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Abstract
In recent years, deep learning has been successfully applied in various scientific
domains. Following these promising results and performances, it has recently also
started being evaluated in the domain of radio astronomy. In particular, since radio
astronomy is entering the Big Data era, with the advent of the largest telescope in
the world - the Square Kilometre Array (SKA), the task of automatic object detection
and instance segmentation is crucial for source finding and analysis. In this work, we
explore the performance of the most affirmed deep learning approaches, applied to
astronomical images obtained by radio interferometric instrumentation, to solve the
task of automatic source detection. This is carried out by applying models designed to
accomplish two different kinds of tasks: object detection and semantic segmentation.
The goal is to provide an overview of existing techniques, in terms of prediction per-
formance and computational efficiency, to scientists in the astrophysics community
who would like to employ machine learning in their research.
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1 Introduction

In recent years, technological advancement in astronomy and astrophysics has marked
the need for innovative tools and techniques to process the huge amount of data and
images captured from different instruments for radio astronomy observations [1, 2].
The several types of collected data (images, radio signals, etc.) need to be processed
according to the specific tasks for extracting and evaluating useful information to sup-
port scientific research. In particular, in the context of radio-astronomical surveys, the
task of object detection and instance segmentation is crucial for extracting informa-
tion from images to support astrophysics research to catalog and identify the contained
objects [3].

In contrast to optical instruments, which capture images of the sky’s brightness
distribution directly, radio interferometers employ interferometry to calculate the two-
dimensional discrete intensity distribution of the sky, known as visibility data. A
Fourier transform of the visibility data is then performed to produce an image of the
sky. The result of this process is the convolution of the true sky brightness with the
point spread function (PSF) of the interferometric array, commonly referred to as the
dirty image. Due to the incomplete sampling of the interferometric visibility data, the
PSF has strong spurious sources that affect the entire image. This can make it difficult
to recover the true sky’s brightness distribution from interferometric data [4].

Various approaches have been proposed to identify and extract visual information
from images, but themajority of thesemethods are based on classical image processing
techniques that show several limitations in terms of accuracy and classification and for
other tasks that involve specific features post-analysis (e.g. for identifying extended
sources or sources with a complex multi-component morphology).

To overcome these limitations, deep learningmodels represent the evolution of such
approaches and yield interesting results extensively explored in several domains. In
particular, object detection and semantic segmentation models based on deep learning
are currently used in different domains, such as automotive [5–8], medical imaging
[9–11], video surveillance [12, 13], and robot navigation [14–16]. The radio-
astronomical domain has not yet been exhaustively explored with the application
of the mentioned methods; therefore, this work represents an attempt to gather per-
formance and computational requirements about several state-of-the-art approaches
to be used as a reference for future work.

In this work, we propose a benchmark to evaluate and compare the performance of
multiple object detection and semantic segmentation models based on deep learning
(e.g. Mask-RCNN, U-Net, Tiramisu, etc.). We apply these models to astronomical
radio images collected from several surveys to detect and classify sources and provide
a comprehensive overview of these approaches.

We have performed tests on a dataset consisting of over 10, 000 images containing
objects belonging to one of three classes (compact, extended, and spurious sources),
extracted from different radio-astronomical surveys images taken with SKA precur-
sors/pathfinders: the Australian Telescope Compact Array (ATCA), the Australian
Square Kilometre Array Pathfinder (ASKAP) and the Very Large Array (VLA).

For each model, we evaluated the performance by calculating the F1 score, relia-
bility (precision), and completeness (recall) for each detection. We also explored the
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performance of subsets of our dataset according to the signal-to-noise ratio (SNR) i.e.
the ratio between the peak luminous flux of the objects and the noise component of the
image. This allows us to evaluate the detection abilities of the model on faint sources
and with a varying degree of noise in the image.

The analysis conducted in this work shows state-of-the-art object detection and
segmentation models applied to radio-astronomical images, providing a baseline for
future work.

2 Related works

The earliest source detection technique was the visual inspection manually carried out
by trained astronomers. Needless to say, with the sheer scale and volume of data from
modern-day telescopes and surveys, such an approach is intractable and infeasible, as
there is far too much data to be manually looked at by astronomers.

Algorithmic techniques represent the first form of automating the source finding
task and include a variety of methods based on thresholding and peak detection.
To cite a few, Duchamp [17] allows user-controllable preprocessing followed by a
threshold; AEGEAN [18] exploits spatial correlation on data to fit a predictive model;
PySE [19] selects islands of high pixel values after removing the background noise,
then deblends these islands before fitting a 2D Gaussian model; PyBDSF [20] gathers
several image decomposition techniques and offers tools to compute the properties of
extracted sources.

The natural evolution from this was the use of classic computer vision techniques.
For instance, [21] applies Latent Dirichlet allocation, a generative statistical model,
to image pixels, thus clustering them into either background or source pixels. Riggi
et al. [22] developed another similar technique, which instead performs the source
segmentation (or at a lower level, clustering), using the k-means and Self Organizing
Maps (SOM) [23] algorithms based on pixels’ spatial and intensity values.While these
techniques sometimes obtain good results, they are not as capable of generalizing on
unseen data as deep learning models, which explains the shift of more recent works
towards deep learning techniques for automated source detection.

ConvoSource [24] is one such deep learning technique, which uses a relatively
lightweight CNN, made up of 3 convolutional layers, dropout, and a fully connected
(dense) layer to generate the final output: a binary mask. This output, of course,
cannot differentiate between different classes, as it is a binary mask, and thus only
performs binary classification. DeepSource [25] is another CNN-based model, made
up of 5 convolutional layers, with ReLU activations, residual connections, and batch
normalization. This model differs from ConvoSource in that the earlier layers are
used to boost the signal-to-noise ratio of the input, effectively improving the quality
of the image, with a post-processing technique responsible for identifying the pre-
dicted sources. These models use rather simplistic CNNs, and thus the models will
not be as capable of recognizing high-level features as state-of-the-art object detection
techniques, leading to less than satisfactory performance on more complex or fainter
objects. CLARAN [26] is based on the Faster R-CNN object detector [27], fine-tuned
from weights trained on the ImageNet dataset [28], with some architecture changes,
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such as the RoI Pooling layer replaced by differentiable affine transformations. Astro
R-CNN [29] applies Mask R-CNN [30], an instance segmentation technique, the evo-
lution of Faster R-CNN, to perform object detection on a simulated dataset.

Mask Galaxy [31] is yet another implementation that uses Mask R-CNN. It fine-
tunes a model trained on the COCO dataset [32] with astronomical data. This model,
however, was only trained to detect one class.

HeTu [33] uses a combination of residual blocks [34] and a Feature Pyramid Net-
work (FPN) to locate objects in radio images and classify them among four categories.

While these works prove that great strides have been made in the development of
automated source finders, there is still a large margin for improvement. Most of these
works, except for HeTu and CLARAN, are trained on simulated datasets, which can
limit the capability of these models to generalize to actual telescope data as they can
inherit the bias of the acquisition instrument.

Object detection methods in the radio astronomical field employ especially archi-
tectures based on Mask R-CNN [29, 31, 35] and similar convolutional architectures,
using FPNs and ResNets [26, 33]. In recent years, in the computer vision field, several
approaches have pushed forward the state of the art of object detection methods,
either improving the existing architectures [36–39] or employing the transformer
architecture, introduced first in the NLP field [40] and then adapted to the vision
domain [41–43]. One of the families of architectures widely employed as object detec-
tors is the one based on YOLO [44]. YOLOv4 [36] and YOLOv7 [37] present similar
architectures, with the latter being the improvement of the former in terms of both
performance and efficiency. These models are fully convolutional networks based on
FPNs with added modules to improve performance andmodel size. Similarly, the Effi-
cientDet [39] models build on the EfficientNet [45] model to adapt a well-established
convolutional architecture to the object detection task. Transformers introduce the
multi-head attention mechanism, which allows the processing of long sequences and
has been successfully applied to the vision domain by treating images as sequences
of patches and applying the attention mechanism to such sequences. DETR [42] is
one of the first methods to have applied transformers to object detection by treating
the task as a bipartite set matching one, where they match a fixed set of object queries
to the detected objects in the image. YOLOS [46] simplifies DETR’s architecture by
removing the decoder and treating the image patches and the object queries as a single
sequence, resulting in a more lightweight model. A task similar to object detection
is semantic segmentation which, instead of predicting bounding boxes, estimates a
segmentation mask classifying each pixel of the image. Typical semantic segmen-
tation approaches make use of a U-Net [47] architecture, made of a downsampling
encoder, a bottleneck, and an upsampling decoder. The downsampling and upsam-
pling paths are connected by skip connections that avoid gradients from becoming
too small and help to keep low-resolution features. Improvements, such as the deep
supervision mechanism [48], contribute to making these models more robust by learn-
ing more informative features using an objective function on the hidden layers of
the upsampling path. U-Net++ [49] proposes a combination of architectural improve-
ments by improving the skip connection pathways and extending the deep supervision
mechanism, while Tiramisu [50] employs DenseNets [51] instead of ResNets [34]
improving the performance using fewer parameters. Other approaches [11, 52] pro-
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pose hierarchical decoding for segmentation, which, instead of employing the pipeline
of downsampling and upsampling path, decode features at multiple resolutions and
combine them at the end.

To the best of our knowledge, no study provides an overview of deep learning mod-
els, especially relative to semantic segmentation ones, applied to radio-astronomical
images. The only work exploring semantic segmentation in radio-astronomy is carried
out in [53]. Thus, one of the main contributions of this work will be the standardized
comparison of a significant number of state-of-the-art detection and segmentation
approaches on a dataset composed of real images from several telescopes. Addi-
tionally, this work should serve as a baseline of object detection and segmentation
approaches for the radio-astronomical community to orient any scientist who recog-
nizes that deep learning architectures may suit their case study. A complete summary
of other comparable approaches can be found in [54, 55].

3 Dataset: radio astronomical images

To train and validate the models we made use of a dataset containing 10952 image
cutouts extracted from different radio astronomical survey images taken with the Aus-
tralian Telescope Compact Array (ATCA), the Australian Square Kilometer Array
Pathfinder (ASKAP), and the Very Large Array (VLA) complemented with radio
galaxies coming from the Radio Galaxy Zoo (RGZ) project [56].

Each raw data sample from the surveys comes in a large file size (∼ 4GB), which
is intractable by deep learning models as it would require an excessive amount of
resources, so we extract cutouts from each sample. Each cutout may contain multiple
objects of the following three classes:

• Extended Sources: Radio galaxies were taken from the Data Release 1 (DR1)1

(Wong et al., in preparation) of the Radio Galaxy Zoo (RGZ) project [56], using
1.4GHz radio observations at 5” resolution from the Faint Images of the Radio Sky
at Twenty cm (FIRST) survey [57]. The data samples consist of extended sources
with a 2- and 3-component morphology. Another sample of such sources was
extracted from the 1.2 GHz ASKAP-36 Scorpio survey at∼9.4”×7.7” resolution
(see [58] for a description of the survey). This category includes both extended
emission sources and multi-island sources with two, three, or more components.
All the sources are likely extragalactic, since HII regions, planetary nebulae, and
supernova remnants have been removed.

• Compact sources: Compact radio sources with single island morphology were
taken from the ASKAP-15 and ATCA Scorpio surveys, reported above.

• Imaging artifacts: A collection of imaging artifacts around bright radio sources
was obtained from different radio observations: ASKAP EMU pilot survey
at ∼12.5”×10.9” resolution [59], 912 MHz ASKAP-15 Scorpio survey at
∼24”×21” resolution and the aforementioned 1.2 GHz ASKAP-36 Scorpio sur-

1 https://cloudstor.aarnet.edu.au/plus/s/agKNekOJK87hOh0 from https://github.com/chenwuperth/rgz_
rcnn/issues/10
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Fig. 1 Pie chart of the origin of the images in our dataset

vey, 2.1 GHz ATCA Scorpio survey at ∼9.8”×5.8” resolution [60]. Traditional
algorithms extract these artifacts as real sources while they are spurious.

We present a pie chart of the surveys we used to compose our dataset in Fig. 1.
Throughout the paper, we will omit ‘source’ when it becomes redundant and only use
their categorization, i.e. one among ‘compact’, ‘extended’, and ‘spurious’.

The whole dataset, aggregating images from the aforementioned surveys, consists
of a total of 36, 398 objects, then split into 3 subsets: training (70%), validation (10%)

and test (20%) as shown in Table 1. We use a dataset composed of images acquired
using different telescopes, which can help the models better generalize over different
image sources. Using images from only one survey can result in a higher bias induced
in the network, as analyzed in [35], Section 4.2.1. We perform a similar analysis on
the impact of training on a subset of the data, split by telescope, and report the results
in Section 5.1.3

We extracted image cutouts (single-channel, 132×132 pixels, FITS format) from
the reference data using the caesar tool [22]. The RGZ dataset already provides
source cutouts in the same format and bounding boxes for extended source objects.
We use a dataset composed of image cutouts to train and test the models, as training
on the images at the original size would be computationally infeasible. The models
we chose for our analysis support image sizes up to 1333 × 1333 pixels. Moreover,
we resize the images before feeding them to the model.

Table 1 Number of object samples and images for each subset

Object category Train Valid. Test Total

Spurious Source 934 133 267 1,334

Compact Source 20,603 2,943 5,886 29,432

Extended Source 3,940 562 1,125 5,627

# of images 7,653 1,064 2,235 10,952

# object per image (avg.) 3.32 3.34 3.26 3.30
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Fig. 2 Image and annotation sample pairs used in training. (a) Compact sources (in red) and spurious
sources (in blue). (b) Extended source sample (in yellow)

While bounding boxes are sufficient for training object detectionmodels, we needed
to use segmentation masks to supervise the training of the semantic segmentation
models. For this reason, a raw object segmentation was preliminarily produced with
the caesar source finder and later refined by visual examination, needed in particular
for spurious sources and bright sources near spurious ones, as source finders often
detect them as belonging to the same island. Images belonging to the RGZ survey
have been annotated using both infrared and radio data, while annotations of data
originating from other surveys are based only on radio data. Samples of annotated
images are reported in Fig. 2

Raw and processed data are kept under version control, using the Data Version
Control (dvc) framework2.

3.1 Data format

Input data and annotations represent a crucial element in any machine-learning-based
algorithm, as this strongly influences the training procedure, as well as the final perfor-
mance of the model. After collecting the images and information about segmentation
masks, we need to organize our information so that it can bemanaged by deep learning
models. We introduce a data format to be shared among the models, to avoid the need
to adapt the data loading pipeline each time we need to train a new model.

In our case study, radio-astronomical data and annotations are stored separately
in two different formats. The images come as FITS 3 files, while the annotations are
stored in JSON files, one for each image, where all the individual FITS files containing
each object mask are specified. Before being fed to any model, images need to go

2 https://dvc.org/
3 https://fits.gsfc.nasa.gov/fits_documentation.html
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through a pre-processing phase. We first remove any inconsistent values (i.e. NaN
values) from the FITS data by setting them to the minimum pixel value in the image
matrix. Then, we apply a Z-Scale [61] normalization with a contrast value of 0.3 on
each image to improve the object visibility before converting the FITS data to PNG.
Finally, we convert the data into a PNG image by rescaling all values to the [0, 255]
range and replicating the single-channel image on three channels. Such transformation
is necessary as both object detection and semantic segmentation models are designed
to operate on RGB image data. We did not apply any background subtraction step to
the resulting images, as the network is expected to learn the noise pattern from the
data. We acknowledge that these steps can introduce some degree of information loss,
as the range of possible values is reduced, and fine-grained details may be lost. It is
in our interest to find a better way to preprocess the data, modifying the architecture
of some models to exploit the full value range of the images in FITS format, skipping
the conversion to PNG.

During training, we employ image augmentation to prevent the model from over-
fitting. We apply a random number of augmentations (0 to 2) to each image before
being fed to the model during training. The available augmentation operations are:
(1) random horizontal flip (the image is flipped along the x-axis with probability p);
(2) 90 deg rotation; and (3) random resize and cropping (after resizing the image to
a set of possible fixed values, a random area, with a fixed size, is cropped from the
image). The number and type of operations applied to a particular image are random
and different for each epoch. To avoid confusion, in this work, when we mention
epochs, we refer to machine learning training epochs. While training a model, we say
it completes an epoch when the whole training dataset has been used to update the
model parameters. Training a model requires multiple epochs, meaning that the model
will “see” the same dataset multiple times.

For each image, we extract information about the segmentation mask of each object
and compute the maximum and minimum of the segmentation masks along the 2D
coordinates (x,y) to get the coordinates of the respective bounding box coordinates.
Finally, we aggregate the bounding box and segmentation mask information into a
single JSON object and we link it to the corresponding image by adding, to each object
in the image, the “image id” field. In addition to bounding box and segmentation mask
annotations, we add to each object description other fields, namely: category id to
define the type of object for each mask; area that indicates the extension covered by
the object, in terms of original pixel size, trivially calculated by multiplying the width
and height of the bounding boxes; iscrowd that specifies if a region contains a set of
packed objects of the same class. We add these attributes to conform to the COCO
[32] format, as many object detection models, including the ones we tested, rely on
this kind of annotation. A visualization of a final JSON annotation file is shown in
Fig. 3.

4 Architectures

We investigate several deep learningmodels, performing object detection and semantic
segmentation, to identify and classify sources. We mainly explore architectures based
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Fig. 3 An example of annotation file in JSON (COCO-like) format

on CNN and Transformers [40]. Most CNN-based object detection models rely on
Region Proposal Networks [27], which are computationally expensive modules that
propose several regions that could potentially contain objects and then select only a few
of them. This technique is more efficient than the selective search [62] algorithm used
in previous approaches. Single-stage detection algorithms [63] are CNNs that avoid
the use of RPNs by dividing the image on a grid and assigning a confidence score
to one or more proposed predictions within each grid cell. Transformers are a more
recent family of architectures, originally designed for Natural Language Processing
tasks which have been extended to the vision domain [41]. This last work paved the
road for a whole family of models, which have been applied to several tasks in the
vision domain, such as image classification [64–66], object detection [42, 46, 67, 68],
and knowledge distillation [43, 69].

Semantic segmentation models follow a different architecture. They are char-
acterized by encoder-decoder pipelines, where images are first encoded to a low-
dimensionality representation by downsampling the feature maps at each encoding
stage to generate its latent representation. Then the image is expanded back to the
original image size in the decoding path to obtain the binary masks that classify the
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objects. There are many variants that extend this framework by applying skip connec-
tions [47], deep supervision [48], or hierarchical decoding [11].

4.1 Detectionmodels

ObjectDetection defines all deep neural networks designedwith the goal of identifying
and locating objects within an image. Such a task is carried out by defining bounding
boxes and associating labels to the predicted object. Deep learning-based approaches
generally employ convolutional neural networks (CNNs) to perform end-to-end object
detection [27, 30, 39, 44], but, recently, transformer-based ones gained relevant pop-
ularity [42, 46, 67, 68]. CNN-based object detection models typically consist of two
modules: a backbone network and several prediction heads. The backbone generates a
low-resolution, feature-rich image representation, usually employing widely affirmed
classifier architectures (e.g. ResNets). Feature maps are then fed to a series of con-
volutional layers that learn to predict a bounding box and a label for each detected
object.

Most object detection networks employ a region proposal network (RPN), intro-
duced in [27]. This network generates a set of N bounding boxes at different aspect
ratios for each point on the convolutional feature map. The output of the backbone net-
work is then used to determine whether each bounding box belongs to the foreground
or the background by providing the feature map cropped by the anchor box to a small
CNN. Then, starting from these anchor boxes, the objective function is computed on
the offset between the anchor boxes and the ground truth. Usually, multiple proposals
will yield a high score for the same object, especially for large objects, so further fil-
tering is needed. Non-Maximum Suppression (NMS) computes the Intersection over
Union (IoU) between the highest-scoring predicted box and the next high-scoring
boxes and removes the ones with IoU higher than a threshold. Such a threshold is
a hyperparameter. This family of models is known as two-stage detectors, as they
process the input in two separate phases.

One-stage detectors skip the region proposal network by dividing the input image
into Ng grids. The model predicts B bounding boxes and a confidence score for each
grid. NMS is applied to the highest-scoring boxes to filter redundant predictions.
These detectors allow for a more efficient prediction at inference time in terms of
computational resource requirements, at the cost of model performance.

These methods limit the proposal of bounding boxes to a fixed number, which may
seem a limitation. As we are working on image crops that contain fewer than fifteen
objects, the number of proposed boxes is higher than the maximum number of objects.

Figure 4 shows the general framework of these two families of object detectors.
Transformer-based methods employ a simpler approach by using the backbone net-

work in the same way as CNN-based ones and feeding its output to a transformer [40],
as used in [42], or skip the use of the CNN backbone and use an encoder-only trans-
former [46]. The final prediction is given by a series of prediction heads, typically
linear layers. The loss function employed in these models is a bipartite matching loss,
introduced in [42]. Transformers require more computational resources and are more
difficult to lead to convergence, but can yield more robust models. Note that some
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Fig. 4 General pipeline designs of a one-stage object detector a) and a two-stage object detector b), the
latter employing RPN and RoI Pooling as additional operations to propose and filter regions

approaches have similar names and can generate confusion. YOLO (You Only Look
Once) is a single-stage detector based on CNNs. YOLO9000, YOLOv3, and YOLOv4
are gradual improvements of the same architecture. YOLOS (You Only Look at One
Sequence) is a separate model with a completely different architecture.

4.1.1 Mask R-CNN

We used a Mask R-CNN-based model adapted for working on radio-astronomical
images [35]. Mask R-CNN [30] is a deep learning model that builds on Faster R-
CNN [27], which, in turn, builds on R-CNN [70]. Mask R-CNN performs instance
segmentation on images, i.e. it combines object detection, classification, and semantic
segmentation, in the form of a per-pixel mask for each object, differentiating between
overlapping objects.

The first component of Mask R-CNN, which is also one of the newly introduced
features compared to Faster R-CNN, is the Feature Pyramid Network (FPN) [71].
The FPN, also referred to as the backbone, serves as a feature extractor for objects at
multiple scales, with shallower layers detecting lower-level features and deeper layers
detecting higher-level features. The bottom-up pathway is typically a ResNet [34]
(ResNet101 in our case), chosen for their residual connections, which add output and
input of a series of neural layers to solve the vanishing gradient problem [72]. This
problem relates to the gradients becoming too small in deeper layers due to chained
multiplications by small numbers. The top-down pathway consists of a convolution at
each layer, followed by a lateral connection from the bottom-up pathway. This lateral
connection allows theFPN to combine the top-downpathway’s high-level featureswith
the bottom-up pathway’s low-level features. The output of the FPN is then passed to
the Region Proposal Network (RPN).

The RPN scans predefined areas of the image, referred to as anchors, and picks
out regions likely to contain an object of interest. This component does not look
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directly at the input image again but uses features already extracted by the FPN,
making it efficient. For each anchor, the RPN determines whether it is background
or foreground, meaning whether it contains an object of interest and refinements,
which are more precise ‘outlines’ of the object. The regions proposed with the highest
confidence are refined and passed on to the next component.

The regions proposed by the RPN are of varying shapes and sizes, which is prob-
lematic for the architecture of the network, and are thus resized to a fixed, predefined
size. This step is called ROI Pooling. In Faster R-CNN, this is accomplished using
ROIPool, which crops and resizes the feature map. However, this can result in the loss
of significant data, along with spatial misalignment of mask pixels when overlayed
with the original image. Mask R-CNN instead utilizes ROI Align, which samples the
feature map at different points and uses bilinear interpolation to achieve the desired
size.

The final component, and what particularly sets Mask R-CNN apart from its prede-
cessors, is the Fully Convolutional Network (FCN), also known as the ‘mask branch’.
This branch is a fully convolutional network that can retain spatial information and
generates a per-pixel mask for the proposed regions and thus for the input image.

Given the nature of the data, we carry out some data preprocessing steps specific
to radio astronomical data, which are not present in common implementations of
Mask R-CNN. For example, setting ‘NaN’ pixels to the image minimum and apply-
ing Z-Scale [61] normalization. Moreover, A significantly intensive Hyper-Parameter
Optimization process is also carried out to fine-tune the model’s architecture for the
data it is made to handle. Furthermore, when being used for detection, we apply post-
processing steps, such as merging overlapping or connected objects of the same label
or retaining only the object with the highest confidence in other cases.

4.1.2 Detectron2

Detectron2 [38] is Facebook AI Research’s next-generation library that implements
state-of-the-art object detection and instance segmentation algorithms. It is a rewrite of
Detectron [73] that started with maskrcnn-benchmark [74]. It supports multiple tasks
such as bounding box detection, instance segmentation, keypoint detection, densepose
detection, and others. It also provides pre-trained models that can be easily loaded and
used on new data sets. It allows for custom state-of-the-art computer vision tech-
nologies to be easily plugged in and includes robust models, e.g. Faster R-CNN [27],
Mask R-CNN [30], RetinaNet [75], and DensePose [76], and also features several new
models, including Cascade R-CNN [77], Panoptic FPN [78], and TensorMask [79].

For detecting objects, our experiments made use of the Base (Faster) R-CNN with
Feature PyramidNetwork (Base-RCNN-FPN), which is the basic bounding box detec-
tor extendable to Mask R-CNN for instance segmentation. Faster R-CNN with FPN
backbone is a multi-scale detector capable of detecting objects at different scales,
accomplishing high accuracy and efficiency. A generic Region-Based Convolutional
Neural Network (R-CNN) is composed of three main components. The first is a region
proposal network that generates candidate regions (bounding boxes) using computer
vision techniques. The second one is the feature extraction module which uses con-
volutional neural networks to extract the features from the candidate regions. Finally,
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the last component is a classifier that predicts the classes of the proposed candidates
using the extracted features.

Specifically, for Faster R-CNN, these components are:

1. Backbone Network: extracts feature maps from the input image at different scales.
Base-RCNN-FPN output features are called P2 (1/4 scale), P3 (1/8), P4 (1/16),
P5 (1/32) and P6 (1/64).

2. Region Proposal Network: detects object regions from the multi-scale features.
1000 box proposals (by default) with confidence scores are obtained.

3. Box Head: crops and warps feature maps using proposal boxes into multiple fixed-
size features, and obtains fine-tuned box locations and classification results via
fully-connected layers. Finally, 100 boxes (by default) in maximum are filtered
out using non-maximum suppression (NMS).

Mask R-CNN extends on Faster R-CNN by adding another branch in parallel for
pixel-level object instance segmentation. The branch is a fully connected network
applied on ROIs to classify each pixel into segments with little overall computation
cost. It adds a mask head parallel to the classification and bounding box regressor
heads. With respect to Faster R-CNN, one major difference is the use of the RoIAlign
layer, instead of the RoIPool layer, to avoid pixel-level misalignment due to spatial
quantization.

Mask R-CNN performs better than the existing state-of-the-art single-model archi-
tectures. It is simple to train, flexible, and generalizes well in many applications.

4.1.3 YOLO

Characterized by a fully convolutional network that simultaneously predicts a set
of bounding boxes and the associated class probabilities, YOLO [44] falls into the
category of one-stage detectors. Such a model is characterized by faster execution
time in comparison to two-stage detectors, at the cost of a certain degree of accuracy.
The loss of accuracy is implicit in the design of the model, as YOLO detects objects
by analyzing patches of the entire image. This causes a bias in the prediction of each
object, which depends on the context of the patch where the object is located, meaning
that the same object, put in another context, might be misdetected. At the core of this
method is the following idea: the input image, whose resolution is P × P , is divided
into an S × S grid, and each cell is treated as responsible for detecting an object
if the center of such object falls in that cell. Note that S << P , so each grid cell
contains multiple pixels. The authors set S = 7. Each cell predicts a fixed number B
of bounding boxes, and a confidence score for each of them, which determines how
confident the box is to contain an object and also how accurate it is at covering the
object. The confidence score is given by

Pr (Object) × I oU (1)

where Pr(Object) refers to the probability of that box containing an object, and I oU
measures the intersection over union between the prediction and the ground truth.
This quantity should be as high as possible when an object is contained in the cell.
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If the model predicts no objects in a bounding box, the confidence score should be
0. 5 values are predicted for each bounding box: 4 coordinates (xyhw) to locate the
bounding box in the image and the confidence score. Furthermore, for each grid cell,
a class probability is computed for each category. Even if a grid cell contains multiple
bounding boxes with different objects, the model will only predict a class for that cell,
which translates into a loss of accuracy, especially for small objects in a group.

The architecture of YOLO is made up of 24 convolutional layers and two fully
connected layers. Thefirst 20 convolutional layers are pre-trained on the ImageNet [28]
dataset on the classification task; the whole pipeline is fine-tuned with the detection
task (i.e. the predictions are bounding boxes). Training is carried out using the sum-
squared error as the objective function, as it is easy to optimize. Many grid cells do
not contain any objects and will have a zero confidence score. This may cause an
increase in the magnitude of the gradients from cells that do contain an object, leading
to unstable training and divergence. To address this problem, the loss for the bounding
box coordinate prediction is increased, while the loss relative to the confidence score is
decreased for boxes that do not contain objects. Although it represents an improvement
in terms of performance and methodology when compared to two-stage approaches,
YOLO presents the following limitations:

• Limited flexibility since each grid cell predicts a fixed number of bounding boxes
and a single class, which makes it impossible to distinguish among objects of dif-
ferent categories in the same grid cell or to predict more objects than the maximum
number of boxes within a cell;

• Issues to generalize and recognize the same object in a different aspect ratio than
the one provided in the training data, as its inductive bias is conditioned by the
grid that divides the image;

• Errors are not treated proportionally to the box size but in terms of their absolute
value, which is a problem as a small error on a large box does not affect prediction
accuracy, as the same error value on a smaller box does.

There are multiple versions of this approach, each of which represents a relevant
improvement in terms of computational performance and prediction accuracy rela-
tive to the older version. The first improvement of the architecture is represented by
YOLO9000 [80], which, among others, provides the following enhancements:

• Batch normalization [81], which contributes to stabilizing training;
• A higher resolution classifier, capable of recognizing features at a higher scale;
• Multiscale training, which processes batches at different resolutions to make the
model more robust to scale and aspect ratio variations. This is made possible by
employing Feature Pyramid Networks (FPN) [71].

A further improvement in performance and computational speed is given by
YOLOv3 [82], which improves the backbone by adding residual connections and
optimizes some training hyperparameters to make the model converge faster. In our
benchmark,weuse twoversions of this architecture:YOLOv4 and the latestYOLOv7.
YOLOv4 [36] boosts YOLOv3 performance by operating on the following:

• Expand the receptivefield of the detector by increasing the number of convolutional
layers in the backbone, integrating the Cross-Stage Partial Network [83] into the
backbone, and adding to this the Spatial Pyramid Pooling [84];
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• Replace the FPN in YOLOv3 with the PANet [85] module

YOLOv7 [37] builds upon this architecture and includes a series of architectural
improvements to boost performance and resource requirements. Some of the improve-
ments are the following:

• Extended efficient layer aggregation to perform layer fusion that makes the
operation less resource-demanding by reducing the path of the gradients in the
computational graph;

• Auxiliary supervision heads in intermediate layers to improve the features’ quality.

4.1.4 EfficientDet

EfficientDet [39] represents a family of one-stage detectors whose general architecture
follows that of YOLO and aims to improve efficiency and performance by exploring
several architecture variations to reach state-of-the-art performance more efficiently.
This work realizes the enhancement by operating mainly on two aspects. First of all,
most object detectors make use of multi-scale features to gather information from
feature maps at different resolutions and fuse them to output the prediction. Such
approaches do not distinguish between feature maps at different scales, so they treat
them equally. Yet, each feature map highlights different properties of the image, so
they should be processed accordingly. To tackle this problem, the authors introduce the
Bi-directional Feature Pyramid Network (Bi-FPN). Scaling up themodel performance
is another concern addressed by this work. Most approaches rely on scaling up the
backbone or the image size, while the authors claim it is necessary to scale the box and
class predictionheads accordingly. Finally, they alsomodify the backbone architecture,
choosing EfficientNet [45], as it is less burdensome in terms of GFLOPs and model
size.

The BiFPN module represents the core of the EfficientDet architecture and solves
the task of gathering information from the image at different scales. This method
improves existing state-of-the-art approaches like PANet [85] and NAS-FPN [86],
both requiring a high amount of resources to carry out training and inference, by
employing a more efficient strategy to fuse features at different scales. In particular,
they improve performance by operating on the following main aspects:

1. Remove cross-scale connections that have only one input, as it has been observed
that they contribute poorly to the final output by not providing a significant amount
of information for the final prediction;

2. Add a residual connection between the input and the output for features at the
same scale, so to fuse more features without adding parameters to the model;

3. Repeat the top-down and bottom-up phases multiple times to gain a bidirectional
flow of information, which enhances high-level feature fusion.

Finally, as features need to be treated differently according to their resolution, the
fusion strategy is modified. While most approaches use a rescaled sum of all features,
this method offers the following ways to combine them:

• Weighted fusion: feature maps are scaled by a learnable weight, and they are
summed together. This may cause training instability, as the value of the weight is
unbounded.
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• Softmax-based fusion: each weight is given to a softmax operation, to rescale it
into a range of [0, 1]. Computing softmax on each weight before multiplying it by
the feature maps solves the aforementioned problem, but introduces a new one:
significantly slower computation.

• Fast-normalized fusion: the operation of softmax is modified slightly by removing
the exponential operation and adding an ε term to the denominator for numerical
stability. This approach is more efficient and avoids the unbounded value problem.

The overall model consists of a backbone based on EfficientNet, a multi-scale
feature aggregation network, carried out using BiFPN, and a box/class prediction
network, realized by employing fully convolutional networks.

The model can be scaled up or down by setting a coefficient φ, which influences the
depth and width of the modules. For the backbone, the coefficient determines which
EfficientNet architecture to use, from EfficientNet-B0 to B6. The BiFPN network is
scaled according to the following equations:

WBi F P N = 64 · (1.35φ
)
, DBi F P N = 3 + φ (2)

where WBi F P N indicates the number of channels of the convolutions (width) and
DBi F P N refers to the number of layers in the network (depth).

The box and class predictors are scaled as well in the same manner. They share
their width with the BiFPN module, but their depth is computed in the following way:

Dbox = Dclass = 3 + �φ/3� (3)

Finally, the input image resolution must also be scaled so that it can be processed
by the BiFPN. For this reason, the input image size has to be divisible by 27, thus the
following equation:

Sinput = 512 + φ · 128 (4)

The family of EfficientDet models includes EfficientDet-D0 to D7, where the num-
ber corresponds to the value of φ.

We tested EfficientDetD1 and D2, as testing more complex versions of the models
on our relatively simple images could lead to severe overfitting.

4.1.5 DETR

DETR [42] is one of the first approaches to employ transformers to perform object
detection. This method poses object detection as a direct set prediction problem, thus
relieving the bounding box regression from the burden of Region Proposal [27] and
Non-Maximum Suppression. These two steps have a high impact on performance, as
they consist in generating thousands of proposals and discarding most of them based
on an Intersection over Union threshold value. DETR consists of three main modules:
(1) a CNN backbone, typically ResNet50 [34], which serves as a 2D feature extractor
of the input image; (2) an encoder-decoder transformer, which computes self- and
cross-attention on the features extracted by the backbone and produces a fixed set
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of predictions; (3) a feedforward network that assigns either the predicted class or a
special no-object class to each element of the prediction set.

The core mechanism of the model resides in the transformer module, which is
composed of an encoder and a decoder. Before being fed to the encoder, 2D features
are projected onto a hidden dimension d by means of a×1 convolution and embedded
with a spatial positional encoding. The transformer is designed to process sequences, so
the 2D features of dimension d×H×W are flattened into a sequence of d×H W . Then,
the encoder computes self-attention on the sequence followed by residual connections,
layer normalization [87], and feedforward layers. Such operations are iterated as many
times as the number of encoder layers stacked together. The decoder shares part of its
architecture with the encoder but is characterized by an additional module: the cross-
attentionmodule, placed after the self-attention block. The decoder receives a fixed set
of object queries as input, which are randomly initialized learnable parameters. Then it
computes self-attention on the input, followed by a cross-attention between the object
queries and the encoder output. This step is crucial in transformer architectures as it
contributes to mapping the information between the source sequence (i.e. the image
features) and the target sequence (i.e. the predicted object categories and locations).

Finally, each element of the output sequence from the decoder is fed to a shared
feedforward network to predict the bounding boxes and the corresponding class. The
decoder always outputs a fixed set of predictions, equal to the number of provided
object queries, and each prediction is given a certain class if an object is predicted
with a high confidence score, otherwise, the object is associated with a no-object
class.

An important remark about the decoder’s behavior is that it differs from the one
defined in [40], which operates by iteratively generating an element of the sequence
and feeding that element back to the decoder to generate the next element. In DETR,
the decoder executes in a single step, predicting all the outputs in parallel. Since
the problem is framed as a direct set prediction one, the loss function to optimize is
a matching cost between the ground truth set and the predicted set. The loss opti-
mization follows two steps: (1) the Hungarian algorithm is used to find the optimal
assignment among all the possible permutations of the two sets; (2) the Hungarian
loss gives the actual loss function between the sets. The loss functions also depend
on the bounding box loss, which uses a linear combination of the L1 loss and the
IoU loss [88]. Additionally, an auxiliary loss is employed at each decoding layer to
improve performance.

The main contribution of this work is that, by using attention maps, DETR can
more accurately predict complex and overlapping objects, avoiding the computational
burden that comes with traditional two-stage detectors. A typical drawback of this
model is its non-trivial training, which requires pre-training on extended datasets and
learning rate warm-up schedules, as reported in [89], and its limited capability on
smaller objects.

We tested the minimal version of DETR among the variants reported in [42], i.e.
DETR with ResNet50 as the backbone for feature extraction.
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4.1.6 YOLOS

Finally, to complete the overview of the existing models, we also tested a novel object
detection approach based entirely on transformers. While DETR still relies on a con-
volutional backbone, YOLOS employs a fully transformer-based architecture similar
to ViT [41], adapted to the object detection task, as the latter is designed to tackle
classification tasks. Compared to ViT, YOLOS drops the [CLS] token, as its purpose
is to classify the input by performing attention on the whole patch sequence, whereas
here, the task is to detect objects in the scene and locate them. Instead of using the
CLS token, YOLOS adds a hundred learnable detection tokens concatenated to the
input image patches along the sequence dimension. The encoder then performs self-
attention over the whole sequence, and the tokens will be used as output features that
will be processed to generate the predictions. These tokens have the same purpose as
the object queries in DETR. YOLOS shares some aspects with DETR: in addition to
the concept of learnable tokens and the core based on transformers, they employ the
same optimization strategy by minimizing a bipartite loss function, using the Hun-
garian algorithm and the respective loss defined in [42]. Yet, YOLOS introduces a
significant change in the transformer architecture: it employs an encoder-only trans-
former, while DETR presents an encoder-decoder architecture. The lack of a decoder
module allows for a smaller number of parameters, thus a lighter model in inference,
without significantly impairing prediction performance. Before being fed to the trans-
former, the image is divided into patches of fixed dimensions. Then each patch is
flattened to have a sequence of one-dimensional vectors and projected onto a latent
space. A fixed-size sequence of learnable detection tokens, each of which has the same
size as the projected patches, is concatenated to the input sequence. This composed
sequence is then summed with a sinusoidal positional encoding to maintain positional
information within the sequence in the transformer. The transformer computes self-
attention between the elements of the input sequence, which in this case is the union
of the projected patches and the detection tokens. This step is necessary for injecting
information from the input image patches into the detection tokens. The transformer
encoder outputs a sequence of the same length as the input, but only the elements
corresponding to the detection tokens are used to compute the predicted objects. Such
output is provided as input to a 2-layer MLP with GELU [90] activation functions.
Finally, two distinct heads, each consisting of a one-layer MLP with a ReLU acti-
vation function, predict the bounding box coordinates and categories, respectively. A
peculiarity of the approach used in YOLOS is the minimization of injected inductive
bias. This means that the model exploits as little as possible the spatial structure and
geometry of the input, which makes this approach versatile and capable of efficiently
operating on data of different sizes and aspect ratios. The only form of spatial inductive
bias implicit in the model is given by the patch sub-division of the image, but, other
than this, no spatial convolutions are involved.

YOLOS comes in different variants, which differ mainly in model size, influenced
by the embedding size and the number of heads. As data is not too complex, consisting
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of grayscale images, we tested the lightest version of the model, i.e. YOLOS-Tiny,
to avoid having too many parameters, which might cause overfitting. This version
consists of 12 encoder layers, an embedding dimension of 192, and 3 heads for the
attention mechanism, for a total of 5.7M parameters.

4.2 Segmentationmodels

Semantic segmentation represents a task with the objective of classifying individual
pixels of an image to obtain segmentationmasks of the same size as the original image,
where each pixel is labeled as belonging to its predicted class. This task is different
from the object detection one, which predicts bounding boxes, so it generally follows
a different pipeline. These models do not employ Region Proposal Networks since
they do not need to “find” objects in the image, but classify each pixel. The objective
function used to train these models is different as well; generally a form of the Cross-
Entropy loss function, as opposed to L1 orMSE distances used in object detection. The
general pipeline used for semantic segmentation tasks consists of an encoder-decoder
pair. The first represents the downsampling path, where the image is compressed to a
latent space representation, while the latter is the upsampling path, which generates
the high-resolution binary mask for the input image. In between the encoder and
the decoder, a bottleneck layer projects the compressed image representation into
the space of the binary mask by means of 1 × 1 convolutions. In our analysis, we
employ the following architectures on our radio-astronomical dataset, as shown in
Fig. 5: a basic encoder-decoder architecture, U-Net [47], which adds skip connections
to the basic architecture, U-Net with deep supervision, which enhances the loss by
computing it also on intermediate upsampled masks, Tiramisu [50], which employs
DenseNets [51] instead of convolutions in the downsampling and upsampling blocks,
and PankNet [11], which makes use of hierarchical decoding for information mixing
between upsampling paths.

Segmentation models were originally designed for medical imaging applications.
We think that our use case can benefit from such architectures, as medical images and
radio-astronomical data are characterized by a similar distribution.

4.2.1 Encoder-decoder

The baseline for our segmentation models is a simple encoder-decoder pipeline with
a bottleneck layer between the two paths, as shown in Fig. 5(a). This model employs
a series of convolutional blocks in the encoder and several up-convolutional blocks
in the decoder. Each downsampling block is composed of two 3 × 3 convolutions
followed by a rectified linear unit (ReLU) and a 2 × 2 max pooling to reduce fea-
ture resolution. The feature channels are doubled at each downsampling step. In the
decoding path, each block performs a 2 × 2 transposed convolution, which expands
the resolution of the feature map while halving the size of the feature channel, fol-
lowed by 2 layers of 3 × 3 convolutions and a ReLU. In the final layer, 1 × 1
convolutions are applied to map the dimension of the feature map to the number of
classes.
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Fig. 5 Different semantic segmentation architectures. a) Classic encoder-decoder approach; b) original
U-Net architecture, with skip connections; c) U-Net with added deep supervision for enhanced loss; d)
hierarchical decoding that combines features from all decoding stages

4.2.2 U-Net

Deep layers in neural networks are generally hard to train, yielding a model incapable
of properly converging to an optimal point. The most common reason behind this
behavior is the problem known as vanishing gradient [72], which can occur in deep
pipelines and impairs the training procedure. ResNets [34] offer residual connections
as a solution to this problem by summing the input and the output of a convolutional
block. In this way, the gradients can flow through the shortcut path and avoid becoming
too small. U-Net [47] addresses the problem by applying skip connections, as shown in
Fig. 5(b). Skip connections have the function of conditioning the upsampling output of
the decoding blocks on the feature maps of the downsampling block of the same size.
This is accomplished by concatenating the featuremap produced by the downsampling
block with the input to the corresponding upsampling block.

Another enhancement can be applied by intervening in how the cost of the objective
function is computed. In the classic U-Net architecture, the loss is computed only on
the last layer’s output by applying a cross-entropy loss between this and the ground
truth masks. We employ a U-Net variant in our segmentation models by applying the
mechanism known as deep supervision [48]. It consists of computing the loss between
the output of each upsampling path and the downsized ground truth mask to guide
the decoder to generate meaningful masks from the early stages. An example of this
architecture is shown in Fig. 5(c).
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Finally, among the U-Net-based architectures, U-Net++ [49] improves the skip
pathways and the deep supervision mechanism to improve performance and enhance
gradient flow between the encoding and decoding paths. While U-Net simply con-
catenates the output of the downsampling layers with the corresponding upsampling
ones, U-Net++ extends this operation by adding dense convolutional layers between
the two paths, which yields a more meaningful encoding of the features as well as
simplifying the computation of the gradients, thus stabilizing the training. U-Net++
employs deep supervision as well but, instead of applying it to intermediate outputs
of the upsampling path, as done in [48], it computes it on the outputs of the convo-
lutional layers of the skip pathways. This enables model pruning at inference time,
which makes this model adaptable to environments with constrained computational
capabilities.

4.2.3 Tiramisu

While U-Net introduces skip connections to solve the vanishing gradient problem,
Tiramisu [50] acts on the structure of the convolutional blocks to make feature maps
more representational by injecting higher-resolution information into lower-resolution
maps. This is achieved by employingDenseNets [51], which replace the sum operation
between the input and output of each convolutional block, typically used in ResNets,
with concatenation. This contributes to reducing the network’s parameters, as it reuses
featuremaps from earlier layers, freeing deeper layers from the need to learn redundant
features.

4.2.4 PankNet

Finally, we employ PankNet [11], which does not make use of the downsampling-
upsampling pipeline but applies encoders and decoders in a multilevel way, as shown
in Fig 5(d). Each decoder receives only the corresponding encoder output as input,
while the other versions concatenated it to the previous decoder output. In addition to
this change in architecture, the output mask is obtained in a different way from what
we have seen so far. Output feature maps from all the decoders are summed together,
allowing for mixing global and local features, thus enabling a more context-aware
prediction. The model is designed to process 3D CT and MRI scans, but since our
case study involves 2D images, we convert the 3D convolutions into 2D when using
them in our dataset.

5 Performance analysis

This Section presents the metrics and related results computed to evaluate the perfor-
mance of each model on object detection (see Section 5.1) and semantic segmentation
(see Section 5.2). Additionally, in Section 5.3, we present an evaluation of the ability
of the models to performwith different data samples according to their signal-to-noise
ratio (SNR). Finally, we evaluate the performance of the models from the computa-
tional point of view (see Section 5.4). We report the metrics on the entire dataset and
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the extended category. We are more interested in how the models perform for this
particular category as the traditional algorithms are well-affirmed for compact source
detection but less efficient on single-island extended sources and incapable of detect-
ing multi-island extended sources. Also, we expect common deep learning models to
underperform on compact and spurious sources due to their small size and irregular
shape.While analyzing the performance, it is useful to recall the number of objects per
class (Table 1) and per SNR bin (Table 6). For further comparison, we report metrics
also for the compact category.

5.1 Object detection

5.1.1 Detection metrics

We evaluate the performance of several detection models on the radio images dataset
and compute the following metrics:

• Reliability (Precision)

Reliabili t y = T P

T P + F P
(5)

• Completeness (Recall)

Completeness = T P

T P + F N
(6)

• F1-Score

F1 = 2 × R × C

R + C
= 2 × T P

(2 × T P) + F P + F N
(7)

where we refer to R for Reliability and C for Completeness
• mAP@50

m AP =
∑

c

APc (8)

To compute such metrics, we first need to compute the number of true positives
(TP), false positives (FP), and false negatives (FN). In the object detection context, a
true positive is the combination of a predicted bounding box having an Intersection
over Union (IoU) greater than a specified threshold and a correctly predicted category
for the detected object. IoU is defined as the ratio between the intersection of the
predicted bounding box and the corresponding ground truth and the union of the two.
If this ratio is greater than the threshold and the class associated with the bounding
box is correct, the prediction is a true positive. If the IoU is less than the threshold, or
the object is misclassified, we count a false positive. If the ground truth bounding box
has no associated prediction, we consider it a false negative. In our case, we use an
IoU threshold of 0.9 for reliability, completeness, and f1-score metrics. For mAP@50,
we use a threshold of 0.5, as specified in the name. We chose a different threshold for
mAP@50, as this is the most commonmetric used to evaluate object detection models.
The Mean Average Precision at 0.50 mAP@0.5, defined in Eq. 8, indicates the mean
over the average precision (or reliability) for all classes above the specified threshold
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of 0.5. To compute such a metric, predictions need first to be ranked, in descending
order, and by confidence score value. This is the reason why we can’t use this kind
of metric for segmentation models, as they intrinsically lack a confidence score for
the predicted object. After ranking the N predictions, starting from the one with the
highest confidence score, we compute the area under the precision-recall curve for
each class c, that we indicate with APc. Finally, we compute the mean of the average
precision metrics over all classes.

We trained our models with different batch sizes, as some models require higher
memory consumption, especially the ones using transformers. The batch size deter-
mines how the model is updated: a batch size of B means that the model parameters
are updated after performing the forward pass on B elements.We trained our detection
models for 300 epochs, using, for testing each model, the weights yielding the best
validation loss.

5.1.2 Detection results

In Table 2, we report the results for the described models. Looking at the reliability
column, YOLOv4 appears to be the best-performing model, but this high score is
counterbalanced by lowcompleteness (∼ 0.5). Thismeans that,while themodel yields
predictions with an IoU score of more than 0.9, such precise predictions concern half
of the true objects in the images. The model is missing half of the predictions, so the
reliability metric is not enough to evaluate performance. This particular case (high
reliability, low completeness) is also the effect of choosing a high IoU threshold (0.9)
which makes all the predictions with an IoU below that threshold be considered false
negatives, thus increasing the denominator of the Completeness formula (Eq. 6).

A more indicative metric that takes into account both reliability and completeness
is the f1-score, so it seemsmore reasonable to use this metric as a comparison between
the methods.

All the methods have been trained from scratch, except DETR, Detectron2, and
YOLOS. These models have been fine-tuned starting from weights pre-trained on the
COCO [32] dataset. We refer to fine-tuning as training the whole model end-to-end,
initialized with pre-trained weights instead of random weights. The choice of not
training DETR and YOLOS from scratch stems from the difficulty of reaching con-
vergence with transformers when trained from scratch, compared with the case where
it is fine-tuned, as shown in Table 3. Detectron2 has been pre-trained for comparison
with Mask R-CNN, which, in contrast, is trained from scratch. This way, we evaluate
the impact of training the model starting from learned features against training from
randomly initialized weights.

Detectron2 and DETR yield the best results, but this comes at a high computational
cost (see Section 5.4). If a compromise between performance and computational bud-
get has to be met, the single-stage detector YOLO or one of the EfficientDet versions
may be more suitable.

The models perform a lower score in reliability and completeness compared to
computer-vision-based techniques (e.g. caesar [22], AEGEAN [18]) but they come
with the capability of distinguishing between multiple kinds of sources and detecting
extended sources and artifacts. This is the main advantage of using deep learning for
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Table 3 Impact of pretraining
for transformer-based models

Model FT Rel Comp F1 Score mAP@50

DETR No 15.3% 18.4% 16.7% 13.4%

Yes 76.4% 76.8% 76.6% 78.9%

YOLOS No 48.1% 25.9% 33.7% 26.4%

Yes 58.0% 75.5% 65.6% 76.3%

FT stands for fine-tuning: “No”means themodel has been trained from
scratch, and “Yes” that it is fine-tuned from weights on the COCO
Dataset. Best results in bold

source detection, as shown by other object detection methods applied to radio astron-
omy, for instance, CLARAN [26] and HeTu [33]. Also, computer vision algorithms
compute metrics regardless of the predicted object’s category, and, in our case, this
can be the reason why our performance is lower than this type of approach.

In Section 5.3, we also analyze the performance of these approaches on different
Signal-to-Noise Ratio ranges to explore how much the models are capable of dealing
with hard-to-detect sources and understand how much faint sources impair detection
performance.

5.1.3 Results by telescope type

We perform an analysis of the impact of the image origin on the bias inducted in
the models. We split our dataset into three subsets, by telescope type: VLA, ATCA,
and ASKAP, in the same way as in [35]. We then evaluate our best-performing object
detector, YOLOv7, by creating three separate instances of the model, originating from
different training sessions, one for each subset. We test each instance of the model on
each subset and on the mixed dataset. We report the performance in terms of F1-score
in Table 4. From this analysis, it emerges that each subset injects some degree of bias
in the model, and this seems to be especially the case for the VLA subset. The model
trained on single subsets yields poor performance when tested on different subsets,
due to the distribution shift caused by the different telescopes of origin. When trained
on the whole dataset, the model learns the biases of several telescopes, being capable
of a higher degree of generalization.

Table 4 Performance on
YOLOv7 when trained on
different subsets of our dataset

Test (→) Mixed VLA ATCA ASKAP
Train (↓)
Mixed 71.7% 87.09% 90.25% 87.04%

VLA 18.56% 84.43% 0.00% 0.27%

ATCA 38.83% 01.32% 59.85% 51.26%

ASKAP 51.26% 02.40% 48.03% 81.33%

Each row refers to an instance of YOLOv7 trained on the specified
subset, while columns (2-5) specify the subset where each instance
has been evaluated. “Mixed” stands for the whole dataset. Results are
reported in terms of F1-score. Best results in bold
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5.2 Semantic segmentation

5.2.1 Segmentation metrics

Similarly to how we computed the metrics for the detection models, we introduce reli-
ability, completeness, and the f1 score for the segmentation models. These quantities
are computed in the same way, as reported in Eqs. 5, 6 and 7. The main difference
between the metrics for the two families of models resides in how we compute true
positives, false positives, and false negatives. While for object detection we consider
the IoU between the predicted and ground truth boxes to determine the nature of the
prediction, for segmentation models, we compare masks. If the model predicts, for
pixel i , a class of k̂, k is the true class, we will count a true positive if k = k̂, a false
positive if k �= k̂, and a false negative if k �= 0 and k̂ = 0. Given the different nature
of the metrics, it is not informative to compare object detection models directly with
semantic segmentation models, so we will evaluate them separately. We trained our
models with a batch size of 32, using Adam [91] as an optimizer, with a learning rate
of 10−4, using a cross-entropy loss function. Training has been carried out for 300
epochs, and we selected the weights for the model at the minimum validation loss for
evaluation.

5.2.2 Segmentation results

Table 5 reports the comparison between our segmentation models. These results show
how the performance increases when progressively adding incremental enhancements,
starting from the baseline encoder-decoder model up to the Tiramisu architecture, as
we described in the previous sections. This demonstrates that on radio-astronomical
data, it is possible to achieve the same improvements that would have been obtained
on a canonical, more affirmed dataset. The lower performance achieved by the last
model, PankNet, can be due to the following factors: 1) the change in the decoder
architecture, replacing the upsampling path with hierarchical decoding; 2) the fact that
the model is originally designed for segmenting 3D volumes instead of 2D images.
From this analysis it emerges how these models perform better on extended sources
with respect to compact sources. This can be caused by the fact that, dealing with deep
networks, these can lose more fine-grained details in the feature extraction process,
resulting in smaller objects not being detected. The difficulty of detecting smaller
objects, especially in the semantic segmentation task, is a common problem [92–94]
and this can be exacerbated by the fact that in our case we are using image crops at
132 × 132 resolution, causing smaller compact sources information to be encoded in
a restricted number of pixels.

5.3 SNR performance

In addition to performance in the entire dataset, we evaluated the ability of the models
to perform with specific data samples. We divided our test set into three subsets based
on their signal-to-noise ratio (SNR), calculated by dividing the peak flux value of each
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Table 6 Object category
distribution among SNR splits

Category SNR < 5 5 < SNR < 20 SNR > 20

Spurious 0 0 267

Compact 175 1505 4206

Extended 5 156 1046

The first two splits lack a significant number of spurious sources, so
no significant result should be expected for such splits

cutout by the amount of background noise, as shown in Eq. 9.We selected 2 thresholds
for the SNR to split our test set: 5 and 20. The first one is a commonly used threshold
in astrophysics to determine a lower bound for source filtering, i.e. sources below this
SNR value are not considered. We set this first threshold to explore how models can
predict sources below such an SNR value, thus on difficult samples. The threshold of
20 is arbitrary, with the sole purpose of further exploring how much the SNR value
affects the performance of the models. Such a split generates a class imbalance, yet
this does not affect training, as we train the models on the whole dataset and use this
split only for evaluation, thus in inference. In particular, in the first two splits (i.e.
SNR < 5 and 5 < SNR < 20), there are no spurious sources, so performance for this
class in such subsets will necessarily be 0. Details on how the objects are split among
the SNR bins are reported in Table 6.

SN R = FP

NBG
(9)

where NBG is the 3 Sigma Clip of the background pixels and FP is the peak flux
computed on pixel values. The SNR equation that we used is defined in [95].

Table 7 reports the results computed on the different SNR bins. Models perform
poorly in the range lower than 5 because samples in this SNR range are more difficult
to detect, even using visual inspection, and because, as shown in Table 6, this bin
contains a low number of samples. YOLOv7 seems to excel in this case among object
detection models, while, in segmentation, Tiramisu and U-Net perform best for SNR
values above and below 5, respectively. YOLOv7 outperforms the other models in this
scenario because of its high reliability at the 0.9 IoU threshold, reported in Table 2,
which raises the f1-score. Such results are enhanced by the prevalence of point sources
rather than extended sources, suggesting a better ability of YOLOv7 to detect small
objects compared to the other methods. Among the segmentation methods, Tiramisu
seems to be the most robust model, even if it may slightly overfit on fainter objects,
for which U-Net seems better suited. More detailed results are reported in Appendix.

5.4 Computational resources utilization

In this section, we evaluate the performance of the presented models from the com-
putational point of view. We performed our experiments on a DGX cluster composed
of 3 nodes, each of which is equipped with 8 NVIDIA A100 GPUs. We trained each
model across 8 GPUs, using data parallelization by broadcasting a copy of the model
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Table 8 Computing
performance on CINECA DGX
machine

Model ETA* GFLOPs # of params

Detection models

Mask R-CNN 180s 198.0 44M

Detectron2 150s 198.0 43.9M

DETR 130s 85.5 41.5M

YOLOv4 90s 48.3 52.5M

YOLOv7 43s 43.7 29.3M

YOLOS 75s 22.7 5.7M

EffDet-D1 52s 6.1 6.6M

EffDet-D2 77s 11.3 8M

Segmentation models

Encoder-Decoder 50s 14.9 7.0M

U-Net 56s 16.6 7,7M

U-Net + DS 67s 19.8 7.7M

U-Net++ 75s 27.4 9.0M

Tiramisu 97s 32.4 3.5M

PankNet 101s 12.8 25.6M

*ETA refers to one epoch

and its parameters to each process, loading a shard of the training batches. At each
forward pass, the gradients are reduced among all processes and the same backward
pass is performed on all the copies. Such communication operations introduce some
overhead that may limit the speed-up of the training process.

In Table 8, we show the computing performance on the CINECA DGX cluster in
terms of the average time it takes to complete a training epoch. Along with this metric,
we report GFLOPs (i.e. the number of billions of floating point operations that each
model requires to make a forward pass) and the total number of parameters of each
model.

Most current state-of-the-art models for object detection tasks employ a two-stage
detection process based on the Region Proposal Network [27], which performs highly
computationally demanding operations. The high number of FLOPs required byMask
R-CNN and Detectron2 is due to their architecture, as they are based on the same
model, i.e. Mask R-CNN [30]. YOLOv4, being a single-stage detector, is more com-
putationally efficient in comparison to Mask R-CNN-based ones, even if it requires
more parameters.

DETR [42] comes with a less demanding set of operations compared to two-stage
detectors (i.e. Mask R-CNN and Detectron2), as it doesn’t use an RPN but still rep-
resents a burden on some architectures, as it employs transformers at its core. In
particular, the use of both transformer encoder and decoder modules, with both self-
and cross-attention mechanisms, is where most of the computational time is spent.

YOLOS uses a transformer architecture as well but requires less computational
resources compared to DETR, mainly due to its encoder-only design, exploiting the
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sequence processing capability of the self-attention mechanism and avoiding the com-
putational burden of the decoder cross-attention.

Among the segmentation approaches, all the U-Net-based ones and the base-
line encoder-decoder model require approximately the same amount of parameters.
Tiramisu is an exception, and, thanks to its feature reuse, given by its DenseNet blocks,
allows for fewer parameters to be optimized in the training process.

6 Conclusions

With the advent of the Square Kilometre Array, automated techniques are needed to
efficiently analyze the data deluge expected to be produced by this new generation
of astronomical facilities. Deep learning is being evaluated in radio astronomy and
shows promising results in source detection and classification.

Thiswork proposes a benchmark reporting performance and computational require-
ments of several models, both convolutional and transformer-based, for the tasks of
object detection and semantic segmentation on radio astronomical images collected
from different surveys and telescopes. The results can guide future activities on several
radio surveys based on the peculiarities of the available images and computing capac-
ities. However, since deep learning is rapidly evolving, any newly developed model
has been possibly omitted but additional releases of the present work are planned
in the future, as well as extending the training dataset and classification capabilities.
From the analyses we conducted, we noticed that for the object detection task, YOLO-
based methods report better overall performance in comparison to other approaches.
Transformer-based approaches, even if they show promising results, especially in the
case of DETR [42], come with the drawback of computational burden, as the multi-
head attention mechanism increases the number of operations. In addition to this, as
shown in Table 3, transformer models require a lot of data to be properly trained, e.g.
300M images [41] which can be a problem when training in the radio-astronomical
field, for the limited amount of labelled data available for training deep learning mod-
els. Also, for images in an SNR range lower than 20, architectures based on YOLO
showed the best performance, which can be ideal for cases where most of the images
are characterized by lower peak fluxes. The comparison of semantic segmentation
models shows that Tiramisu achieves the highest performance without excessively
compromising computational speed. The major drawback of this kind of model lies
in the format of the annotations required for training. Providing a segmentation mask
that classifies each pixel for each image is not a trivial task, as these masks have to be
carefully segmented by experts in the field, while bounding box coordinates are easier
to provide.

We also aim to address, in future works, the use of Generative Adversarial Network
(GAN) architectures to solve a series of open problems in the radio astronomical field,
such as the inability to replicate machine learning experiments due to data privacy and
the difficulty of simulating annotated data in a non-time-consuming way.
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