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Abstract We study random graphs with an i.i.d. degree sequence of which the tail
of the distribution function F is regularly varying with exponent � 2 (1, 2). In
particular, the degrees have infinite mean. Such random graphs can serve as models
for complex networks where degree power laws are observed. The minimal number
of edges between two arbitrary nodes, also called the graph distance or the
hopcount, is investigated when the size of the graph tends to infinity. The paper is
part of a sequel of three papers. The other two papers study the case where
� 2 ð2; 3Þ, and � 2 ð3;1Þ, respectively. The main result of this paper is that the
graph distance for � 2 ð1; 2Þ converges in distribution to a random variable with
probability mass exclusively on the points 2 and 3. We also consider the case
where we condition the degrees to be at most N� for some � > 0, where N is the
s i z e o f t h e g r a p h . F o r fi x e d k 2 0; 1; 2; . . .f g a n d � s u c h t h a t
ð� þ kÞ�1 < � < ð� þ k� 1Þ�1, the hopcount converges to kþ 3 in probability, while
for � > ð� � 1Þ�1, the hopcount converges to the same limit as for the unconditioned
degrees. The proofs use extreme value theory.
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1. Introduction

The study of complex networks has attracted considerable attention in the past
decade. There are numerous examples of complex networks, such as co-authorship
and citation networks of scientists, the World-Wide Web and Internet, metabolic
networks, etc. The topological structure of networks affects the performance in
those networks. For instance, the topology of social networks affects the spread of
information and disease (see e.g., Newman, 2003; Strogatz, 2001), while the
performance of traffic in Internet depends heavily on the topology of the Internet.

Measurements on complex networks have shown that many real networks
have similar properties. A first example of such a fundamental network property
is the fact that typical distances between nodes are small. This is called the
Fsmall world_ phenomenon, see the pioneering work of Watts (1999), and the
references therein. In Internet, for example, e-mail messages cannot use more than
a threshold of physical links, and if the distances in Internet would be large, then e-
mail service would simply break down. Thus, the graph of the Internet has evolved
in such a way that typical distances are relatively small, even though the Internet is
rather large.

A second, maybe more surprising, property of many networks is that the number
of nodes with degree n falls off as an inverse power of n. This is called a Fpower law
degree sequence._ In Internet, the power law degree sequence was first observed in
(Faloutsos et al., 1999). The observation that many real networks have the above
properties has incited a burst of activity in network modelling. Most of the models
use random graphs as a way to model the uncertainty and the lack of regularity in
real networks. See (Albert and Barabási, 2002; Newman, 2003) and the references
therein for an introduction to complex networks and many examples where the
above two properties hold.

The current paper presents a rigorous derivation for the random fluctuations of
the graph distance between two arbitrary nodes (also called the hopcount) in a
graph with i.i.d. degrees having infinite mean. The model with i.i.d. degrees is a
variation of the configuration model, which was originally proposed by Newman
et al. (2000), where the degrees originate from a given deterministic sequence. The
observed power exponents are in the range from � ¼ 1:5 to � ¼ 3:2 (see [(Albert
and Barabási, 2002), Table II] or [(Newman, 2003), Table II]). In a previous paper
(van der Hofstad et al., 2005a), the case � > 3 was investigated, while the case � 2
ð2; 3Þ was studied in (van der Hofstad et al., 2005b). Here we focus on the case
� 2 ð1; 2Þ, and study the typical distances between arbitrary connected nodes. In a
forthcoming paper (van der Hofstad et al., 2005c), we will survey the results from the
different cases for � , and investigate the connected components of the random graphs.

This section is organized as follows. In Section 1.1, we start by introducing the
model, and in Section 1.2, we state our main results. In Section 1.3, we explain
heuristically how the results are obtained. Finally, we describe related work in
Section 1.4.

1.1. The model

Consider an i.i.d. sequence D1;D2; . . . ;DN . Assume that LN ¼
PN

j¼1 Dj is even. When
LN is odd, then we increase DN by 1, i.e., we replace DN by DN þ 1. This change will
make hardly any difference in what follows, and we will ignore it in the sequel.
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We will construct a graph in which node j has degree Dj for all 1 � j � N. We will
later specify the distribution of Dj. We start with N separate nodes and incident to
node j, we have Dj stubs which still need to be connected to build the graph.

The stubs are numbered in an arbitrary order from 1 to LN . We continue by
matching at random the first stub with one of the LN � 1 remaining stubs. Once
paired, two stubs form an edge of the graph. Hence, a stub can be seen as the left or
the right half of an edge. We continue the procedure of randomly choosing and
pairing the next stub and so on, until all stubs are connected.

The probability mass function and the distribution function of the nodal degree
are denoted by

PðD1 ¼ j Þ ¼ fj; j ¼ 1; 2; . . . ; and FðxÞ ¼
Xbxc

j¼1

fj; ð1:1Þ

where bxc is the largest integer smaller than or equal to x. Our main assumption will
be that

x��1 1� FðxÞ½ � ð1:2Þ

is slowly varying at infinity for some � 2 ð1; 2Þ. This means that the random variables
Dj obey a power law with infinite mean.

1.2. Main results

We define the graph distance HN between the nodes 1 and 2 as the minimum
number of edges that form a path from 1 to 2, where, by convention, this distance
equals1 if 1 and 2 are not connected. Observe that the graph distance between two
randomly chosen nodes is equal in distribution to HN , because the nodes are
exchangeable.

In this paper, we will present two separate theorems for the case � 2 ð1; 2Þ. We
also consider the boundary cases � ¼ 1 (Theorem 1.3) and � ¼ 2 (Remark 1.4). In
Theorem 1.1, we take the sequence D1;D2; . . . ;DN of i.i.d. copies of D with
distribution F, satisfying Eq. 1.2, with � 2 ð1; 2Þ. The result is that the graph distance
or hopcount converges in distribution to a limit random variable with mass p ¼ pF ,
1� p; on the values 2, 3, respectively. In the paper the abbreviation whp, means that
the involved event happens with probability converging to 1, as N !1.

Theorem 1.1: Fix � 2 ð1; 2Þ in Eq. 1.2 and let D1;D2; . . . ;DN be a sequence of i.i.d.
copies of D. Then,

lim
N!1

PðHN ¼ 2Þ ¼ 1� lim
N!1

PðHN ¼ 3Þ ¼ pF 2 ð0; 1Þ: ð1:3Þ

One might argue that including degrees larger than N � 1 is artificial in a network
with N nodes. In fact, in many real networks, the degree is bounded by a physical
constant. Therefore, we also consider the case where the degrees are conditioned to
be smaller than N�, where � is an arbitrary positive number. Of course, we cannot
condition on the degrees to be at most M, where M is fixed and independent on N,
since in this case, the degrees are uniformly bounded, and this case is treated in (van
der Hofstad et al., 2005a). Therefore, we consider cases where the degrees are
conditioned to be at most a given power of N.
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The result with conditioned degrees appears in the Theorem 1.2. It turns out that
for � > 1=ð� � 1Þ, the conditioning has no influence in the sense that the limit
random variable is the same as that for the unconditioned case. This is not so
strange, since the maximal degree is of order N1=ð��1Þ, so that the conditioning
does nothing in this case. However, for fixed k 2 N [ f0g and � such that 1=ð� þ
kÞ < � < 1=ð� þ k� 1Þ, the graph distance converges to a degenerate limit random
variable with mass 1 on the value kþ 3. It would be of interest to extend the
possible conditioning schemes, but we will not elaborate further on it in this paper.

In the theorem below, we write DðNÞ for the random variable D conditioned on
D < N�. Thus,

PðDðNÞ¼ jÞ ¼ fj

PðD < N�Þ ; 1 � j < N�: ð1:4Þ

Theorem 1.2: Fix � 2 ð1; 2Þ in Eq. 1.2 and let DðNÞ
1 ;DðNÞ

2 ; . . . ;DðNÞ
N

be a sequence of
i.i.d. copies of DðNÞ.

(a) For k 2 N [ f0g and � such that 1=ð� þ kÞ < � < 1=ð� þ k� 1Þ,

lim
N!1

PðHN ¼ kþ 3Þ ¼ 1: ð1:5Þ

(b) If � > 1=ð� � 1Þ, then

lim
N!1

PðHN ¼ 2Þ ¼ 1� lim
N!1

PðHN ¼ 3Þ ¼ pF ; ð1:6Þ

where pF 2 ð0; 1Þ is defined in Theorem 1.1.

The boundary case � ¼ 1 and � ¼ 2 are treated in Theorem 1.3 and Remark 1.4,
below. We will prove that for � ¼ 1, the hopcount converges to the value 2. For
� ¼ 2, we show by presenting two examples, that the limit behavior depends on the
behavior of the slowly varying tail x½1� FðxÞ�.

Theorem 1.3: For � ¼ 1 in Eq. 1.2 and let D1;D2; . . . ;DN be a sequence of i.i.d.
copies of D. Then,

lim
N!1

PðHN ¼ 2Þ ¼ 1: ð1:7Þ

Remark 1.4: Fix � ¼ 2 in Eq. 1.2 and with D1;D2; . . . ;DN a sequence of i.i.d.
copies of D, the limit behavior of HN depends on the slowly varying tail x½1� FðxÞ�;
x!1. In Section 4.2, we present two examples, where we have, depending on the
slowly varying function x½1� FðxÞ�, different limit behavior for HN . We present an
example with limN!1 PðHN � kÞ ¼ 0, for all fixed integers k, as N !1, and a
second example where HN 2 f2; 3g, whp, as N !1.

1.3. Heuristics

When � 2 ð1; 2Þ, we consider two different cases. In Theorem 1.1, the degrees are
not conditioned, while in Theorem 1.2 we condition on each node having a degree
smaller than N�. We now give a heuristic explanation of our results.
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In two previous papers (van der Hofstad et al., 2005a,b), the cases � 2 ð2; 3Þ and
� > 3 have been treated. In these cases, the probability mass function f fjg
introduced in Eq. 1.1 has a finite mean, and the number of nodes on graph distance
n from node 1 can be coupled to the number of individuals in the nth generation of a
branching process with offspring distribution fgjg given by

gj ¼
jþ 1

�
fj; ð1:8Þ

where � ¼ E D1½ �. For � 2 ð1; 2Þ, as we are currently investigating, we have � ¼ 1,
and the branching process used in (van der Hofstad et al., 2005a,b) does not exist.

When we do not condition on Dj being smaller than N�, then LN is the i.i.d. sum
of N random variables D1;D2; . . . ;DN , with infinite mean. It is well known that in
this case the bulk of the contribution to LN ¼ N1=ð��1Þþoð1Þ comes from a finite
number of nodes which have giant degrees (the so-called giant nodes). A basic fact
in the configuration model is that two sets of stubs of sizes n and m are connected
whp when nm is at least of order LN . Since the giant nodes have degree roughly
N1=ð��1Þ, which is much larger than

ffiffiffiffiffiffi
LN

p
, they are all attached to each other, thus

forming a complete graph of giant nodes. Each stub is whp attached to a giant node,
and, therefore, the distance between any two nodes is, whp, at most 3. In fact, this
distance equals 2 when the two nodes are connected to the same giant node, and is 3
otherwise. In particular, for � ¼ 1, the quotient DðNÞ=LN converges to 1 in prob-
ability, and consequently the hopcount converges to 2, in probability.

When we truncate the distribution as in Eq. 1.4, with � > 1=ð� � 1Þ, we hardly
change anything since without truncation whp all degrees are below N�. On the
other hand, if � < 1=ð� � 1Þ, then, with truncation, the largest nodes have degree of
order N�, and LN � N1þ�ð2��Þ. Again, the bulk of the total degree LN comes from
nodes with degree of the order N�, so that now these are the giant nodes. Hence, for
1=� < � < 1=ð� � 1Þ, the largest nodes have degrees much larger than

ffiffiffiffiffiffi
LN

p
, and

thus, whp, still constitute a complete graph. The number of giant nodes converges to
infinity, as N !1. Therefore, the probability that two arbitrary nodes are
connected to the same giant node converges to 0. Consequently, the hopcount
equals 3, whp. If � < 1=� , then the giant nodes no longer constitute a complete
graph, so that the hopcount can be greater than 3. For almost every � < 1=�; the
hopcount converges to a single value. The behavior of the hopcount for the cases
that � ¼ 1=ð� þ kÞ for k 2 N [ f0g, will be dependent on the slowly varying function
in Eq. 1.2, as is the case for � ¼ 2. We do expect that the hopcount converges to at
most 2 values in these cases.

The proof in this paper is based on detailed asymptotics of the sum of N i.i.d.
random variables with infinite mean, as well as on the scaling of the order statistics
of such random variables. The scaling of these order statistics is crucial in the
definition of the giant nodes which are described above. The above considerations
are the basic idea in the proof of Theorem 1.1. In the proof of Theorem 1.2, we need
to investigate what the conditioning does to the scaling of both the total degree LN ,
as well as to the largest degrees.

1.4. Related work

The above model is a variation of the configuration model. In the usual
configuration model one often starts from a given deterministic degree sequence.
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In our model, the degree sequence is an i.i.d. sequence D1; . . . ;DN with distribution
equal to a power law. The reason for this choice is that we are interested in models
for which all nodes are exchangeable, and this is not the case when the degrees are
fixed. The study of this variation of the configuration model was started in (Newman
et al., 2000) for the case � > 3 and studied by Reittu and Norros (2004) in case
� 2 ð2; 3Þ.

For a survey of complex networks, power law degree sequences and random
graph models for such networks, see (Albert and Barabási, 2002) and (Newman,
2003). There, a heuristic is given why the hopcount scales proportionally to log N,
which is originally from (Newman et al., 2000). The argument uses a variation of the
power law degree model, namely, a model where an exponential cut off is present.
An example of such a degree distribution is

fj ¼ Cj��e�j=� ð1:9Þ

for some � > 0. The size of � indicates up to what degree the power law still holds,
and where the exponential cut off starts to set in. The above model is treated in (van
der Hofstad et al., 2005a) for any � <1, but, for � ¼ 1, falls within the regimes
where � 2 ð2; 3Þ in (van der Hofstad et al., 2005b) and within the regime in this
paper for � 2 ð1; 2Þ. In Newman et al. (2000), the authors conclude that since the
limit as �!1 does not seem to converge, the Faverage distance is not well defined
when � < 3._ In this paper, as well as in (van der Hofstad et al., 2005b), we show that
the average distance is well defined, but it scales differently from the case where
� > 3.

In van der Hofstad et al. (2005c), we give a survey to the results for the hopcount
in the three different regimes � 2 ð1; 2Þ, � 2 ð2; 3Þ and � > 3. There, we also prove
results for the connectivity properties of the random graph in these cases. These
results assume that the expected degree is larger than 2. This is always the case when
� 2 ð1; 2Þ, and stronger results have been shown there. We prove that the largest
connected component has whp size Nð1þ oð1ÞÞ. When � 2 ð1; 3

2Þ we even prove that
the graph is whp connected. When � > 3

2 this is not true, and we investigate the
structure of the remaining Fdust_ that does not belong to the largest connected
component. The analysis makes use of the results obtained in this paper for
� 2 ð1; 2Þ. For instance, it will be crucial that the probability that two arbitrary nodes
are connected converges to 1.

There is substantial related work on the configuration model for the cases � 2
ð2; 3Þ and � > 3. References are included in the paper (van der Hofstad et al., 2005b)
for the case � 2 ð2; 3Þ, and in (van der Hofstad et al., 2005a) for � > 3. We again
refer to the references in (van der Hofstad et al., 2005c) and (Albert and Barabási,
2002; Newman, 2003) for more details. The graph distance for � 2 ð1; 2Þ, that we
study here, has, to our best knowledge, not been studied before. Values of � 2 ð1; 2Þ
have been observed in networks of e-mail messages and networks where the nodes
consist of software packages (see [Newman, 2003, Table II]), for which our
configuration model with � 2 ð1; 2Þ can possibly give a good model.

In Aiello et al. (2001), random graphs are considered with a degree sequence that
is precisely equal to a power law, meaning that the number of nodes with degree n is
precisely proportional to n�� . Aiello et al. (2001) show that the largest connected
component is of the order of the size of the graph when � < �0 ¼ 3:47875 . . ., where
�0 is the solution of �ð� � 2Þ � 2�ð� � 1Þ ¼ 0, and where � is the Riemann zeta
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function. When � > �0, the largest connected component is of smaller order than the
size of the graph and more precise bounds are given for the largest connected
component. When � 2 ð1; 2Þ, the graph is whp connected. The proofs of these facts
use couplings with branching processes and strengthen previous results due to
Molloy and Reed (1995, 1998). See also (Aiello et al., 2001) for a history of the
problem and references predating Molloy and Reed (1995, 1998). See (Aiello et al.,
2002) for an introduction to the mathematical results of various models for complex
networks (also called massive graphs), as well as a detailed account of the results in
(Aiello et al., 2001).

A detailed account for a related model can be found in (Chung and Lu, 2002a,b),
where links between nodes i and j are present with probability equal to wiwj=

P
l wl

for some Fexpected degree vector_ w ¼ ðw1; . . . ;wNÞ. Chung and Lu (2002a) show
that when wi is proportional to i�

1
��1, the average distance between pairs of nodes is

proportional log Nð1þ oð1ÞÞ when � > 3, and equal to 2 log log N
j logð��2Þj ð1þ oð1ÞÞ when

� 2 ð2; 3Þ. In their model, also � 2 ð1; 2Þ is possible, and in this case, similarly to
� 2 ð1; 3

2Þ in our paper, the graph is connected whp.
The difference between this model and ours is that the nodes are not

exchangeable in (Chung and Lu, 2002a), but the observed phenomena are similar.
This can be understood as follows. Firstly, the actual degree vector in (Chung and
Lu, 2002a) should be close to the expected degree vector. Secondly, for the expected
degree vector, we can compute that the number of nodes for which the degree is at
least n equals

jfi : wi � ngj ¼ jfi : ci�
1

��1 � ngj / n��þ1;

where the proportionality constant depends on N. Thus, one expects that the
number of nodes with degree at least n decreases as n��þ1, similarly as in our model.
In (Chung and Lu, 2002b), Chung and Lu study the sizes of the connected com-
ponents in the above model. The advantage of working with the Fexpected degree
model_ is that different links are present independently of each other, which makes
this model closer to the classical random graph Gðp;NÞ.

1.5. Organization of the paper

The main body of the paper consists of the proofs of Theorem 1.1 in Section 2 and
the proof of Theorem 1.2 in Section 3. Both proofs contain a technical lemma and in
order to make the argument more transparent, we have postponed the proofs of
these lemmas to the Appendix. Section 4 contains the proof of Theorem 1.3 and two
examples for the case � ¼ 2. Section 5 contains simulation results, conclusions and
open problems.

2. Proof of Theorem 1.1

In this section, we prove Theorem 1.1, which states that the hopcount between two
arbitrary nodes has whp a non-trivial distribution on 2 and 3. We start with an
outline of our proof.

Below, we introduce an event A";N , such that when A";N occurs, the hopcount
between two arbitrary nodes is either 2 or 3. We then prove that PðAC";NÞ < ", for

Distances in random graphs with infinite mean degrees 117



N � N" (see Lemma 2.2 below). For this we need a modification of the extreme
value theorem for the k largest degrees, for all k 2 N.

We introduce

Dð1Þ � Dð2Þ � . . . � DðNÞ;

to be the order statistics of D1; . . . ;DN , so that Dð1Þ ¼ minfD1; . . . ;DNg, Dð2Þ is the
second smallest degree, etc. Let ðuNÞ be an increasing sequence such that

lim
N!1

N 1� FðuNÞ½ � ¼ 1: ð2:1Þ

It is well known that the order statistics of the degrees, as well as the total degree,
are governed by uN in the case that � 2 ð1; 2Þ. The following lemma shows this in
detail. In the lemma E1;E2; . . . is an i.i.d. sequence of exponential random variables
with unit mean and Gj ¼ E1 þ E2 þ . . .þ Ej, hence Gj has a gamma distribution with
parameters j and 1. Throughout the paper, equality in distribution is denoted by the
symbol d¼, whereas d! denotes convergence in distribution.

Lemma 2.1 (Convergence in distribution of order statistics): For any k 2 N,

LN

uN

;
DðNÞ

uN

; . . . ;
DðN�kþ1Þ

uN

� �
d! �; �1; . . . ; �kð Þ; as N !1; ð2:2Þ

where ð�; �1; . . . ; �kÞ is a random vector which can be represented by

�; �1; . . . ; �kð Þ d¼
X1

j¼1

G�1=ð��1Þ
j ;G�1=ð��1Þ

1 ; . . . ;G�1=ð��1Þ
k

 !

: ð2:3Þ

Moreover,

�k ! 0 in probability; as k!1: ð2:4Þ

Proof: Because � � 1 2 ð0; 1Þ, the proof is a direct consequence of [(LePage et al.,
1981), Theorem 1_], and the continuous mapping theorem [(Billingsley, 1968),
Theorem 5.1], which together yield that on R� R1, equipped with the product
topology, we have

ðS#
N
;ZðNÞÞ d! ðS#;ZÞ; ð2:5Þ

where S#
N
¼ u�1

N
LN , ZðNÞ ¼ u�1

N
ðDðNÞ; . . . ;Dð1Þ; 0; 0; . . .Þ; Zj ¼ G�1=ð��1Þ

j ; j � 1, and
S# ¼

P1
j¼1Zj.

If we subsequently take the projection from R� R17!Rkþ1, defined by

�ðs; zÞ ¼ ðs; z1; . . . ; zkÞ; ð2:6Þ

i.e., we keep the sum and the k largest order statistics, then we obtain Eqs. 2.2 and
2.3 from, again, the continuous mapping theorem. Finally, Eq. 2.4 follows because
the series

P1
j¼1 Zj converges almost surely. Í

We need some additional notation. In this section, we define the giant nodes as
the k" largest nodes, i.e., those nodes with degrees DðNÞ; . . . ;DðN�k"þ1Þ; where k" is
some function of ", to be chosen below. We define

A";N ¼ B";N \ C";N \ D";N; ð2:7Þ
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where

(a) B";N is the event that the stubs of node 1 and node 2 are attached exclusively to
stubs of giant nodes;

(b) C";N is the event that any two giant nodes are attached to each other; and
(c) D";N is defined as

D";N ¼ D1 � q";D2 � q"f g;

where q" ¼ minfn : 1� FðnÞ < "=8g. Í
The reason for introducing the above events is that on A";N , the hopcount or

graph distance is either 2 or 3. Indeed, on B";N , both node 1 and node 2 are attached
exclusively to giant nodes. On the event C";N , giant nodes have mutual graph distance
1. Hence, on the intersection B";N \ C";N , the hopcount between node 1 and node 2 is
at most 3. The event D";N prevents that the hopcount can be equal to 1, because the
probability on the intersection of fHN ¼ 1g with D";N can be bounded by q2

"=N ! 0
(see the first part of the proof of Theorem 1.1 for details). Observe that the expected
number of stubs of node 1 is not bounded, since the expectation of a random
variable with distribution Eq. 1.2 equals þ1. Putting things together we see that if
we can show that A";N happens whp, then the hopcount is either 2 or 3. The fact that
A";N happens whp is the content of Lemma 2.2, where we show that PðAc

";NÞ < ", for
N � N". Finally, we observe that the hopcount between node 1 and 2 is precisely
equal to 2, if at least one stub of node 1 and at least one stub of node 2 is attached to
the same giant node, and equal to 3 otherwise.

The events B";N and C";N depend on the integer k", which we will take to be large
for " small, and will be defined now. The choice of the index k" is rather technical,
and depends on the distributional limits of Lemma 2.1.Since LN=uN ¼ ðD1 þD2þ . . .þ
DNÞ=uN converges in distribution to the random variable � with support ð0;1Þ, we
can find a", such that

PðLN < a"uNÞ < "=36; 8N: ð2:8Þ

This follows since convergence in distribution implies tightness of the sequence
LN=uN ([Billingsley, 1968, p. 9]), so that we can find a closed subinterval I � ð0;1Þ,
with

PðLN=uN 2 IÞ > 1� "; 8N:

We next define b", which is rather involved. It depends on ", the quantile q", the
value a" defined above and the value of � 2 ð1; 2Þ and reads

b" ¼
"2a"

2304q"

� � 1
2��

; ð2:9Þ

where the peculiar integer 2304 is the product of 82 and 36. Given b", we take k"
equal to the minimal k such that

Pð�k � b"=2Þ � "=72: ð2:10Þ
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It follows from Eq. 2.4 that such a number k exists. We have now defined the
constants that we will use in the proof, and we next claim that the probability of Ac

";N

is at most ":

Lemma 2.2 (The good event has high probability): For each " > 0, there exists
N", such that

PðAc
";NÞ < "; N � N": ð2:11Þ

The proof of this lemma is rather technical and can be found in Appendix A.1.
We will now complete the proof of Theorem 1.1 subject to Lemma 2.2.

Proof of Theorem 1.1: As seen in the discussion following the introduction of the
event A";N , this event implies the event fHN � 3g, so that PðAc

";NÞ < " induces that
the event fHN � 3g occurs with probability at least 1� ".

The remainder of the proof consist of two parts. In the first part we show that
P fHN ¼ 1g \ A";N
� �

< ". In the second part we prove that

lim
N!1

P HN ¼ 2ð Þ ¼ pF ;

for some 0 < pF < 1. Since " is an arbitrary positive number, the above statements
yield the content of the theorem.

We turn to the first part. The event fHN ¼ 1g occurs iff at least one stub of node
1 connects to a stub of node 2. For j � D1, we denote by f½1:j� ! ½2�g the event that
jth stub of node 1 connects to a stub of node 2. Then, with PN the conditional pro-
bability given the degrees D1;D2; . . . ;DN ,

Pð HN ¼ 1f g \ A";NÞ � E
XD1

j¼1

PNðf½1:j� ! ½2�g \ A";NÞ
" #

� E
XD1

j¼1

D2

LN � 1
1fA";Ng

" #

� q2
"

N � 1
< ";

ð2:12Þ

for large enough N, since LN � N.
We next prove that lim

N!1
P HN ¼ 2ð Þ ¼ p, for some 0 < p < 1. Since by definition

for any " > 0,

maxfPðBc
";NÞ;PðDc

";NÞg � PðAc
";NÞ � ";

we have that

jPðHN ¼ 2Þ � P fHN ¼ 2g \ D";N j B";N
� �

j

� PðHN ¼ 2Þ 1� 1

PðB";NÞ

� ��
�
�
�

�
�
�
�þ

PðHN ¼ 2Þ � PðfHN ¼ 2g \ D";N \ B";NÞ
PðB";NÞ

�
�
�
�

�
�
�
�

�
2PðBc

";NÞ þ PðDc
";NÞ

PðB";NÞ
� 3"

1� " ;

uniformly in N, for N sufficiently large. If we show that

lim
N!1

P fHN ¼ 2g \ D";N j B";N
� �

¼ rð"Þ; ð2:13Þ
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then there exists a double limit

pF ¼ lim
"#0

lim
N!1

P fHN ¼ 2g \ D";N j B";N
� �

¼ lim
N!1

P HN ¼ 2ð Þ:

Moreover, if we can bound rð"Þ away 0 and 1, uniformly in ", for " small enough,
then we also obtain that 0 < pF < 1.

In order to prove the existence of the limit in Eq. 2.13 we claim that PN fHN ¼ð
2g \ D";N j B";NÞ can be written as the ratio of two polynomials, where each poly-
nomial only involves components of the vector

DðNÞ

uN

; :::;
DðN�k"þ1Þ

uN

;
1

uN

� �

: ð2:14Þ

Due to Eq. 2.2, this vector converges in distribution to �1; . . . ; �k" ; 0ð Þ. Hence, by the
continuous mapping theorem [(Billingsley, 1968), Theorem 5.1, p. 30], we have the
existence of the limit (2.13). We now prove the above claim.

Indeed, the hopcount between nodes 1 and 2 is 2 iff both nodes are connected to
the same giant node. For any 0 � i � D1, 0 � j � D2 and 0 � k < k", let F i;j;k be the
event that both the ith stub of node 1 and the jth stub of node 2 are connected to the
node with the ðN � kÞth largest degree. Then, conditionally on the degrees D1;
D2; :::;DN ,

PN fHN ¼ 2g \ D";N j B";N
� �

¼ PN

[D1

i¼1

[D2

j¼1

[k"�1

k¼0

F i;j;k

�
�
�B";N

 !

;

where the right-hand side can be written by the inclusion-exclusion formula, as a
linear combination of terms

PN F i1;j1;k1
\ � � � \ F in;jn;kn

j B";N
� �

: ð2:15Þ

It is not difficult to see that these probabilities are ratios of polynomials of
components of Eq. 2.14. For example,

PN F i;j;k j B";N
� �

¼ DðN�kÞðDðN�kÞ � 1Þ
ðDðN�k"þ1Þ þ . . .þDðNÞÞðDðN�k"þ1Þ þ . . .þDðNÞ � 1Þ ; ð2:16Þ

so that dividing both the numerator and the denominator of Eq. 2.16 by u2
N
, we

obtain that the right-hand side of Eq. 2.16 is indeed a ratio of two polynomials of
the vector given in Eq. 2.14. Similar arguments hold for general terms of the form in
Eq. 2.15. Hence, PN fHN ¼ 2g \ D";N j B";N

� �
itself can be written as a ratio of two

polynomials where the polynomial in the denominator is strictly positive. Therefore,
the limit in Eq. 2.13 exists.

We finally bound rð"Þ from 0 and 1 uniformly in ", for any " < 1=2. Since the
hopcount between nodes 1 and 2 is 2, given B";N , if they are both connected to the
node with largest degree, then

PðfHN ¼ 2g \ D";N j B";NÞ � E PN F 1;1;0 j B";N
� �� �

;
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and by Eq. 2.16 we have

rð"Þ ¼ lim
N!1

P fHN ¼ 2g \ D";N j B";N
� �

� lim
N!1

E DðNÞðDðNÞ � 1Þ
ðDðNÞ þ � � � þDðN�k"þ1Þ � 1Þ2

" #

¼ E �1

�1 þ � � � þ �k"

� �2
" #

� E �1

�

� �2
" #

:

On the other hand, conditionally on B";N , the hopcount between nodes 1 and 2 is at
least 3, when all stubs of the node 1 are connected to the node with largest degree,
and all stubs of the node 2 are connected to the node with the one but largest
degree. Hence, for any " < 1=2 and similarly to Eq. 2.16, we have

rð"Þ ¼ lim
N!1

P fHN ¼ 2g \ D";N j B";N
� �

� 1� lim
N!1

P fHN > 2g \ D";N j B";N
� �

� 1� lim
N!1

P fHN > 2g \ D1
2
;N j B";N

	 


� 1� lim
N!1

E
" 
YD1

i¼0

DðNÞ � 2i

DðNÞ þ � � � þDðN�k"þ1Þ �D1

!

 
YD2

i¼0

DðN�1Þ � 2i

DðNÞ þ � � � þDðN�k"þ1Þ �D2

!

1fD1
2
;N
g

#

� 1� E �1�2

�2

� �q1
2

� �

;

because: (i) the event D1
2;N

implies that both D1 � q1
2

and D2 � q1
2
, (ii) the event B";N

implies that all stubs of the normal nodes 1 and 2 are connected to stubs of giant
nodes, (iii) Lemma 2.1 implies

lim
N!1

E
Y
q1

2

i¼0

DðNÞ � 2i

DðNÞ þ � � � þDðN�k"þ1Þ �D1

0

@

1

A
Y
q1

2

i¼0

DðN�1Þ � 2i

DðNÞ þ � � � þDðN�k"þ1Þ �D2

0

@

1

A

2

4

3

5

¼ E �1

�1 þ � � � þ �k"

� �q1
2 �2

�1 þ � � � þ �k"

� �q1
2

� �

;

ð2:17Þ

and (d) �1 þ � � � þ �k" � �.
Both expectations

E �1

�

� �2
" #

and E �1�2

�2

� �q1
2

� �

; ð2:18Þ

are strictly positive and independent of ". Hence, for any " < 1=2, the quantity rð"Þ
is bounded away from 0 and 1, where the bounds are independent of ", and thus
0 < pF < 1. This completes the proof of Theorem 1.1 subject to Lemma 2.2. Í
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3. Proof of Theorem 1.2

In Theorem 1.2, we consider the hopcount in the configuration model with degrees
an i.i.d. sequence with a truncated distribution given by Eq. 1.4, where D has
distribution F satisfying Eq. 1.2. We distinguish two cases: (i) � < 1=ð� � 1Þ and (ii)
� > 1=ð� � 1Þ. Since part (ii) is simpler to prove than part (i), we start with part (ii).

Proof of Theorem 1.2(ii): We have to prove that the limit distribution of HN is a
mixed distribution with probability mass pF on 2 and probability mass 1� pF on 3,
where pF is given by Theorem 1.1.

As before, we denote by D1;D2; . . . ;DN the i.i.d. sequence without conditioning.
We bound the probability that for at least one index i 2 f1; 2; . . . ;Ng the degree Di

exceeds N�, by

P
[N

i¼1

fDi > N�g
 !

�
XN

i¼1

PðDi > N�Þ ¼ NPðD > N�Þ ¼ N 1� F N�ð Þ½ � � N�";

for some positive ", because � > 1=ð� � 1Þ. We can therefore couple the i.i.d.
sequence ~DDðNÞ ¼ ðDðNÞ

1 ;DðNÞ
2 ; . . . ;DðNÞ

N
Þ to the sequence ~DD ¼ ðD1;D2; . . . ;DNÞ, where

the probability of a miscoupling, i.e., a coupling such that ~DDðNÞ 6¼ ~DD; is at most N�":
Therefore, the result of Theorem 1.1 carries over to case (b) in Theorem 1.2. Í

Proof of Theorem 1.2(i): This proof is more involved. We start with an outline of
the proof. Fix a such that

1

� þ k
< � <

1

� þ k� 1
; ð3:1Þ

with k 2 N [ f0g and define

MN ¼
XN

n¼1

DðNÞ
n : ð3:2Þ

From [(Feller, 1971), Theorem 1, p. 281], the expected value of MN is given by

E½MN� ¼
N

FðN�Þ
XN��1

i¼0

PðD > iÞ ¼ N1þ�ð2��Þ‘ðNÞ; ð3:3Þ

where N 7!‘ðNÞ is slowly varying at infinity. In the sequel, we will use the same ‘ðNÞ,
for different slowly varying functions, so that the value of ‘ðNÞ may change from
line to line.

For the outline, we assume that MN has roughly the same size as E MN½ � in Eq. 3.3.
The proof consists of showing that PðHN � kþ 2Þ ¼ oð1Þ and PðHN > kþ 3Þ ¼ oð1Þ.
We will sketch the proof of each of these results. To prove that PðHN � kþ 2Þ ¼
oð1Þ, note that whp the degrees of nodes 1 and 2 are bounded by q" for some large
q". Therefore, on this event, the number of nodes that can be reached from node 1
in l � 1 steps is at most q"N

ðl�2Þ�, and the number of stubs attached to nodes at
distance l � 1 is at most q"N

ðl�1Þ�. The probability that one of these stubs is attached
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to a stub of node 2, making HN at most l, is of the order q2
"N
ðl�1Þ�=MN . By Eq. 3.3

and the assumed concentration of MN , this is at most q2
"‘ðNÞNðl�3þ�Þ��1 ¼ oð1Þ,

whenever � < 1=ðl � 3þ �Þ. Applying this to l ¼ kþ 2, we see that this probability
is oð1Þ if � < 1=ðkþ � � 1Þ.

To prove that PðHN > kþ 3Þ ¼ oð1Þ, we use the notion of giant nodes in a similar
way as in the proof of Theorem 1.1. Due to the conditioning on the degree, Lemma
2.1 no longer holds, so that we need to adapt the definition of a giant node. In this
section, a giant node h is a node with degree DðNÞ

h , satisfying that, for an appropriate
choice of 	,

N	 < DðNÞ
h � N�: ð3:4Þ

Nodes with degree at most N	 will be called normal nodes, and we will denote by
KN the total number of stubs of the normal nodes, i.e.,

KN ¼
XN

n¼1

DðNÞ
n 1fDðNÞn �N	g: ð3:5Þ

Similarly to Eq. 3.3, we see that

E½KN � ¼ N1þ	ð2��Þ‘ðNÞ: ð3:6Þ

To motivate our choice of 	, which depends on the value of k, observe that a
node with (at least) N	 stubs, which chooses exclusively other giant nodes, in kþ 1
steps can reach approximately Nðkþ1Þ	 other nodes. The number of stubs of Nðkþ1Þ	

giant nodes is by definition at least Nðkþ2Þ	. Hence, if we take 	 such that MN �
Nðkþ2Þ	, or equivalently, by Eq. 3.3, 1þ �ð2� �Þ � ðkþ 2Þ	, then we basically have
all giant nodes on mutual distance at most kþ 1, so that (the non-giant) nodes 1 and
2, given that they both connect to at least one giant node, are on distance at most
kþ 3. In the proof, we will see that we can pick any 	 such that

1þ �ð2� �Þ
kþ 2

< 	 < �;

where we use that 1þ�ð2��Þ
kþ2 < �, precisely when � > 1

�þk. Having this in mind, we
choose

	 ¼ 1

2

1þ �ð2� �Þ
kþ 2

þ �
� �

: ð3:7Þ

Here ends the outline of the proof. Í
We now turn to the definition of the events involved. This part is similar, but not

identical, to the introduction of A";N in Eq. 2.7, because giant nodes no longer are on
mutual distance 1. We keep the same notation for the event B";N , the event that the
stubs of node 1 and 2 are attached exclusively to stubs of giant nodes, although the
definition of a giant node has been changed. We take this slight abuse of notation
for granted. The event D";N ¼ fD1 � q";D2 � q"g, where q" ¼ minfk : 1� FðkÞ <
"=8g, is identical to the definition in Section 2 (below Eq. 2.7). We define

G";N ¼ B";N \ D";N \H";N; ð3:8Þ
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where

H";N ¼ N1þ�ð2��Þ‘ðNÞ �MN � N1þ�ð2��Þ‘ðNÞ
n o

[ fKN � N1þ	ð2��Þ‘ðNÞg; ð3:9Þ

where ‘ðNÞ; ‘ðNÞ; ‘‘ðNÞ are slowly varying at infinity. The event H";N will enable us to
control the distance between any pair of giant nodes, as sketched in the outline.

The following lemma is the counterpart of Lemma 2.2 in Section 2.

Lemma 3.1 (The good event has high probability): For each " > 0, there exists
N", such that, for all N � N",

P Gc
";N

	 

< ": ð3:10Þ

The proof of Lemma 3.1 is rather technical and can be found in Appendix A.2.
The remainder of the proof of Theorem 1.2 is divided into two parts, namely, the

proofs of

P fHN � kþ 2g \ G";N
� �

< "=2; ð3:11Þ

and

P fHN > kþ 3g \ G";N
� �

< "=2: ð3:12Þ

Indeed, if we combine the statements (3.11) and (3.12), then

P HN ¼ kþ 3ð Þ ¼ P fHN ¼ kþ 3g \ G";N
� �

þ P fHN ¼ kþ 3g \ Gc
";N

	 


� P fHN ¼ kþ 3g \ G";N
� �

� "

¼ 1� P fHN > kþ 3g \ G";N
� �

� P fHN < kþ 3g \ G";N
� �

� "

> 1� 2"; ð3:13Þ

and the conclusion of Theorem 1.2(a) is reached. We will prove Eqs. 3.11, 3.12 in
two lemmas.

Lemma 3.2 (The distance is at least kþ 3 on the good event): Fix k 2 N [ f0g,
and � as in Eq. 3.1. For each " > 0, there exists an integer N", such that

P fHN � kþ 2g \ G";N
� �

< "=2; N � N":

Proof: The inequality of the lemma is proved by a counting argument. We will
show that for each l 2 1; 2; 3; . . . ; kþ 2f g

P fHN ¼ lg \ G";N
� �

< N�
l ; ð3:14Þ

for some 
l > 0. Since

P fHN � kþ 2g \ G";N
� �

�
Xkþ2

l¼1

P fHN ¼ lg \ G";N
� �

� ðkþ 2ÞN�
;
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where 
 ¼ minf
1; . . . ; 
kþ2g > 0, the claim of the lemma follows if we choose N",
such that ðkþ 2ÞN�
" � "=2.

To prove that PðfHN ¼ lg \ G";NÞ < N�
l for any l � kþ 2, we note that on G";N ,
the degrees of nodes 1 and 2 are bounded by q". Therefore, on G";N and using that all
degrees are bounded by N�, the number of nodes that can be reached from node 1
in l � 1 steps is at most q"N

ðl�2Þ�, and the number of stubs incident to nodes at
distance l � 1 from node 1 is at most q"N

ðl�1Þ�. When HN ¼ l, then one of these stubs
should be attached to one of the at most q" stubs incident to node 2.

Denote by MðlÞ
N

the number of stubs that are not part of an edge incident to a node
at distance at most l � 1 from node 1. Then, conditionally on MðlÞ

N
and the fact that

node 2 is at distance at least l � 1 from node 1, the stubs of node 2 will be connected
to one of these MðlÞ

N
stubs uniformly at random. More precisely, conditionally on MðlÞ

N

and the fact that node 2 is at distance at least l � 1 from node 1, the event fHN ¼ lg
occurs precisely when a stub of node 2 is paired with a stub attached to a node at
distance l � 1 from node 1.

We note that, on G";N ,

MðlÞ
N
�MN � 2q"N

ðl�2Þ� ¼MNð1þ oð1ÞÞ � ‘ðNÞN1þð2��Þ�; ð3:15Þ

when ðl � 2Þ� < 1þ ð2� �Þ�, i.e., when � < 1=ðl þ � � 4Þ. Since l � kþ 2 and
� < 1=ðkþ � � 1Þ, the latter is always satisfied.

The probability that one of the at most q" stubs of node 2 is paired with one of
the stubs attached to nodes at distance l � 1 from node 1 is, on G";N and conditionally
on MðlÞ

N
and the fact that node 2 is at distance at least l � 1 from node 1, bounded

from above by

q2
"N
ðl�1Þ�

MðlÞ
N

¼ q2
"N
ðl�1Þ�

MN

ð1þ oð1ÞÞ � ‘ðNÞNðl�3þ�Þ��1 < N�
l ; ð3:16Þ

for all 
l < 1� ðl � 3þ �Þ� and N sufficiently large. Here, we use the lower bound
on MN in Eq. 3.9. Applying this to l ¼ kþ 2, which gives the worst possible value of

l, we see that this probability is bounded from above by N�
 for any 
 < 1�
ðkþ � � 1Þ�. Since � < 1=ðkþ � � 1Þ, we have that 1� ðkþ � � 1Þ� > 0, so that we
can also choose 
 > 0. Í

We turn to the proof (3.12), which we also formulate as a lemma:

Lemma 3.3 (The distance is at most k þ 3 on the good event): Fix k 2 N [ f0g,
and � as in Eq. 3.1. For each " > 0 there exists an integer N", such that,

P fHN > kþ 3g \ G";N
� �

< "=2; N � N":

In the proof of Lemma 3.3, we need that the number of giant nodes reachable
from an arbitrary giant node h in at most l steps, has a lower bound proportional to
Nl	. We denote by ZðlÞ

h the set of all nodes which are reachable in exactly l steps
from a node h:

ZðlÞ
h ¼ n ¼ 1; 2; . . . ;N : dðh; nÞ ¼ lf g for l 2 0; 1; . . .f g;
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where dðh; nÞ denotes the graph-distance between the nodes h and n. The number of
giant nodes in ZðlÞ

h is denoted by EðlÞ
h .

Lemma 3.4 (Growth of the number of giant nodes): For each " > 0, � < 1=
ð� þ k� 1Þ, l 2 f0; 1; . . . ; kg and 	 given by Eq. 3.7,

P
\N

h¼1

ð1� "ÞlNl	 � EðlÞ
h < Nl�

n o
\ fh is giantg \ G";N

 !

> 1�N
Xk

s¼1

e�3"ð1�"ÞsNs	=16;

for sufficiently large N.

Proof: The upper bound Nl� on EðlÞ
h is trivial, because each node has less than N�

stubs. We will prove by induction with respect to l, that for l 2 f0; 1; . . . ; kg, and k
fixed,

P
[N

h¼1

EðlÞ
h < ð1� "ÞlNl	

n o
\ fh is giantg \ G";N

 !

� N
Xl

s¼1

e�3"ð1�"ÞsNs	=16: ð3:17Þ

Denote

FðlÞ";N ¼
\N

h¼1

fEðlÞ
h � ð1� "Þ

lNl	g \ fh is giantg
n o

; ð3:18Þ

then it suffices to prove that

PððF ðlÞ";NÞ
c \ Fðl�1Þ

";N \ G";NÞ � Ne�3"ð1�"ÞlNl	=16: ð3:19Þ

Indeed, if Eq. 3.19 holds, then Eq. 3.17 follows, by the induction hypothesis, as
follows:

P
[N

h¼1

EðlÞ
h < ð1� "ÞlNl	

n o
\ fh is giantg \ G";N

 !

¼ PðG";N \ ðF ðlÞ";NÞ
cÞ � PðG";N \ ðF ðlÞ";NÞ

c \ Fðl�1Þ
";N Þ þ PðG";N \ ðF ðl�1Þ

";N Þ
cÞ

� Ne�3"ð1�"ÞlNl	=16 þN
Xl�1

s¼1

e�3"ð1�"ÞsNs	=16:

ð3:20Þ

For l ¼ 0, Eq. 3.19 trivially holds. We therefore assume that Eq. 3.19 is valid for
l ¼ m� 1 and we will prove that Eq. 3.19 holds for l ¼ m.

In this paragraph we will work conditionally given the degrees D1;D2; . . . ;DN .
For h a giant node, we consider only AN ¼ Eðm�1Þ

h bN	c stubs of the nodes in Zðm�1Þ
h . To

be more precise: we consider bN	c stubs of each of the Eðm�1Þ
h giant nodes in Zðm�1Þ

h .
We number these stubs by i 2 1; 2; . . . ;ANf g and stub i will connect to a stub of a
node ni. Then we denote by rN;i, for i 2 1; 2; . . . ;ANf g, the probability that stub i does
not connect to a stub of a normal node. We denote by sN;i the probability that stub i
does not connect to a stub of a node in Zðm�1Þ

h (and the total number of stubs of this
set is at most Nm�), and finally, we denote by tN;i;j the probability that stub i does not
connect to the giant node hj previously selected by the stubs j 2 f1; 2; . . . ; i� 1g (for
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each j there are most DðNÞ
hj
� N� of such stubs). If none of the above attachments

happens, then we have a match with a not previously found giant node, and we
denote by qN;i the probability of such a match of stub i, i.e.,

qN;i ¼ 1� rN;i � sN;i �
Xi�1

j¼1

tN;i;j:

From the number of stubs mentioned between the parenthesis, we can bound this
probability from below by

qN;i � 1� KN

MN

� Nm�

MN

�
Xi�1

j¼1

N�

MN

: ð3:21Þ

Since, i� 1 � Eðm�1Þ
h bN	c � N�ðm�1ÞbN	c � N�ðm�1Þþ	; and KN � N1þ	ð2��Þ‘ðNÞ, MN >

‘ðNÞN1þ�ð2��Þ on G";N , we can bound 1� qN;i on G";N from above by

1� qN;i �
‘ðNÞN1þ	ð2��Þ þN�m þN�ðm�1Þþ	þ�

‘ðNÞN1þ�ð2��Þ :

For sufficiently large N and uniformly in i, we have that 1� qN;i < "=2, because 	 < �,
and m�þ 	 � k�þ 	 < ðkþ 1Þ� < 1þ �ð2� �Þ.

Introduce the binomially distributed random variable YN with parameters BN and
"=2, where BN ¼ dð1� "ÞmNm	e. On Fðm�1Þ

";N , we have that AN ¼ Em�1
h bN	c � BN , so

that the number of mismatches will be stochastically dominated by YN . We need at
least ð1� "ÞBN matches, so that

PðfEðmÞ
h � ð1� "Þ

mNm	g \ fAN � BNg \ G";NÞ � P YN < "BNð Þ: ð3:22Þ

We will now use the Janson inequality (Janson, 2002), which states that for any t > 0,

P jYN � E YN½ �j � tð Þ � 2 exp � t2

2ðE YN½ � þ t=3Þ

� �

: ð3:23Þ

Since E YN½ � ¼ "BN=2, we obtain, with t ¼ "BN=2,

P YN < "BNð Þ � P jYN � E YN½ �j > "BN=2ð Þ � 2 exp � 3"BN

16

� �

:

Combining this with Eq. 3.22, and since there are at most N giant nodes:

PððF ðmÞ";NÞ
c \ Fðm�1Þ

";N \ G";NÞ � N PðYN � "BNÞ � 2N exp � 3"ð1� "ÞmNm	

16

� �

: ð3:24Þ

Í

Proof of Lemma 3.3: We start with an outline. On the event G";N , each stub of the
nodes 1 and 2 is attached to a stub of some giant node. The idea is to show that whp
the distance between any two giant nodes is at most kþ 1. This implies that the
graph distance between nodes 1 and 2, intersected with the event G";N is whp at most
kþ 3, and hence Lemma 3.3.
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We will extend the event G";N to include the main event in Lemma 3.4:

I ";N ¼ G";N \ FðkÞ";N; ð3:25Þ

where FðkÞ";N was defined in Eq. 3.18. Then

P HN > kþ 3f g \ G";N
� �

� P HN > kþ 3f g \ I ";N
� �

þ P G";N \ ðF ðkÞ";NÞ
c

	 

; ð3:26Þ

and the second term on the right hand side of Eq. 3.26 can be bounded by "=4 using
Lemma 3.4. We use as indicated in the outline of the proof given above, that

P HN > kþ 3f g \ I ";N
� �

� P
[

h1;h2

fh1; h2 are giantg \ fdðh1; h2Þ > kþ 1g \ I ";N

 !

�
X

h1;h2

P fh1; h2 are giantg \ fdðh1; h2Þ > kþ 1g \ I ";N
� �

;

ð3:27Þ
where the sum is taken over all pairs of nodes, and where, as before, dðh1; h2Þ
denotes the graph-distance between h1 and h2. Indeed, on I ";N , the nodes 1 and 2 are
connected to giant nodes, so that when HN > kþ 3, there must be giant nodes h1; h2

at mutual distance at least kþ 1.
Clearly for any pair of nodes h1 and h2,

dðh1; h2Þ > kþ 1f g 	 dðh1; h2Þ > kf g;

which implies that for any pair of nodes h1 and h2,

PN dðh1; h2Þ > kþ 1f g \ fh1; h2 are giantg \ I ";N
� �

� PN

�
dðh1; h2Þ > kþ 1f g \ fh1; h2 are giantg \ I ";N j dðh1; h2Þ > k

�
:

On the event dðh1; h2Þ > kþ 1f g \ fh1; h2 are giantg, the giant node h2 is not
attached to one of the nodes at distance k from the node h1. More precisely, the
giant node h2 is not attached to one of the [k�1

l¼0 ZðlÞ
h1

nodes. We have less than MN �Pk�1
l¼0 EðlÞ

h1
N	 stubs to choose from, and the event dðh1; h2Þ > kþ 1f g conditioned on

dðh1; h2Þf > kg implies that no stubs of the giant node h2 will attach to one of the at
least EðkÞ

h1
N	 free stubs of ZðkÞ

h1
. Therefore, we have, almost surely,

PN

�
fh1; h2 are giantg \ fdðh1; h2Þ > kþ 1g \ GðNÞ";N j dðh1; h2Þ > k

�

�
Y

D
ðNÞ
h2
�1

i¼0

1�
EðkÞ

h1
N	

MN �
Pk�1

j¼0 EðjÞ
h1

N	 � 2iþ 1

 !

1fI";Ng

� 1�
EðkÞ

h1
N	

MN

 !D
ðNÞ
h2

1fI ";Ng � 1� "ð1� "Þ
kN	ðkþ1Þ

N1þ�ð2��Þ‘‘ðNÞ

 !N	

� exp � "ð1� "Þ
kN	ðkþ2Þ

N1þ�ð2��Þ‘‘ðNÞ

( )

� exp �"ð1� "ÞkN

n o

;

ð3:28Þ

where we used the inequality 1� x � e�x; x � 0, in the one but last inequality, and
where 0 < 
 < 	ðkþ 2Þ � ð1þ �ð2� �ÞÞ. If we substitute this upper bound in the
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right hand side of Eq. 3.27, then we end up with

P HN > kþ 3f g \ I ";N
� �

� N2 exp �"ð1� "ÞkN

	 


< "=2:

This completes the proof of Lemma 3.3 and hence of Theorem 1.2. Í

4. The cases ��� ¼ 1 and ��� ¼ 2

4.1. Proof of Theorem 1.3

It is well known, see e.g. [(Embrechts et al., 1997), 8.2.4], that when 1� FðxÞ is
slowly varying, the quotient of the maximum and the sum of N i.i.d. random
variables with distribution F, converges to 1 in probability, i.e.,

DðNÞ
LN

! 1; in probability: ð4:1Þ

Therefore, we obtain that whp, both node 1 and node 2 are connected to the node
with maximal degree, which gives the stated result. Í
4.2. Two examples with ��� ¼ 2

In the following two examples we show that for � ¼ 2, the limit hopcount dis-
tribution is sensitive to the slowly varying function.

Example 1: Let, for x � 2,

1� FðxÞ ¼ 2ðlog 2Þ2

ðbxcÞðlogbxcÞ2
: ð4:2Þ

Then we show that for all k fixed,

P HN > kð Þ ¼ 1þ oð1Þ; as N !1: ð4:3Þ

We first prove Eq. 4.3 for k ¼ 2. We show this in two steps. In the first step we
show that for any " > 0, there exists v" 2 N such that with probability at least 1� "
all nodes at distance at most 1 from nodes 1 and 2 have degrees at most v". In
the second step we show that there exists Nv 2 N; such that for any N � Nv, with
probability at least 1� ", any two given nodes with degrees at most v", are dis-
connected. Both steps together clearly imply Eq. 4.3.

The second step is similar to Eq. 2.12, and is omitted here.
To obtain the first step we consider the event D";N , defined below Eq. 2.7. Then,

for any v 2 N, the probability that within the first q" stubs of node 1 or node 2 there
is a stub connected to a stub of node with degree at least vþ 1 is at most

E 2q"
LN

XN

i¼1

Di1fDi>vg

" #

:
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It remains to show that the above expectation is at most "=2 for some v ¼ v" large
enough. For this, we need that the first moment of the degree distribution for this
example is finite. Indeed, from Eq. 4.8

E½D1� ¼ 1þ
X1

x¼2

2ðlog 2Þ2

xðlog xÞ2
� 2þ

Z 1

2

2ðlog 2Þ2

uðlog uÞ2
du ¼ 1þ 2ðlog 2Þ2

Z 1

log 2

dy

y2
<1: ð4:4Þ

Then, from the Law of Large Numbers applied to LN ¼ D1 þ . . .þDN , we obtain

P LN � �"Nð Þ � "

12q"
; ð4:5Þ

for �" > E½D1�. Due to Eqs. 4.4, 4.5 and the Markov inequality

E 2q"
LN

XN

i¼1

Di1fDi>vg

" #

� "

6
þ 2q"P 2q"

XN

i¼1

Di1fDi>vg �
"LN

6

 !

� "

6
þ 2q"P LN � �"ð Þ

þ 2q"P 2q"
XN

i¼1

Di1fDi>vg �
"

6
�"N

 !

� "

3
þ 24q2

"

"�"
E Di1fDi>vg
� �

� "

2
;

for large enough v, and hence we have the second step, since PðDc
";NÞ � 2PðD1 >

q"Þ � "=4.
In a similar way we can show that, for any " > 0, there exists v" 2 N such that

with probability at least 1� " all nodes at distance at most 2 from nodes 1 and 2
have degrees at most v". This statement implies that PðHN > 4Þ ! 1. Similarly, we
obtain that for any " > 0 there exists v" 2 N such that with probability at least 1� "
all nodes at distance at most k from nodes 1 and 2 have degrees at most v", which
implies that for any fixed integer k,

lim
N!1

PðHN > 2kÞ ¼ 1; ð4:6Þ

i.e., the probability mass of HN drifts away to þ1 as N !1. This behavior of HN

for � ¼ 2, is in agreement with the behavior of HN for the case � 2 ð2; 3Þ, (see van
der Hofstad et al., 2005b), where we show, among other things, tightness of the
sequence

HN �
log log N

j logð� � 2Þj : ð4:7Þ

Example 2: Let

1� FðxÞ ¼ c
ðlog xÞlog log x�1 log log x

x
; x � x*; x 2 N: ð4:8Þ

where x* is chosen such that for x � x*, the right side of Eq. 4.8 is a non-increasing
function, and c is such that 1� Fðx*Þ ¼ 1. We will show that

P HN 2 f2; 3gð Þ ¼ 1þ oð1Þ; as N !1: ð4:9Þ

Thus, we see entirely different behavior as in the first example.
Define giant nodes as nodes with degree at least N

1
2þ
, for some 
 > 0, to be

determined later on. The nodes with degree at most N
1
2þ
 � 1 we call normal. Define

the event A";N as in Eq. 2.7, where, in the definition of B";N , we use the above
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definition of the giant node. In Appendix A.3, we will prove the following lemma,
which is similar to Lemma 2.2:

Lemma 4.1: For each " > 0, there exists N", such that for all N � N",

PðAc
";NÞ < ": ð4:10Þ

We now complete the proof of Eq. 4.3 subject to Lemma 4.1, which is straight-
forward. By Eq. 2.12, we obtain that P fHN ¼ 1g \ A";N

� �
¼ oð1Þ: Moreover, when

A";N occurs, all stubs of nodes 1 and 2 are connected to giant nodes due to B";N , and
the giant nodes form a complete graph due to C";N , so that P fHN > 3g \ A";N

� �
¼ 0.

This proves Eq. 4.3.

5. Simulation and conclusions

To illustrate Theorems 1.1 and 1.2, we have simulated our random graph with
degree distribution D ¼ dU� 1

��1e, where U is uniformly distributed over ð0; 1Þ. Thus,

1� FðxÞ ¼ PðU� 1
��1 > xÞ ¼ x1�� ; x ¼ 1; 2; 3; . . .

In Fig. 1, we have simulated the graph distance or hopcount with � ¼ 1:8 and the
values of N ¼ 103; 104; 105. The histogram is in accordance with Theorem 1.1: for
increasing values of N we see that the probability mass is divided over the values
HN ¼ 2 and HN ¼ 3, where the probability PðHN ¼ 2Þ converges.

As an illustration of Theorem 1.2, we again take � ¼ 1:8, but now condition the
degrees to be less than N, so that � ¼ 1. Since in this case ð� � 1Þ�1 ¼ 5

4, we expect
from Theorem 1.2 case (i), that in the limit the hopcount will concentrate on the
value HN ¼ 3. This is indeed the case as is shown in Fig. 2.

0 1 2 3 4 5
hopcount

0.0

0.2

0.4

0.6

p
ro

b
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ty

N=103

N=104

N=105

Fig. 1 Empirical probability mass function of the hopcount for � ¼ 1:8 and N ¼ 103; 104; 105, for the

unconditioned degrees
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Our results give convincing asymptotics for the hopcount when the mean degree
is infinite, using extreme value theory. Some details remain open:

(i) It is possible to compute upper and lower bounds on the value pF , based on
Lemma 2.1. We presented two such bounds in Eq. 2.18. These bounds can be
obtained from simulating the random variables G1;G2; . . . in Eq. 2.3. It should
be possible to obtain much sharper upper and lower bounds, and possibly even
numerical values, depending on the specific degree distribution F.

(ii) In the boundary cases � ¼ 1=ð� þ kÞ; k 2 N [ f0g, it is natural to conjecture
that the specific limit behavior of HN will depend on the slowly varying
function, as is the case for � ¼ 2 and � > 1

��1 ¼ 1 as described in Section 4.2.

Appendix

In the Appendix we prove Lemma 2.2, Lemma 3.1 and Lemma 4.1. The proofs of
Lemma 3.1 and 4.1 are both adaptations of the proof of Lemma 2.2 in Section A.1
below.

Proof of Lemma 2.2:

In this section we restate Lemma 2.2 and then give a proof.

Lemma A.1.1: For each " > 0, there exists N" such that

PðAc
";NÞ < "; N � N": ðA:1:1Þ

N=103

N=104

N=105

N=106
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Fig. 2 Empirical probability mass function of the hopcount for � ¼ 1:8 and N ¼ 103; 104; 105; 106;

where the degrees are conditioned to be less than N, ( 1
� < � ¼ 1 < 1

��1)

Distances in random graphs with infinite mean degrees 133



Proof: We start with an outline of the proof. By Eq. 2.7,

PðAc
";NÞ � PðBc

";NÞ þ PðCc
";NÞ þ PðDc

";NÞ; ðA:1:2Þ

and an obvious way to prove result Eq. A.1.1 would be to show that each of the
three terms on the right-hand side of Eq. A.1.2 is smaller than "=3. This direct
approach is somewhat difficult and instead we introduce an additional event E";N ,
which controls the total degree LN in part (c), the degree of the giant nodes in part
(b), and the total degree of all normal (non-giant) nodes in part (a):

E";N ¼
XN�k"

n¼1

DðnÞ �
"

8q"
LN

( )

ðaÞ

\ DðN�k"þ1Þ � c"uN

 �
ðbÞ

\ LN � d"uNf g; ðcÞ

ðA:1:3Þ

where q" is the "-quantile of F used in the definition of D";N and where c"; d" > 0 are
defined by

P �k" < c"ð Þ < "=24 and Pð� > d"Þ < "=24;

respectively. Observe that c" is a lower quantile of �k" , whereas b" defined in Eqs. 2.9
and 2.10 is an upper quantile of �k" . Furthermore, d" is an upper quantile of �,
whereas a" defined in Eq. 2.8 is a lower quantile of �. Intersection with the ad-
ditional event E";N , facilitates the bounding of both Bc

";N and Cc
";N . Therefore, we write

PðAc
";NÞ � PðBc

";N \ D";N \ E";NÞ þ PðCc
";N \ D";N \ E";NÞ þ PðDc

";NÞ þ PðEc
";NÞ; ðA:1:4Þ

and our strategy to prove the lemma is that we show that each of the four terms on
the right-hand side of Eq. A.1.4 is at most "=4.

Nodes 1 and 2 are connected to giant nodes only. On Bc
";N \ D";N at least one of

the 2q" stubs is attached to a stub of the nodes Dð1Þ; . . . ;DðN�k"Þ. Hence, the first term
on the right side of Eq. A.1.4 satisfies

PðBc
";N \ D";N \ E";NÞ � 2q"E

1

LN

XN�k"

n¼1

Dn1fE";Ng

" #

� "=4;

due to point ðaÞ of E";N .

The giant nodes form a complete graph. We turn to the second term of Eq. A.1.4.
Recall that Cc

";N induces that no stubs of at least two giant nodes are attached to one
another. Since we have at most N2 pairs of giant nodes h1 and h2, the items ðbÞ, ðcÞ
of E";N imply

PðCc
";N \ D";N \ E";NÞ � E N2

YbDh1
=2c�1

i¼0

1� Dh2

LN � 2i� 1

� �

1fh1;h2 giantg

2

4

3

5

� N2 1� c"uN

d"uN

� �c"uN=2

� N2 exp � c2
"uN

2d"

� �

� "=4;

ðA:1:5Þ

for large enough N, because uN ¼ N1=ð��1Þþoð1Þ.
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Nodes 1 and 2 have small degree. The third term on the right-hand side of Eq.
A.1.4 is at most "=4, because

PðDc
";NÞ � 2PðD1 > q"Þ � 2"=8 ¼ "=4: ðA:1:6Þ

The order statistics. It remains to estimate the last term on the right side of Eq.
A.1.4. Clearly,

P Ec
";N

	 

� P

XN�k"

n¼1

DðnÞ >
"

8q"
LN

 !

ðaÞ

þ P DðN�k"þ1Þ < c"uNð Þ ðbÞ
þ P LN > d"uNð Þ: ðcÞ

ðA:1:7Þ

We will consequently show that each term in the above expression is at most "=12.
Let a" and b" > 0 be as in Eqs. 2.8 and 2.9, then we can decompose the first term on
the right-hand side of Eq. A.1.7 as

P
XN�k"

n¼1

DðnÞ >
"

8q"
LN

 !

� P LN < a"uNð Þ þ P
XN�k"

n¼1

DðnÞ >
"

8q"
a"uN

 !

� P LN < a"uNð Þ þ P DðN�k"þ1Þ > b"uNð Þ

þ P
XN

i¼1

Di1fDi<b"uNg >
"

8q"
a"uN

 !

:

ðA:1:8Þ

From the Markov inequality,

P
XN

i¼1

Di1fDi<b"uNg >
"

8q"
a"uN

 !

�
8q"NE D1fD<b"uNg

� �

"a"uN

: ðA:1:9Þ

Since 1� FðxÞ varies regularly with exponent 1� � , we have, by [(Feller, 1971),
Theorem 1(b), p. 281],

E D1fD<b"uNg
� �

¼
Xbb"uNc

k¼0

1� FðkÞ½ � � 2ð2� �Þb"uN 1� Fðb"uNÞ½ �; ðA:1:10Þ

for large enough N. Due to Eq. 2.1, for large enough N, we have also

N 1� FðuNÞ½ � � 2: ðA:1:11Þ

Substituting Eqs. A.1.10 and A.1.11 in A.1.9, we obtain

P
XN

i¼1

Di1fDi<b"uNg >
"

8q"
a"uN

 !

� 16q"Nð2� �Þb"uN 1� Fðb"uNÞ½ �
"uNa"

� 32q"ð2� �Þb" 1� Fðb"uNÞ½ �
"a" 1� FðuNÞ½ � ;

ðA:1:12Þ
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for large enough N. From the regular variation of 1� FðxÞ,

lim
N!1

1� Fðb"uNÞ
1� FðuNÞ

¼ b"ð Þ1�� :

Hence the right-hand side of Eq. A.1.12 is at most

64q"ð2� �Þ b"ð Þ2��

"a"
� "=36;

for sufficiently large N, by the definition of b" in Eq. 2.9. We now show that the
second term on the right side of Eq. A.1.8 is at most "=36. Since DðN�k"þ1Þ=uN con-
verges in distribution to �k" , we find from Eq. 2.10,

P DðN�k"þ1Þ > b"uNð Þ � P �k" > b"=2ð Þ þ "=72 � "=36;

for large enough N. Similarly, by the definition of a", in Eq. 2.8, we have

P LN < a"uNð Þ � "=36:

Each of the three terms on the right side of Eq. A.1.8 is at most "=36, so that the
term (A.1.7)(a) is at most "=12.

The upper bound for Eq. A.1.7(b), i.e., the bound

P DðN�k"þ1Þ < c"uNð Þ < "=12;

is an easy consequence of the distributional convergence of DðN�k"þ1Þ=uN to �k" and
the definition of c". Similarly, we obtain the upper bound for the term in Eq.
A.1.7(c), i.e.,

P LN > d"uNð Þ < "=12;

from the convergence in distribution of LN=uN to � and the definition of d".
Thus we have shown that PðEc

";NÞ < "=4. This completes the proof of Lemma 2.2.

Í

Proof of Lemma 3.1:

In this section we restate Lemma 3.1 and give a proof.

Lemma A.2.1: For each " > 0, there exists N" such that for all N � N",

PðGc
";NÞ < ": ðA:2:1Þ

Proof: From Eq. 3.8,

P Gc
";N

	 

< P Dc

";N

	 

þ P Hc

";N

	 

þ P Bc

";N \H";N \ D";N
	 


: ðA:2:2Þ
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We will bound each term on the right hand side of Eq. A.2.2 separately.
From Eq. A.1.6, and because the definition of D";N is unaltered, the bound

PðDc
";NÞ < "=4 is immediate.

For PðHc
";NÞ, we will show that the total number of stubs MN is of the order

‘ðNÞN1þ�ð2��Þ and that the total number KN of stubs attached to normal nodes is of
order ‘ðNÞN1þ	ð2��Þ. We start with the first statement. Bound

MN ¼
XN

i¼1

DðNÞ
i �

1

2
N�
XN

i¼1

1fDðNÞ
i
>1

2N�g:

The sum of indicators is distributed as a binomial random variable VN with param-
eters N and N�ð1��Þ‘ðNÞ, because

P DðNÞ >
1

2
N�

� �

¼ N�ð1��Þ‘ðNÞ:

We use Janson_s inequality (compare Eq. 3.23), on the binomial random variable
VN , with expectation N1þ�ð1��Þ‘ðNÞ, and with t ¼ N1þ�ð1��Þ‘ðNÞ=2, to obtain:

P VN � E VN½ �j j � tð Þ � 2 exp � t2

2 E VN½ � þ t=3ð Þ

� �

¼ 2 exp � 3

28
‘ðNÞN1þ�ð1��Þ

� �

< "=8;

for N sufficiently large. Therefore, with probability at least 1� "=8, we have, for all

 > 0,

MN >
1

2
N�VN � N1þ�ð2��Þ‘ðNÞ; ðA:2:3Þ

for N sufficiently large and some slowly varying function ‘ðNÞ.
The mean degree E MN½ � is given by Eq. 3.3. Thus, by the Markov inequality,

P
XN

n¼1

DðNÞ
n >

8

"
‘ðNÞN1þ�ð2��Þ

 !

� "

8
;

so that with probability at least 1� "=8, we have that

MN � N1þ�ð2��Þ‘‘ðNÞ; ðA:2:4Þ

for some slowly varying function ‘‘ðNÞ. Similarly, the mean degree of a normal
node is

E DðNÞ1fD�N	g
� �

¼
XbN

	c

n¼1

P D � njD < N�ð Þ ¼ N	ð2��Þ‘ðNÞ;

so that in exactly the same way, we find from the Markov inequality, that with
probability at least 1� "=8,

KN � N1þ	ð2��Þ‘ðNÞ: ðA:2:5Þ

The inequalities (A.2.3), (A.2.4) and (A.2.5) together imply that

P Hc
";N

	 

� 3"=8:
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We finally turn to P Bc
";N \H";N

	 

. From the derivation above, we find that, on

H";N , the fraction of the contribution of stubs from normal nodes and giant nodes is
at most

‘ðNÞN1þ	ð2��Þ

‘ðNÞN1þ�ð2��Þ ¼
‘ðNÞ
‘ðNÞ

Nð2��Þð	��Þ:

Since 	 < � and � 2 ð1; 2Þ the above ratio tends to 0, as N !1. Thus the total
number KN of stubs of the normal nodes is negligible with respect to MN on the
event H";N . This implies that, with probability at least 1� "=4, each stub of nodes 1
and 2 is attached to a stub of a giant node on the event H";N . Therefore, we have
showed

P Bc
";N \H";N \ D";N

	 

< "=4: ðA:2:6Þ

Since 2"=4þ 3"=8 < ", the lemma is proved. Í

Proof of Lemma 4.1:

In this section we restate Lemma 4.1 and give a proof.

Lemma A.3.1: For each " > 0, there exists N" such that for all N � N",

PðAc
";NÞ < ": ðA:3:1Þ

Proof: The proof is a slight adaptation of the proof of Lemma 2.2 in Section A.1.
We use that

PðAc
";NÞ � PðBc

";N \ D";NÞ þ PðCc
";NÞ þ PðDc

";NÞ; ðA:3:2Þ

and bound each of the three terms. The bound on PðDc
";NÞ is identical to the one in

Eq. A.1.6, and will be omitted here.
We next show that PðCc

";NÞ � "
3. First observe that since � ¼ 2,

PðLN � N1þ
Þ � "=6:

Recall that Cc
";N implies that no stubs of at least two giant nodes are attached to one

another. Since there are at most N2 pairs of giant nodes h1 and h2, we can use a
similar bound as in Eq. A.1.5, to obtain

PðCc
";NÞ � E N2

YbDh1
=2c�1

i¼0

1� Dh2

LN � 2i� 1

� �
0

@

1

A � N2 1� N
1
2þ


N1þ


 !1
2N

1
2
þ


þ "
6

� N2e�
1
2N
 þ "

6
� "

3
;

for large enough N.
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We finally show that PðBc
";N \ D";NÞ � "

3. The event Bc
";N occurs if there exists a stub

at node 1 or node 2 which is connected to a stub of a normal node. For i ¼ 1; 2 and
j � Di, let f½i:j� ! ½n�g denote the event that the jth stub of the ith node is connected
to a stub of a normal node. Let KN denote the total number of stubs of the normal
nodes. Then, clearly,

PðBc
";N \ D";NÞ � 2P D";N \

[D1

j¼1

½1:j� ! ½n�f g
 !

� 2E D1
KN

LN

1D";N

� �

� 2q"E
KN

LN

� �

:

Therefore, it suffices to prove that E KN

LN

h i
! 0. This is what we will do in the

remainder of this proof. We first bound

LN � DðNÞ � "NuN; ðA:3:3Þ

where uN is such that Eq. 2.1 holds, and "N # 0 will be determined later on. To
compute uN , we use Eq. 4.8 to obtain

N½1� FðuNÞ� ¼ N
‘ðuNÞ

uN

¼ 1þ oð1Þ: ðA:3:4Þ

A tedious computation using

‘ðuNÞ ¼
ðlog uNÞlog log uN�1 log log uN

uN

;

yields

uN ¼ Neðlog log NÞ2�log log Nþoðlog log NÞ: ðA:3:5Þ

Furthermore, since KN � LN ,

E KN

LN

� �

� ð"NuNÞ�1E½KN� þ PðLN � "NuNÞ: ðA:3:6Þ

The second term is oð1Þ for any "N # 0, and for the first term, we compute

E½KN� � N
XN

1
2
þ


i¼1

½1� FðiÞ�: ðA:3:7Þ

We now use that for any y > x*,

Xy

i¼x*

½1� FðiÞ� ¼ c
Xy

i¼x*

ðlog iÞlog log i�1 log log i

i

� c

Z y

x*�1

ðlog xÞlog log x�1 log log x

x
dx

¼ c

Z log y

logðx*�1Þ
ðlog yÞylog y�1dy � c0eðlog log yÞ2 þOð1Þ:

ðA:3:8Þ

Applying this to y ¼ N
1
2þ
, we obtain
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E½KN � � c0Neðlog logðN
1
2
þ
ÞÞ2 þOðNÞ ¼ Neðlog log NÞ2þ2 log ð12þ
Þ log log NþOð1Þ; ðA:3:9Þ

so that, using Eq. A.3.5,

ð"NuNÞ�1E½KN� ¼ "�1
N

exp
h�

2 log ð1
2
þ 
Þ þ 1

�
log log N þ oðlog log NÞ

i

¼ oð1Þ; ðA:3:10Þ

when 
 < 1 is so small that 2 log ð12 þ 
Þ þ 1 < 0 and we take

"N ¼ exp
h 1

2

�
2 log ð1

2
þ 
Þ þ 1

�
log log N

i
! 0: ðA:3:11Þ

This completes the proof that PðBc
";N \ D";NÞ ¼ oð1Þ, and thus the proof of Lemma

A.3.1. Í
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Embrechts, P., Klüppelberg, C., Mikosch, T.: Modelling Extremal Events. Springer, Berlin

Heidelberg New York (1997)
Faloutsos, C., Faloutsos, P., Faloutsos, M.: On power-law relationships of the internet topology.

Comput. Commun. Rev. 29, 251–262 (1999)
Feller, W.: An Introduction to Probability Theory and Its Applications Volume II, 2nd edition.

Wiley, New York (1971)
Hofstad, R. van der, Hooghiemstra, G., Van Mieghem, P.: Distances in random graphs with finite

variance degrees. Random Struct. Algorithms 27, 76–123 (2005a)
Hofstad, R. van der, Hooghiemstra, G., Znamenski, D.: Distances in random graphs with finite

mean and infinite variance degrees. Preprint (2005b)
Hofstad, R. van der, Hooghiemstra, G., Znamenski, D.: Random graphs with arbitrary i.i.d. degrees.

Preprint (2005c)
Janson, S.: On concentration of probability. In: Bollobás, B. (ed.) Contemporary Combinatorics,

Bolyai Soc. Math. Stud. 10, pp. 289–301. János Bolyai Mathematical Society, Budapest (2002)
LePage, R., Woodroofe, M., Zinn, J.: Convergence to a stable distribution via order statistics. Ann.

Probab. 9, 624–632 (1981)
Molloy, M., Reed, B.: A critical point for random graphs with a given degree sequence. Random

Struct. Algorithms 6, 161–179 (1995)
Molloy, M., Reed, B.: The size of the giant component of a random graph with a given degree

sequence. Comb. Probab. Comput. 7, 295–305 (1998)

140 H. van den Esker, R. van der Hofstad, et al.



Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256
(2003)

Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Random graphs with arbitrary degree distribution and
their application. Phys. Rev. E 64, 026118 (2000)

Reittu, H., Norros, I.: On large random graphs of the BInternet type’’. Perform. Eval. 55(1–2), 3–23
(2004)

Strogatz, S.H.: Exploring complex networks. Nature 410(8), 268–276 (2001)
Watts, D.J.: Small Worlds, The Dynamics of Networks between Order and Randomness. Princeton

University Press, Princeton, New Jersey (1999)

Distances in random graphs with infinite mean degrees 141


	Distances in random graphs with infinite mean degrees
	Abstract
	Keywords
	AMS 2000 Subject Classification
	Introduction
	The model
	Main results
	Heuristics
	Related work
	Organization of the paper

	Proof of Theorem 1.1
	Proof of Theorem 1.2
	The cases \tau=1 and \tau=2
	Proof of Theorem 1.3
	Two examples with \tau=2

	Simulation and conclusions
	Appendix

	Sec14
	Sec15
	Sec16
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AardvarkPSMT
    /AceBinghamSH
    /AddisonLibbySH
    /AGaramond-Italic
    /AGaramond-Regular
    /AkbarPlain
    /Albertus-Bold
    /AlbertusExtraBold-Regular
    /AlbertusMedium-Italic
    /AlbertusMedium-Regular
    /AlfonsoWhiteheadSH
    /Algerian
    /AllegroBT-Regular
    /AmarilloUSAF
    /AmazoneBT-Regular
    /AmeliaBT-Regular
    /AmerigoBT-BoldA
    /AmerTypewriterITCbyBT-Medium
    /AndaleMono
    /AndyMacarthurSH
    /Animals
    /AnneBoleynSH
    /Annifont
    /AntiqueOlive-Bold
    /AntiqueOliveCompact-Regular
    /AntiqueOlive-Italic
    /AntiqueOlive-Regular
    /AntonioMountbattenSH
    /ArabiaPSMT
    /AradLevelVI
    /ArchitecturePlain
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialMTBlack-Regular
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialRoundedMTBold
    /ArialUnicodeLight
    /ArialUnicodeLight-Bold
    /ArialUnicodeLight-BoldItalic
    /ArialUnicodeLight-Italic
    /ArrowsAPlentySH
    /ArrusBT-Bold
    /ArrusBT-BoldItalic
    /ArrusBT-Italic
    /ArrusBT-Roman
    /Asiana
    /AssadSadatSH
    /AvalonPSMT
    /AvantGardeITCbyBT-Book
    /AvantGardeITCbyBT-BookOblique
    /AvantGardeITCbyBT-Demi
    /AvantGardeITCbyBT-DemiOblique
    /AvantGardeITCbyBT-Medium
    /AvantGardeITCbyBT-MediumOblique
    /BankGothicBT-Light
    /BankGothicBT-Medium
    /Baskerville-Bold
    /Baskerville-Normal
    /Baskerville-Normal-Italic
    /BaskOldFace
    /Bauhaus93
    /Bavand
    /BazookaRegular
    /BeauTerrySH
    /BECROSS
    /BedrockPlain
    /BeeskneesITC
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BenguiatITCbyBT-Bold
    /BenguiatITCbyBT-BoldItalic
    /BenguiatITCbyBT-Book
    /BenguiatITCbyBT-BookItalic
    /BennieGoetheSH
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BernhardBoldCondensedBT-Regular
    /BernhardFashionBT-Regular
    /BernhardModernBT-Bold
    /BernhardModernBT-BoldItalic
    /BernhardModernBT-Italic
    /BernhardModernBT-Roman
    /Bethel
    /BibiGodivaSH
    /BibiNehruSH
    /BKenwood-Regular
    /BlackadderITC-Regular
    /BlondieBurtonSH
    /BodoniBlack-Regular
    /Bodoni-Bold
    /Bodoni-BoldItalic
    /BodoniBT-Bold
    /BodoniBT-BoldItalic
    /BodoniBT-Italic
    /BodoniBT-Roman
    /Bodoni-Italic
    /BodoniMTPosterCompressed
    /Bodoni-Regular
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolFive
    /BookshelfSymbolFour
    /BookshelfSymbolOne-Regular
    /BookshelfSymbolThree-Regular
    /BookshelfSymbolTwo-Regular
    /BookwomanDemiItalicSH
    /BookwomanDemiSH
    /BookwomanExptLightSH
    /BookwomanLightItalicSH
    /BookwomanLightSH
    /BookwomanMonoLightSH
    /BookwomanSwashDemiSH
    /BookwomanSwashLightSH
    /BoulderRegular
    /BradleyHandITC
    /Braggadocio
    /BrailleSH
    /BRectangular
    /BremenBT-Bold
    /BritannicBold
    /Broadview
    /Broadway
    /BroadwayBT-Regular
    /BRubber
    /Brush445BT-Regular
    /BrushScriptMT
    /BSorbonna
    /BStranger
    /BTriumph
    /BuckyMerlinSH
    /BusoramaITCbyBT-Medium
    /Caesar
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /CalisMTBol
    /CalistoMT
    /CalistoMT-Italic
    /CalligrapherRegular
    /CameronStendahlSH
    /Candy
    /CandyCaneUnregistered
    /CankerSore
    /CarlTellerSH
    /CarrieCattSH
    /CaslonOpenfaceBT-Regular
    /CassTaylorSH
    /CDOT
    /Centaur
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturyOldStyle-BoldItalic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Cezanne
    /CGOmega-Bold
    /CGOmega-BoldItalic
    /CGOmega-Italic
    /CGOmega-Regular
    /CGTimes-Bold
    /CGTimes-BoldItalic
    /CGTimes-Italic
    /CGTimes-Regular
    /Charting
    /ChartreuseParsonsSH
    /ChaseCallasSH
    /ChasThirdSH
    /ChaucerRegular
    /CheltenhamITCbyBT-Bold
    /CheltenhamITCbyBT-BoldItalic
    /CheltenhamITCbyBT-Book
    /CheltenhamITCbyBT-BookItalic
    /ChildBonaparteSH
    /Chiller-Regular
    /ChuckWarrenChiselSH
    /ChuckWarrenDesignSH
    /CityBlueprint
    /Clarendon-Bold
    /Clarendon-Book
    /ClarendonCondensedBold
    /ClarendonCondensed-Bold
    /ClarendonExtended-Bold
    /ClassicalGaramondBT-Bold
    /ClassicalGaramondBT-BoldItalic
    /ClassicalGaramondBT-Italic
    /ClassicalGaramondBT-Roman
    /ClaudeCaesarSH
    /CLI
    /Clocks
    /ClosetoMe
    /CluKennedySH
    /CMBX10
    /CMBX5
    /CMBX7
    /CMEX10
    /CMMI10
    /CMMI5
    /CMMI7
    /CMMIB10
    /CMR10
    /CMR5
    /CMR7
    /CMSL10
    /CMSY10
    /CMSY5
    /CMSY7
    /CMTI10
    /CMTT10
    /CoffeeCamusInitialsSH
    /ColetteColeridgeSH
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CommercialPiBT-Regular
    /CommercialScriptBT-Regular
    /Complex
    /CooperBlack
    /CooperBT-BlackHeadline
    /CooperBT-BlackItalic
    /CooperBT-Bold
    /CooperBT-BoldItalic
    /CooperBT-Medium
    /CooperBT-MediumItalic
    /CooperPlanck2LightSH
    /CooperPlanck4SH
    /CooperPlanck6BoldSH
    /CopperplateGothicBT-Bold
    /CopperplateGothicBT-Roman
    /CopperplateGothicBT-RomanCond
    /CopticLS
    /Cornerstone
    /Coronet
    /CoronetItalic
    /Cotillion
    /CountryBlueprint
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /CSSubscript
    /CSSubscriptBold
    /CSSubscriptItalic
    /CSSuperscript
    /CSSuperscriptBold
    /Cuckoo
    /CurlzMT
    /CybilListzSH
    /CzarBold
    /CzarBoldItalic
    /CzarItalic
    /CzarNormal
    /DauphinPlain
    /DawnCastleBold
    /DawnCastlePlain
    /Dekker
    /DellaRobbiaBT-Bold
    /DellaRobbiaBT-Roman
    /Denmark
    /Desdemona
    /Diploma
    /DizzyDomingoSH
    /DizzyFeiningerSH
    /DocTermanBoldSH
    /DodgenburnA
    /DodoCasalsSH
    /DodoDiogenesSH
    /DomCasualBT-Regular
    /Durian-Republik
    /Dutch801BT-Bold
    /Dutch801BT-BoldItalic
    /Dutch801BT-ExtraBold
    /Dutch801BT-Italic
    /Dutch801BT-Roman
    /EBT's-cmbx10
    /EBT's-cmex10
    /EBT's-cmmi10
    /EBT's-cmmi5
    /EBT's-cmmi7
    /EBT's-cmr10
    /EBT's-cmr5
    /EBT's-cmr7
    /EBT's-cmsy10
    /EBT's-cmsy5
    /EBT's-cmsy7
    /EdithDaySH
    /Elephant-Italic
    /Elephant-Regular
    /EmGravesSH
    /EngelEinsteinSH
    /English111VivaceBT-Regular
    /English157BT-Regular
    /EngraversGothicBT-Regular
    /EngraversOldEnglishBT-Bold
    /EngraversOldEnglishBT-Regular
    /EngraversRomanBT-Bold
    /EngraversRomanBT-Regular
    /EnviroD
    /ErasITC-Bold
    /ErasITC-Demi
    /ErasITC-Light
    /ErasITC-Medium
    /ErasITC-Ultra
    /ErnestBlochSH
    /EstrangeloEdessa
    /Euclid
    /Euclid-Bold
    /Euclid-BoldItalic
    /EuclidExtra
    /EuclidExtra-Bold
    /EuclidFraktur
    /EuclidFraktur-Bold
    /Euclid-Italic
    /EuclidMathOne
    /EuclidMathOne-Bold
    /EuclidMathTwo
    /EuclidMathTwo-Bold
    /EuclidSymbol
    /EuclidSymbol-Bold
    /EuclidSymbol-BoldItalic
    /EuclidSymbol-Italic
    /EuroRoman
    /EuroRomanOblique
    /ExxPresleySH
    /FencesPlain
    /Fences-Regular
    /FifthAvenue
    /FigurineCrrCB
    /FigurineCrrCBBold
    /FigurineCrrCBBoldItalic
    /FigurineCrrCBItalic
    /FigurineTmsCB
    /FigurineTmsCBBold
    /FigurineTmsCBBoldItalic
    /FigurineTmsCBItalic
    /FillmoreRegular
    /Fitzgerald
    /Flareserif821BT-Roman
    /FleurFordSH
    /Fontdinerdotcom
    /FontdinerdotcomSparkly
    /FootlightMTLight
    /ForefrontBookObliqueSH
    /ForefrontBookSH
    /ForefrontDemiObliqueSH
    /ForefrontDemiSH
    /Fortress
    /FractionsAPlentySH
    /FrakturPlain
    /Franciscan
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /FranklinUnic
    /FredFlahertySH
    /Freehand575BT-RegularB
    /Freehand591BT-RegularA
    /FreestyleScript-Regular
    /Frutiger-Roman
    /FTPMultinational
    /FTPMultinational-Bold
    /FujiyamaPSMT
    /FuturaBlackBT-Regular
    /FuturaBT-Bold
    /FuturaBT-BoldCondensed
    /FuturaBT-BoldItalic
    /FuturaBT-Book
    /FuturaBT-BookItalic
    /FuturaBT-ExtraBlack
    /FuturaBT-ExtraBlackCondensed
    /FuturaBT-ExtraBlackCondItalic
    /FuturaBT-ExtraBlackItalic
    /FuturaBT-Light
    /FuturaBT-LightItalic
    /FuturaBT-Medium
    /FuturaBT-MediumCondensed
    /FuturaBT-MediumItalic
    /GabbyGauguinSH
    /GalliardITCbyBT-Bold
    /GalliardITCbyBT-BoldItalic
    /GalliardITCbyBT-Italic
    /GalliardITCbyBT-Roman
    /Garamond
    /Garamond-Antiqua
    /Garamond-Bold
    /Garamond-Halbfett
    /Garamond-Italic
    /Garamond-Kursiv
    /Garamond-KursivHalbfett
    /Garcia
    /GarryMondrian3LightItalicSH
    /GarryMondrian3LightSH
    /GarryMondrian4BookItalicSH
    /GarryMondrian4BookSH
    /GarryMondrian5SBldItalicSH
    /GarryMondrian5SBldSH
    /GarryMondrian6BoldItalicSH
    /GarryMondrian6BoldSH
    /GarryMondrian7ExtraBoldSH
    /GarryMondrian8UltraSH
    /GarryMondrianCond3LightSH
    /GarryMondrianCond4BookSH
    /GarryMondrianCond5SBldSH
    /GarryMondrianCond6BoldSH
    /GarryMondrianCond7ExtraBoldSH
    /GarryMondrianCond8UltraSH
    /GarryMondrianExpt3LightSH
    /GarryMondrianExpt4BookSH
    /GarryMondrianExpt5SBldSH
    /GarryMondrianExpt6BoldSH
    /GarryMondrianSwashSH
    /Gaslight
    /GatineauPSMT
    /Gautami
    /GDT
    /Geometric231BT-BoldC
    /Geometric231BT-LightC
    /Geometric231BT-RomanC
    /GeometricSlab703BT-Bold
    /GeometricSlab703BT-BoldCond
    /GeometricSlab703BT-BoldItalic
    /GeometricSlab703BT-Light
    /GeometricSlab703BT-LightItalic
    /GeometricSlab703BT-Medium
    /GeometricSlab703BT-MediumCond
    /GeometricSlab703BT-MediumItalic
    /GeometricSlab703BT-XtraBold
    /GeorgeMelvilleSH
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Gigi-Regular
    /GillSansBC
    /GillSans-Bold
    /GillSans-BoldItalic
    /GillSansCondensed-Bold
    /GillSansCondensed-Regular
    /GillSansExtraBold-Regular
    /GillSans-Italic
    /GillSansLight-Italic
    /GillSansLight-Regular
    /GillSans-Regular
    /GoldMinePlain
    /Gonzo
    /GothicE
    /GothicG
    /GothicI
    /GoudyHandtooledBT-Regular
    /GoudyOldStyle-Bold
    /GoudyOldStyle-BoldItalic
    /GoudyOldStyleBT-Bold
    /GoudyOldStyleBT-BoldItalic
    /GoudyOldStyleBT-Italic
    /GoudyOldStyleBT-Roman
    /GoudyOldStyleExtrabold-Regular
    /GoudyOldStyle-Italic
    /GoudyOldStyle-Regular
    /GoudySansITCbyBT-Bold
    /GoudySansITCbyBT-BoldItalic
    /GoudySansITCbyBT-Medium
    /GoudySansITCbyBT-MediumItalic
    /GraceAdonisSH
    /Graeca
    /Graeca-Bold
    /Graeca-BoldItalic
    /Graeca-Italic
    /Graphos-Bold
    /Graphos-BoldItalic
    /Graphos-Italic
    /Graphos-Regular
    /GreekC
    /GreekS
    /GreekSans
    /GreekSans-Bold
    /GreekSans-BoldOblique
    /GreekSans-Oblique
    /Griffin
    /GrungeUpdate
    /Haettenschweiler
    /HankKhrushchevSH
    /HarlowSolid
    /HarpoonPlain
    /Harrington
    /HeatherRegular
    /Hebraica
    /HeleneHissBlackSH
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Narrow
    /Helvetica-Narrow-Bold
    /Helvetica-Narrow-BoldOblique
    /Helvetica-Narrow-Oblique
    /Helvetica-Oblique
    /HenryPatrickSH
    /Herald
    /HighTowerText-Italic
    /HighTowerText-Reg
    /HogBold-HMK
    /HogBook-HMK
    /HomePlanning
    /HomePlanning2
    /HomewardBoundPSMT
    /Humanist521BT-Bold
    /Humanist521BT-BoldCondensed
    /Humanist521BT-BoldItalic
    /Humanist521BT-Italic
    /Humanist521BT-Light
    /Humanist521BT-LightItalic
    /Humanist521BT-Roman
    /Humanist521BT-RomanCondensed
    /IBMPCDOS
    /IceAgeD
    /Impact
    /Incised901BT-Bold
    /Incised901BT-Light
    /Incised901BT-Roman
    /Industrial736BT-Italic
    /Informal011BT-Roman
    /InformalRoman-Regular
    /Intrepid
    /IntrepidBold
    /IntrepidOblique
    /Invitation
    /IPAExtras
    /IPAExtras-Bold
    /IPAHighLow
    /IPAHighLow-Bold
    /IPAKiel
    /IPAKiel-Bold
    /IPAKielSeven
    /IPAKielSeven-Bold
    /IPAsans
    /ISOCP
    /ISOCP2
    /ISOCP3
    /ISOCT
    /ISOCT2
    /ISOCT3
    /Italic
    /ItalicC
    /ItalicT
    /JesterRegular
    /Jokerman-Regular
    /JotMedium-HMK
    /JuiceITC-Regular
    /JupiterPSMT
    /KabelITCbyBT-Book
    /KabelITCbyBT-Ultra
    /KarlaJohnson5CursiveSH
    /KarlaJohnson5RegularSH
    /KarlaJohnson6BoldCursiveSH
    /KarlaJohnson6BoldSH
    /KarlaJohnson7ExtraBoldCursiveSH
    /KarlaJohnson7ExtraBoldSH
    /KarlKhayyamSH
    /Karnack
    /Kartika
    /Kashmir
    /KaufmannBT-Bold
    /KaufmannBT-Regular
    /KeplerStd-Black
    /KeplerStd-BlackIt
    /KeplerStd-Bold
    /KeplerStd-BoldIt
    /KeplerStd-Italic
    /KeplerStd-Light
    /KeplerStd-LightIt
    /KeplerStd-Medium
    /KeplerStd-MediumIt
    /KeplerStd-Regular
    /KeplerStd-Semibold
    /KeplerStd-SemiboldIt
    /KeystrokeNormal
    /Kidnap
    /KidsPlain
    /Kindergarten
    /KinoMT
    /KissMeKissMeKissMe
    /KoalaPSMT
    /KorinnaITCbyBT-Bold
    /KorinnaITCbyBT-KursivBold
    /KorinnaITCbyBT-KursivRegular
    /KorinnaITCbyBT-Regular
    /KristenITC-Regular
    /Kristin
    /KunstlerScript
    /KyotoSong
    /LainieDaySH
    /LandscapePlanning
    /Lapidary333BT-Bold
    /Lapidary333BT-BoldItalic
    /Lapidary333BT-Italic
    /Lapidary333BT-Roman
    /Latha
    /LatinoPal3LightItalicSH
    /LatinoPal3LightSH
    /LatinoPal4ItalicSH
    /LatinoPal4RomanSH
    /LatinoPal5DemiItalicSH
    /LatinoPal5DemiSH
    /LatinoPal6BoldItalicSH
    /LatinoPal6BoldSH
    /LatinoPal7ExtraBoldSH
    /LatinoPal8BlackSH
    /LatinoPalCond4RomanSH
    /LatinoPalCond5DemiSH
    /LatinoPalCond6BoldSH
    /LatinoPalExptRomanSH
    /LatinoPalSwashSH
    /LatinWidD
    /LatinWide
    /LeeToscanini3LightSH
    /LeeToscanini5RegularSH
    /LeeToscanini7BoldSH
    /LeeToscanini9BlackSH
    /LeeToscaniniInlineSH
    /LetterGothic12PitchBT-Bold
    /LetterGothic12PitchBT-BoldItal
    /LetterGothic12PitchBT-Italic
    /LetterGothic12PitchBT-Roman
    /LetterGothic-Bold
    /LetterGothic-BoldItalic
    /LetterGothic-Italic
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LetterGothic-Regular
    /LibrarianRegular
    /LinusPSMT
    /Lithograph-Bold
    /LithographLight
    /LongIsland
    /LubalinGraphMdITCTT
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /LydianCursiveBT-Regular
    /Magneto-Bold
    /Mangal-Regular
    /Map-Symbols
    /MarcusHobbesSH
    /Mariah
    /Marigold
    /MaritaMedium-HMK
    /MaritaScript-HMK
    /Market
    /MartinMaxxieSH
    /MathTypeMed
    /MatisseITC-Regular
    /MaturaMTScriptCapitals
    /MaudeMeadSH
    /MemorandumPSMT
    /Metro
    /Metrostyle-Bold
    /MetrostyleExtended-Bold
    /MetrostyleExtended-Regular
    /Metrostyle-Regular
    /MicrogrammaD-BoldExte
    /MicrosoftSansSerif
    /MikePicassoSH
    /MiniPicsLilEdibles
    /MiniPicsLilFolks
    /MiniPicsLilStuff
    /MischstabPopanz
    /MisterEarlBT-Regular
    /Mistral
    /ModerneDemi
    /ModerneDemiOblique
    /ModerneOblique
    /ModerneRegular
    /Modern-Regular
    /MonaLisaRecutITC-Normal
    /Monospace821BT-Bold
    /Monospace821BT-BoldItalic
    /Monospace821BT-Italic
    /Monospace821BT-Roman
    /Monotxt
    /MonotypeCorsiva
    /MonotypeSorts
    /MorrisonMedium
    /MorseCode
    /MotorPSMT
    /MSAM10
    /MSLineDrawPSMT
    /MS-Mincho
    /MSOutlook
    /MSReference1
    /MSReference2
    /MTEX
    /MTEXB
    /MTEXH
    /MT-Extra
    /MTGU
    /MTGUB
    /MTLS
    /MTLSB
    /MTMI
    /MTMIB
    /MTMIH
    /MTMS
    /MTMSB
    /MTMUB
    /MTMUH
    /MTSY
    /MTSYB
    /MTSYH
    /MT-Symbol
    /MTSYN
    /Music
    /MVBoli
    /MysticalPSMT
    /NagHammadiLS
    /NealCurieRuledSH
    /NealCurieSH
    /NebraskaPSMT
    /Neuropol-Medium
    /NevisonCasD
    /NewMilleniumSchlbkBoldItalicSH
    /NewMilleniumSchlbkBoldSH
    /NewMilleniumSchlbkExptSH
    /NewMilleniumSchlbkItalicSH
    /NewMilleniumSchlbkRomanSH
    /News702BT-Bold
    /News702BT-Italic
    /News702BT-Roman
    /Newton
    /NewZuricaBold
    /NewZuricaItalic
    /NewZuricaRegular
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NigelSadeSH
    /Nirvana
    /NuptialBT-Regular
    /OCRAbyBT-Regular
    /OfficePlanning
    /OldCentury
    /OldEnglishTextMT
    /Onyx
    /OnyxBT-Regular
    /OpenSymbol
    /OttawaPSMT
    /OttoMasonSH
    /OzHandicraftBT-Roman
    /OzzieBlack-Italic
    /OzzieBlack-Regular
    /PalatiaBold
    /PalatiaItalic
    /PalatiaRegular
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /PalmSpringsPSMT
    /Pamela
    /PanRoman
    /ParadisePSMT
    /ParagonPSMT
    /ParamountBold
    /ParamountItalic
    /ParamountRegular
    /Parchment-Regular
    /ParisianBT-Regular
    /ParkAvenueBT-Regular
    /Patrick
    /Patriot
    /PaulPutnamSH
    /PcEncodingLowerSH
    /PcEncodingSH
    /Pegasus
    /PenguinLightPSMT
    /PennSilvaSH
    /Percival
    /PerfectRegular
    /Pfn2BlackItalic
    /Phantom
    /PhilSimmonsSH
    /Pickwick
    /PipelinePlain
    /Playbill
    /PoorRichard-Regular
    /Poster
    /PosterBodoniBT-Italic
    /PosterBodoniBT-Roman
    /Pristina-Regular
    /Proxy1
    /Proxy2
    /Proxy3
    /Proxy4
    /Proxy5
    /Proxy6
    /Proxy7
    /Proxy8
    /Proxy9
    /Prx1
    /Prx2
    /Prx3
    /Prx4
    /Prx5
    /Prx6
    /Prx7
    /Prx8
    /Prx9
    /Pythagoras
    /Raavi
    /Ranegund
    /Ravie
    /Ribbon131BT-Bold
    /RMTMI
    /RMTMIB
    /RMTMIH
    /RMTMUB
    /RMTMUH
    /RobWebsterExtraBoldSH
    /Rockwell
    /Rockwell-Bold
    /Rockwell-ExtraBold
    /Rockwell-Italic
    /RomanC
    /RomanD
    /RomanS
    /RomanT
    /Romantic
    /RomanticBold
    /RomanticItalic
    /Sahara
    /SalTintorettoSH
    /SamBarberInitialsSH
    /SamPlimsollSH
    /SansSerif
    /SansSerifBold
    /SansSerifBoldOblique
    /SansSerifOblique
    /Sceptre
    /ScribbleRegular
    /ScriptC
    /ScriptHebrew
    /ScriptS
    /Semaphore
    /SerifaBT-Black
    /SerifaBT-Bold
    /SerifaBT-Italic
    /SerifaBT-Roman
    /SerifaBT-Thin
    /Sfn2Bold
    /Sfn3Italic
    /ShelleyAllegroBT-Regular
    /ShelleyVolanteBT-Regular
    /ShellyMarisSH
    /SherwoodRegular
    /ShlomoAleichemSH
    /ShotgunBT-Regular
    /ShowcardGothic-Reg
    /Shruti
    /SignatureRegular
    /Signboard
    /SignetRoundhandATT-Italic
    /SignetRoundhand-Italic
    /SignLanguage
    /Signs
    /Simplex
    /SissyRomeoSH
    /SlimStravinskySH
    /SnapITC-Regular
    /SnellBT-Bold
    /Socket
    /Sonate
    /SouvenirITCbyBT-Demi
    /SouvenirITCbyBT-DemiItalic
    /SouvenirITCbyBT-Light
    /SouvenirITCbyBT-LightItalic
    /SpruceByingtonSH
    /SPSFont1Medium
    /SPSFont2Medium
    /SPSFont3Medium
    /SpsFont4Medium
    /SPSFont4Medium
    /SPSFont5Normal
    /SPSScript
    /SRegular
    /Staccato222BT-Regular
    /StageCoachRegular
    /StandoutRegular
    /StarTrekNextBT-ExtraBold
    /StarTrekNextPiBT-Regular
    /SteamerRegular
    /Stencil
    /StencilBT-Regular
    /Stewardson
    /Stonehenge
    /StopD
    /Storybook
    /Strict
    /Strider-Regular
    /StuyvesantBT-Regular
    /StylusBT
    /StylusRegular
    /SubwayRegular
    /SueVermeer4LightItalicSH
    /SueVermeer4LightSH
    /SueVermeer5MedItalicSH
    /SueVermeer5MediumSH
    /SueVermeer6DemiItalicSH
    /SueVermeer6DemiSH
    /SueVermeer7BoldItalicSH
    /SueVermeer7BoldSH
    /SunYatsenSH
    /SuperFrench
    /SuzanneQuillSH
    /Swiss721-BlackObliqueSWA
    /Swiss721-BlackSWA
    /Swiss721BT-Black
    /Swiss721BT-BlackCondensed
    /Swiss721BT-BlackCondensedItalic
    /Swiss721BT-BlackExtended
    /Swiss721BT-BlackItalic
    /Swiss721BT-BlackOutline
    /Swiss721BT-Bold
    /Swiss721BT-BoldCondensed
    /Swiss721BT-BoldCondensedItalic
    /Swiss721BT-BoldCondensedOutline
    /Swiss721BT-BoldExtended
    /Swiss721BT-BoldItalic
    /Swiss721BT-BoldOutline
    /Swiss721BT-Italic
    /Swiss721BT-ItalicCondensed
    /Swiss721BT-Light
    /Swiss721BT-LightCondensed
    /Swiss721BT-LightCondensedItalic
    /Swiss721BT-LightExtended
    /Swiss721BT-LightItalic
    /Swiss721BT-Roman
    /Swiss721BT-RomanCondensed
    /Swiss721BT-RomanExtended
    /Swiss721BT-Thin
    /Swiss721-LightObliqueSWA
    /Swiss721-LightSWA
    /Swiss911BT-ExtraCompressed
    /Swiss921BT-RegularA
    /Syastro
    /Sylfaen
    /Symap
    /Symath
    /SymbolGreek
    /SymbolGreek-Bold
    /SymbolGreek-BoldItalic
    /SymbolGreek-Italic
    /SymbolGreekP
    /SymbolGreekP-Bold
    /SymbolGreekP-BoldItalic
    /SymbolGreekP-Italic
    /SymbolGreekPMono
    /SymbolMT
    /SymbolProportionalBT-Regular
    /SymbolsAPlentySH
    /Symeteo
    /Symusic
    /Tahoma
    /Tahoma-Bold
    /TahomaItalic
    /TamFlanahanSH
    /Technic
    /TechnicalItalic
    /TechnicalPlain
    /TechnicBold
    /TechnicLite
    /Tekton-Bold
    /Teletype
    /TempsExptBoldSH
    /TempsExptItalicSH
    /TempsExptRomanSH
    /TempsSwashSH
    /TempusSansITC
    /TessHoustonSH
    /TexCatlinObliqueSH
    /TexCatlinSH
    /Thrust
    /Times-Bold
    /Times-BoldItalic
    /Times-BoldOblique
    /Times-ExtraBold
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Oblique
    /Times-Roman
    /Times-Semibold
    /Times-SemiboldItalic
    /TimesUnic-Bold
    /TimesUnic-BoldItalic
    /TimesUnic-Italic
    /TimesUnic-Regular
    /TonyWhiteSH
    /TransCyrillic
    /TransCyrillic-Bold
    /TransCyrillic-BoldItalic
    /TransCyrillic-Italic
    /Transistor
    /Transitional521BT-BoldA
    /Transitional521BT-CursiveA
    /Transitional521BT-RomanA
    /TranslitLS
    /TranslitLS-Bold
    /TranslitLS-BoldItalic
    /TranslitLS-Italic
    /TransRoman
    /TransRoman-Bold
    /TransRoman-BoldItalic
    /TransRoman-Italic
    /TransSlavic
    /TransSlavic-Bold
    /TransSlavic-BoldItalic
    /TransSlavic-Italic
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /TribuneBold
    /TribuneItalic
    /TribuneRegular
    /Tristan
    /TrotsLight-HMK
    /TrotsMedium-HMK
    /TubularRegular
    /Tunga-Regular
    /Txt
    /TypoUprightBT-Regular
    /UmbraBT-Regular
    /UmbrellaPSMT
    /UncialLS
    /Unicorn
    /UnicornPSMT
    /Univers
    /UniversalMath1BT-Regular
    /Univers-Bold
    /Univers-BoldItalic
    /UniversCondensed
    /UniversCondensed-Bold
    /UniversCondensed-BoldItalic
    /UniversCondensed-Italic
    /UniversCondensed-Medium
    /UniversCondensed-MediumItalic
    /Univers-CondensedOblique
    /UniversExtended-Bold
    /UniversExtended-BoldItalic
    /UniversExtended-Medium
    /UniversExtended-MediumItalic
    /Univers-Italic
    /UniversityRomanBT-Regular
    /UniversLightCondensed-Italic
    /UniversLightCondensed-Regular
    /Univers-Medium
    /Univers-MediumItalic
    /URWWoodTypD
    /USABlackPSMT
    /USALightPSMT
    /Vagabond
    /Venetian301BT-Demi
    /Venetian301BT-DemiItalic
    /Venetian301BT-Italic
    /Venetian301BT-Roman
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /VinetaBT-Regular
    /Vivaldii
    /VladimirScript
    /VoguePSMT
    /Vrinda
    /WaldoIconsNormalA
    /WaltHarringtonSH
    /Webdings
    /Weiland
    /WesHollidaySH
    /Wingdings-Regular
    /WP-HebrewDavid
    /XavierPlatoSH
    /YuriKaySH
    /ZapfChanceryITCbyBT-Bold
    /ZapfChanceryITCbyBT-Medium
    /ZapfDingbatsITCbyBT-Regular
    /ZapfElliptical711BT-Bold
    /ZapfElliptical711BT-BoldItalic
    /ZapfElliptical711BT-Italic
    /ZapfElliptical711BT-Roman
    /ZapfHumanist601BT-Bold
    /ZapfHumanist601BT-BoldItalic
    /ZapfHumanist601BT-Italic
    /ZapfHumanist601BT-Roman
    /ZappedChancellorMedItalicSH
    /ZurichBT-BlackExtended
    /ZurichBT-Bold
    /ZurichBT-BoldCondensed
    /ZurichBT-BoldCondensedItalic
    /ZurichBT-BoldItalic
    /ZurichBT-ExtraCondensed
    /ZurichBT-Italic
    /ZurichBT-ItalicCondensed
    /ZurichBT-Light
    /ZurichBT-LightCondensed
    /ZurichBT-Roman
    /ZurichBT-RomanCondensed
    /ZurichBT-RomanExtended
    /ZurichBT-UltraBlackExtended
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


