + β)κ/2

})

E|Z0|κ for t ∈ N0. (3.8)
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Fig. 2 Extremal coefficient
function χ(·) of different
ARCH(1) processes: Monte
Carlo simulation of Eq. 3.8
with parameters α0 and α1 as
above and κ calculated from
Eq. 3.7.
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Furthermore, the extremal index of (|Xt|)t∈N0 is

θ = E
(|Z0|κ −∨∞

m=1 |Zm|κ ∏m
i=1(α1 Z 2

i−1 + β)κ/2
)+

E|Z0|κ .

Proof By Lemma 3.8 the lagged vector X2
d has spectral measure

P(�d ∈ ·) = E
(|Wd|κ/2 1{Wd/|Wd|∈·}

)

E|Wd|κ/2
,

where Wd = (∏t1
i=1(α1 Z 2

i−1 + β)Z 2
t1 , . . . ,

∏td
i=1(α1 Z 2

i−1 + β)Z 2
td

)

. The result
follows then from Theorem 2.5. The extremal index of (|Xt|)t∈N0 is given in
Mikosch and Stărică (2000). �	

Example 3.10 (ARCH(1) process: the extremal coefficient function) We see
in Fig. 2 the extremal coefficient function χ(·) for ARCH(1) processes with
standard normal noise and parameters α0 = 1 and α1 = 0.3, 0.5, 0.7, 0.9, 1.0,
which correspond to tail indices κ = κ(α1) = 8.36, 4.74, 3.18, 3.3, 2.0, respec-
tively. The values of κ were computed from Eq 3.7, which has for a normal
noise an analytic representation; cf. Embrechts et al. (1997), Table 8.4.8. The
values for χ(·) are the results of a Monte Carlo simulation based on Eq. 3.8
with 100,000 standard normal random numbers. For every choice of α1 the

Table 1 Estimation of the extremal coefficient function for an ARCH(1) process with parameters
α0 = 1, α1 = 0.5 and standard normal noise

k 1 2 3 4 5 6 7 8 9 10

χ(k) 0.251 0.099 0.042 0.018 0.008 0.003 0.002 0.001 0.001 0.000
χ(k)emp 0.314 0.152 0.098 0.070 0.052 0.050 0.044 0.054 0.062 0.042
χ(k)POT 0.183 0.110 0.051 0.021 0.002 0.001 0.000 0.002 0.000 0.000
χ(k)Block 0.249 0.044 0.011 0.004 0.000 0.001 0.000 0.001 0.001 0.001

The first line shows the values from the Monte Carlo estimation
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Fig. 3 Monte Carlo
simulation of χ(·) as
explained in Example 3.10.
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function χ(·) decreases exponentially in t. Obviously, the dependence in the
extremes decreases with time. We also see that for fixed t the function χ(t) =
χ(t; α1) is an increasing function in α1, hence, χ(t; κ) decreases, if κ increases.
This suggests, not surprisingly, that for heavier tailed ARCH(1) processes
the dependence in the extremes is higher than for lighter tailed ARCH(1)

processes.

Example 3.11 (ARCH(1): estimating the extremal coefficient function) In
Table 1 and Figs. 3, 4, 5, and 6 we present the estimation of the extremal
coefficient function χ(·) of a simulated ARCH(1) process with parameters
α0 = 1, α1 = 0.5 and standard normal noise. All estimates are based on a
sample path of length 10,000. For comparison, Fig. 3 depicts again χ(·)
calculated as explained in Example 3.10. In Figs. 4, 5, and 6 we estimate
χ(·) by three different methods. In Fig. 4 the estimator is computed via the
empirical conditional tail distribution function of min(X0, Xt) given X0. By
definition of χ(·), estimates have to be based on large values of the process

Fig. 4 Empirical estimator
χ(·)emp of Eq. 1.4.
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Fig. 5 POT estimator χ(·)POT

of Eq. 1.4 based on high-level
exceedances.
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only, and we take the largest 500 values. Better results are to be expected
invoking methods from extreme value theory. The last two estimators, χ(k)POT

and χ(k)Block, respectively, apply the POT-method and the block-method; see
Embrechts et al. (1997), Chapter 6. For the POT method we approximated
the distribution of 500 exceedances by a generalized Pareto distribution. The
block method is based on a block size of 30 and approximates the distribution
of the block maxima by a generalized extreme value distribution. Table 1
shows the corresponding values of the plots. Improved estimators for the
extremal coefficient function for either multivariate models or time series
models are presented in Ledford and Tawn (2003), Schlather and Tawn (2003),
and Naveau et al. (2008).

Example 3.12 (GARCH(1,1)) Figure 7 shows the extremal coefficient func-
tion χ(·) of different GARCH(1,1) processes with standard normal noise
and parameters β = 0.7, α0 = 0.01 and α1 = 0.09, 0.14, 0.19, 0.24, 0.29. From
Eq. 3.7 we computed the values for κ by Monte-Carlo simulations based on

Fig. 6 Block-maxima
estimator χ(k)Block of Eq. 1.4
based on block maxima
of block size 30.
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Fig. 7 Extremal coefficient
function χ(·) of different
GARCH(1, 1) processes:
Monte Carlo simulation of
Eq. 3.8 with parameters as
above and κ found from a
Monte Carlo simulation of
Eq. 3.7.
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100,000 standard normal random numbers, which gave κ = 18.4, 10.5, 6.5, 4,
2.5, respectively. The values of κ show that the tails of the GARCH(1,1)
process become heavier with increasing α1. Similar interpretations as for the
extremal coefficient function of the ARCH(1) process in Example 3.10 are
possible.

3.2.2 The AR(1) process with ARCH(1) errors

In this section we study the AR(1) process with ARCH(1) errors defined by

Xt = λXt−1 +
√

α0 + α1 X2
t−1 Zt for t ∈ N, (3.9)

where λ ∈ R, α0, α1 > 0 and (Zt)t∈N0 is an i. i. d. sequence independent of
X0. This model was investigated in Borkovec (2001) and Borkovec and
Klüppelberg (2001) by analytic methods; see also the review paper
Klüppelberg (2004). Note that the model is Markovian, but it is not easy
to prove regular variation of its stationary distribution. Parts (a)–(c) of the
following lemma state sufficient conditions to ensure this.

Lemma 3.13 Let (Xt)t∈N0 be the AR(1) process with ARCH(1) errors given in
Eq. 3.9. We assume that Z1 is symmetric with continuous density f , which has
full support on R, and that E(Z 2

1) < ∞. Furthermore, we assume that f satisfies
the following technical conditions:

(i) f (x) ≥ f (x′) for every 0 ≤ x < x′.
(ii) The lower and upper Matuszewska indices of F are equal, i. e.

−∞ ≤ γ := lim
ν→∞

log lim supx→∞ F(νx)/F(x)

log ν

= lim
ν→∞

log lim infx→∞ F(νx)/F(x)

log ν
≤ 0.
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(iii) If γ = −∞ then, for all δ > 0, there exist constants q ∈ (0, 1) and x0 > 0
such that for all x > x0 and t > xq,

f

(

x ± λt
√

α1t2

)

≥ (1 − δ) f

(

x ± λt
√

α0 + α1t2

)

. (3.10)

If γ > −∞ then for all δ > 0 there exist constants x0 > 0 and T > 0 such
that for all x > x0 and t > T the inequality 3.10 holds.

(iv) E(log |λ + √
α1 Z0|) < 0.

Then the following results hold:

(a) There exists a κ > 0 such that

E(|λ + √
α1 Z0|κ) = 1.

(b) There exists a strictly stationary version of the AR(1) process with
ARCH(1) errors.

(c) The stationary distribution X∞ is regularly varying with index κ such that

P(X∞ > x) ∼ Cx−κ as x → ∞,

where

C = 1

2κ

E

([

|λ|X∞| +√

α0 + α1 X2∞ Z0|
]κ − [|λ + √

α1|X∞||]κ
)

E(|λ + √
α1 Z0|κ log |λ + √

α1 Z0|) .

(d) Let (Xt)t∈N0 be a strictly stationary version of the AR(1) process with
ARCH(1) errors. Then (X2

t )t∈N0 ∈ R(κ/2) with spectral measure given for
a lagged vector X2

d of (X2
t )t∈N0 by

P(�d ∈ ·) = E
(|Wd|κ/2 1{Wd/|Wd|∈·}

)

E|Wd|κ/2
,

where Wd = (∏t1
i=1(λ + √

α1 Zi)
2, . . . ,

∏td
i=1(λ + √

α1 Zi)
2
)

.

Proof Parts (a)–(c) were proven in Borkovec and Klüppelberg (2001),
Theorem 3 and Theorem 8. It remains to show (d). First, note that (X2

t )t∈N0

satisfies the stochastic recurrence equation

X2
t =

(

λXt−1 +
√

α0 + α1 X2
t−1 Zt

)2

= (λ + √
α1 Zt)

2 X2
t−1 + 2λXt−1 Zt

(

√

α0 + α1 X2
t−1 − √

α1 Xt−1

)

+ α0 Z 2
t

=: At X2
t−1 + Bt,

where

At =(λ + √
α1 Zt)

2 and Bt =2λXt−1 Zt

(

√

α0 + α1 X2
t−1 − √

α1 Xt−1

)

+ α0 Z 2
t .
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Further, we obtain recursively

Xt =
t
∏

j=1

A jX0 +
t
∑

m=1

Bm

t
∏

j=m+1

A j.

Since

|Bt| ≤ 2λ
√

α0|Xt−1||Zt| + α0 Z 2
t ,

we have also E|Bt|κ/2 < ∞. We are now in the same situation as in
Proposition 2.6, whose proof does neither require the independence of (At)t∈N

and (Bt)t∈N nor the independence of Xt−1 and Bt. Following the proof of
Proposition 2.6 step by step we conclude that every lagged vector X2

d is
multivariate regularly varying with index κ/2 and spectral measure as given
above. �	

Note, that the normal, Student’s and Laplace distribution satisfy the techni-
cal conditions of the above Lemma.

Theorem 3.14 Let the strictly stationary AR(1) process with ARCH(1) errors
(Xt)t∈N0 satisfy the assumptions of Lemma 3.13. Furthermore, let an > 0 be a
sequence of constants such that

lim
n→∞ nP(|X∞| > an) = 1.

Then the extreme dependence functions of (|Xt|)t∈N0 are for every lagged vector
Xd of (|Xt|)t∈N0 and for all (x1, . . . , xd) ∈ R

d+ given by

χ
(t1,...,td)

(x1, . . . , xd) = E

⎛

⎝ min
i=1,...,d

{x−κ
i

ti
∏

j=1

|λ + √
α1 Z j|κ}

⎞

⎠ ,

χ(t1,...,td)(x1, . . . , xd) = E

⎛

⎝ max
i=1,...,d

{x−κ
i

ti
∏

j=1

|λ + √
α1 Z j|κ}

⎞

⎠ .

In particular,

χ(t) = E

⎛

⎝min

⎧

⎨

⎩

1,

t
∏

j=1

|λ + √
α1 Z j|κ

⎫

⎬

⎭

⎞

⎠ for t ∈ N0.

Furthermore, the extremal index of (|Xt|)t∈N0 is

θ = E

(

1 −
∞
∨

m=1

m
∏

i=1

|λ + √
α1 Zi|κ

)+
.

Proof We obtain the extreme dependence functions of an AR(1) process with
ARCH(1) errors by Lemma 3.13 (d) and Theorem 2.5. The extremal index of
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(X2
t )t∈N0 is presented in Borkovec (2000), Theorem 3.1. Hence, we obtain the

index of (|Xt|)t∈N0 . �	

4 Time series models in continuous-time

Introducing discrete time grids in the time axes we calculate the extreme
dependence functions and also the extremal index function for continuous
time models. We shall see that the dependence structure of extremal events
in continuous-time models lead to analogous results as for their discrete-
time counterparts. In this section we assume throughout that the underlying
probability space is complete and that there exists a separable version of
(Xt)t≥0. We further assume that P(sup0≤t≤1 |Xt| < ∞) = 1, a condition, which
is for some kernel functions and driving Lévy processes automatically satisfied.
Recall again that regular variation of a stochastic process is defined as regular
variation of all finite-dimensional distributions.

4.1 Linear models in continuous-time

A continuous-time moving average (MA) process has the representation

Xt =
∫ ∞

−∞
f (t − s) dLs for t ≥ 0 , (4.1)

where f : R → R is a deterministic measurable function and (Lt)t∈R is a
Lévy process. For background on Lévy processes we refer to the excellent
monograph by Sato (1999). We also assume that f is bounded with fmax =
supt∈R

| f (t)| < ∞ and the following tail balance condition

lim
x→∞

P(L1 > x)

P(|L1| > x)
= p and lim

x→∞
P(−L1 > x)

P(|L1| > x)
= 1 − p (4.2)

hold for some p ∈ [0, 1]. More details on continuous-time linear models can be
found in Fasen (2005, 2006, 2009b).

4.1.1 Linear models with regularly varying tails

Lemma 4.1 Let (Xt)t≥0 be the continuous-time MA process given in Eq. 4.1
which satisfies the tail balance condition (Eq. 4.2). Furthermore, we assume that
for κ > 0 and some slowly varying function �

P(|L1| > x) = �(x)x−κ for x ≥ 0,

and one of the following conditions is satisfied:

(i)
∫∞
−∞ | f (t)|δ dt < ∞ for some δ < min{1, κ}.

(ii)
∫∞
−∞ | f (t)|δ dt < ∞ for some δ < κ , δ ≤ 2, κ > 1, and E(L1) = 0.
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Then the following results hold:

(a) There exists a strictly stationary version of the MA process.
(b) The stationary distribution given by X∞ is regularly varying with index κ

such that

P(X∞ > x) ∼
(

p
∫ ∞

−∞
( f (s)+)κ ds + (1 − p)

∫ ∞

−∞
( f (s)−)κ ds

)

× P(|L1| > x) as x → ∞.

(c) Let (Xt)t≥0 be a strictly stationary version of the MA process. Then
(|Xt|)t≥0 ∈ R(κ) with spectral measure given for a lagged vector Xd of
(|Xt|)t≥0 by

P(�d ∈ ·)= 1

c̃

∫ ∞

−∞
max

i=1,...,d
| f (ti − s)|κ 1{(| f (t1−s)|,...,| f (td−s)|)/ maxi=1,...,d | f (ti−s)|∈·} ds

with c̃ = ∫∞
−∞ maxi=1,...,d | f (ti − s)|κ ds.

Remark 4.2 Let f ≥ 0 be strictly decreasing. Then the spectral measure has
the alternative representation

P(�d ∈ ·) = E
(|Wd|κ 1{Wd/|Wd|∈·}

)

E|Wd|κ ,

where for s ∈ R and maxi=1,...,d | f (ti − s)| �= 0, Wd has Lebesgue density

P(Wd ∈ d(| f (t1 − s)|, . . . , | f (td − s)|)) = 1

c̃
max

i=1,...,d
| f (ti − s)|κ ds.

A similar argument as in Theorem 2.5 and Lemma 4.1 (c) leads to the
following result.

Theorem 4.3 Let the strictly stationary MA process (Xt)t≥0 satisfy the assump-
tions of Lemma 4.1. Furthermore, let an > 0 satisfy

lim
n→∞ nP(|X∞| > an) = 1.

Then the extreme dependence functions of (|Xt|)t≥0 are for a lagged vector Xd

of (|Xt|)t≥0 and for all (x1, . . . , xd) ∈ R
d+ given by

χ
(t1,...,td)

(x1, . . . , xd) =
∫∞
−∞ min

i=1,...,d
{x−1

i | f (ti − s)|}κ ds
∫∞
−∞ | f (s)|κ ds

,

χ(t1,...,td)(x1, . . . , xd) =
∫∞
−∞ max

i=1,...,d
{x−1

i | f (ti − s)|}κ ds
∫∞
−∞ | f (s)|κ ds

.
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In particular, for t > 0,

χ(t) =
∫∞
−∞ min{| f (−s)|, | f (t − s)|}κ ds

∫∞
−∞ | f (s)|κ ds

.

Furthermore, the extremal index function of (|Xt|)t≥0 is

θ(h) = h
f κ

max
∫∞
−∞ sup0≤t≤h | f (t − s)|κ ds

for h > 0.

Example 4.4 (Ornstein–Uhlenbeck process) The strictly stationary OU
process is for λ > 0 defined as

Xt =
∫ t

−∞
e−λ(t−s) dLs for t ≥ 0 .

Assume that L1 ∈ R(κ) for κ > 0 and satisfies Eq. 4.2. Then

χ(t) = e−κλt for t ≥ 0,

and (Xt)t≥0 has extreme dependence functions given for a lagged vector Xd

and for all x ∈ R+ by

χ
(t1,...,td)

(x, . . . , x) = x−κe−κλ(td−t1) ,

χ(t1,...,td)(x, . . . , x) = x−κ
(

dκλ −
d
∑

i=2

e−κλ(ti−ti−1)
)

.

As in the AR(1) model χ(·) decreases exponentially with rate κλ. Conse-
quently, the extremal dependence function increases when the tail of L1

becomes heavier, also when the parameter λ becomes smaller. Furthermore,
the extremal index function is given by

θ(h) = hκλ

hκλ + 1
for h > 0,

which reflects that the cluster probability increases, when κ or λ decreases. As
for the discrete time AR(1) process, for κ → ∞ it is obvious that χ(t) → 0 and
θ(h) → 1.

4.1.2 Linear models with tails in S ∩ MDA(�)

The conclusions of this section can be found in a more general context in Fasen
(2004, 2006).

Lemma 4.5 Let (Xt)t≥0 be a continuous-time MA process given in Eq. 4.1.
Furthermore, we assume that |L1| ∈ S ∩ MDA(�) and one of the following
conditions is satisfied:

(i)
∫∞
−∞ | f (t)| dt < ∞.

(ii)
∫∞
−∞ | f (t)|2 dt < ∞ and E(L1) = 0.
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Then there exists a strictly stationary version of the MA process, which is
infinitely divisible.

The proof of the following Theorem is similar to the proof of Theorem 3.6
for the discrete-time case.

Theorem 4.6 Let the strictly stationary MA process (Xt)t≥0 satisfy the assump-
tions of Lemma 4.5. Furthermore, let an > 0, b n ∈ R satisfy

lim
n→∞ nP(|X∞| > anx + b n) = e−x for x ∈ R.

Suppose that f (t) = 0 for t ≤ 0, f (t) < f (0) for t > 0, and that f is non-
increasing on [0, ∞). Then the extreme dependence functions of (|Xt|)t≥0 are
given for a lagged vector Xd of (|Xt|)t≥0 and for all (x1, . . . , xd) ∈ R

d by

χ
(t1,...,td)

(x1, . . . , xd) = 0 and χ(t1,...,td)(x1, . . . , xd) =
d
∑

i=1

e−xi .

In particular, χ(t) = 0 for t > 0. Furthermore, the extremal index function of
(|Xt|)t≥0 is given by θ(h) = 1 for h > 0.

In the framework of the above Theorem 4.6 we have

P(|X∞| > x) ∼ o(P(|L1| > x)) as x → ∞.

A typical example for a process satisfying the assumptions of Theorem 4.6 is
the OU-process of Example 4.4 with |L1| in S ∩ MDA(�).

4.2 Continuous-time GARCH models

Let (Lt)t≥0 be a Lévy process and define the auxiliary càdlàg process (Rt)t≥0 by

Rt = ηt −
∑

0<s≤t

log(1 + ϕ(�Ls)
2) , t ≥ 0 ,

for η, ϕ > 0. The auxiliary process (Rt)t≥0 itself is a spectrally negative Lévy
process of bounded variation. Then with β > 0 and σ 2

0 independent of (Lt)t≥0,
the volatility process (σ 2

t )t≥0 is defined as

σ 2
t =

(

β

∫ t

0
eRs−ds + σ 2

0

)

e−Rt for t ≥ 0 . (4.1)

The integrated continuous-time GARCH(1, 1) (COGARCH(1, 1)) process
(Xt)t≥0 is a càdlàg process satisfying

Xt =
∫ t

0
σs− dLs for t > 0 and X0 = 0, (4.2)
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where σt := √

σ 2
t . In a financial context the logarithmic returns over time

periods of length r > 0 are then modeled by

X(r)
t = Xt+r − Xt for t ≥ 0. (4.3)

The next Lemma is based on Klüppelberg et al. (2004, 2006) and Fasen (2009a).

Lemma 4.7 Let (σ 2
t )t≥0 be the volatility process of the COGARCH(1,1) process

given in Eq. 4.1. Furthermore, assume that there exists some κ > 0 such that

E|L1|κ log+ |L1| < ∞ and E(e−R1κ/2) = 1.

Then the following results hold:

(a) There exists a strictly stationary version of (σ 2
t )t≥0.

(b) The stationary distribution of the volatility process given by σ 2∞ is regularly
varying with index κ/2 such that for some C > 0,

P(σ 2
∞ > x) ∼ Cx−κ/2 as x → ∞.

(c) Let (σ 2
t )t≥0 be a strictly stationary version of the volatility process.

Then (σ 2
t )t≥0 ∈ R(κ/2) with spectral measure given for a lagged vector

(σ 2
t1 , . . . , σ

2
td) by

P(�d ∈ ·) = E
(|Wd|κ/2 1{Wd/|Wd|∈·}

)

E|Wd|κ/2
,

where Wd = (

e−Rt1 , . . . , e−Rtd
)

.

Remark 4.8 The condition E(e−R1κ/2) = 1 can be expressed in terms of the
Lévy measure ν of L. Let �(s) = log E(e−sR1), then

�(s) = −sη +
∫

R

((1 + ϕy2)s − 1) ν(dy) (4.4)

and κ is the solution to �(2s) = 0.

By Theorem 2.5, Lemma 4.7 (c) and Fasen (2009a), Theorem 4.3, the
following result holds.

Theorem 4.9 Let the strictly stationary volatility process (σ 2
t )t≥0 satisfy the

assumptions of Lemma 4.7. Furthermore, let an > 0 satisfy

lim
n→∞ nP(σ∞ > an) = 1.

Then the extreme dependence functions of (σt)t≥0 are given for a lagged vector
(σt1 , . . . , σtd) of (σt)t≥0 and for all (x1, . . . , xd) ∈ R

d+ by

χ
(t1,...,td)

(x1, . . . , xd) = E

(

min
i=1,...,d

{x−κ
i e−Rti κ/2}

)

,

χ(t1,...,td)(x1, . . . , xd) = E

(

max
i=1,...,d

{x−κ
i e−Rti κ/2}

)

.
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In particular,

χ(t) = E
(

min{1, e−Rtκ/2}) for t ≥ 0.

Furthermore, the extremal index function of (σt)t≥0 is

θ(h) = E
(

sup0≤t≤h e−Rtκ/2 − supt≥h e−Rtκ/2
)+

E
(

sup0≤t≤h e−Rtκ/2
) for h > 0.

Lemma 4.10 Let (Xt)t≥0 be the COGARCH(1,1) process given in Eq. 4.2.
Suppose (Lt)t≥0 is of finite variation and (−Lt)t≥0 is not a subordinator.
Furthermore, we assume there exist κ > 0 and δ > 0 such that

E|L1|2κ+δ < ∞ and E(e−R1κ/2) = 1.

Then the following results hold for r > 0:

(a) There exists a strictly stationary version of (X(r)
tr )t∈N0 .

(b) The stationary distribution given by X(r)∞ satisfies for some C > 0,

P(X(r)
∞ > x) ∼ Cx−κ as x → ∞.

(c) Let (X(r)
tr )t∈N0 be a strictly stationary version of the increments of the

COGARCH(1,1) process. Then ((X(r)
tr )2)t∈N0 ∈ R(κ) with spectral measure

given for a lagged vector ((X(r)
t1r )

2, . . . , (X(r)
tdr )

2) by

P(�d ∈ ·) = E
(|Wd|κ/2 1{Wd/|Wd|∈·}

)

E|Wd|κ/2
,

where

Wd =
(

(

∫ (t1+1)r

t1r
e−Rs/2 dLs

)2
, . . . ,

(

∫ (td+1)r

tdr
e−Rs/2 dLs

)2
)

.

By Theorem 2.5, Lemma 4.8 (c) and Fasen (2009a), Theorem 4.3, the
following result holds.

Theorem 4.11 Let the strictly stationary COGARCH(1,1) process (Xt)t≥0

satisfy the assumptions of Lemma 4.10. Furthermore, let an > 0 satisfy

lim
n→∞ nP(|X(r)

∞ | > an) = 1.

Then the extreme dependence functions of (|X(r)
tr |)t∈N0 are given for a lagged

vector (|X(r)
t1r |, . . . , |X(r)

tdr |) of (|X(r)
tr |)t∈N0 and for all (x1, . . . , xd) ∈ R

d+ by

χ
(t1,...,td)

(x1, . . . , xd) =
E

(

mini=1,...,d

{

x−κ
i

∣

∣

∣

∫ (ti+1)r
tir

e−Rs/2 dLs

∣

∣

∣

κ})

E
∣

∣

∫ r
0 e−Rs/2 dLs

∣

∣

κ ,

χ(t1,...,td)(x1, . . . , xd) =
E

(

maxi=1,...,d

{

x−κ
i

∣

∣

∣

∫ (ti+1)r
tir

e−Rs/2 dLs

∣

∣

∣

κ})

E
∣

∣

∫ r
0 e−Rs/2 dLs

∣

∣

κ .
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In particular,

χ(t) =
E min

{

∣

∣

∫ r
0 e−Rs/2 dLs

∣

∣

κ
,

∣

∣

∣

∫ (t+1)r
tr e−Rs/2 dLs

∣

∣

∣

κ}

E
∣

∣

∫ r
0 e−Rs/2 dLs

∣

∣

κ for t ∈ N0.

Furthermore, the extremal index of (|X(r)
tr |)t∈N0 is

θ =
E

(

∣

∣

∫ r
0 e−Rs/2 dLs

∣

∣

κ −∨∞
k=1

∣

∣

∣

∫ (k+1)r
kr e−Rs/2 dLs

∣

∣

∣

κ)

E
∣

∣

∫ r
0 e−Rs/2 dLs

∣

∣

κ .
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